Zermelo's Theorem¹

Bogdan Nowak	Sławomir Białecki
Łódź University	Łódź University

Summary. The article contains direct proof of Zermelo's theorem about the existence of a well ordering for any set and the lemma the proof depends on.

MML Identifier: WELLSET1.

The articles [4], [3], [5], [2], and [1] provide the notation and terminology for this paper. For simplicity we follow the rules: a, x, y will be arbitrary, B, D, N, X, Y will denote sets, R, S, T will denote relations, F will denote a function, and W will denote a relation. We now state several propositions:

- (1) $x \in \text{field } R \text{ if and only if there exists } y \text{ such that } \langle x, y \rangle \in R \text{ or } \langle y, x \rangle \in R.$
- (2) $R \cup S$ is a relation.
- (3) If $X \neq \emptyset$ and $Y \neq \emptyset$ and W = [X, Y], then field $W = X \cup Y$.
- (4) If y = R, then y is a relation.
- (5) For all a, T holds $x \in T$ -Seg(a) if and only if $x \neq a$ and $\langle x, a \rangle \in T$.

In the article we present several logical schemes. The scheme $R_Separation$ deals with a set \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

there exists B such that for every relation R holds $R \in B$ if and only if $R \in \mathcal{A}$ and $\mathcal{P}[R]$

for all values of the parameters.

The scheme *S_Separation* deals with a set \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

there exists B such that for every set X holds $X \in B$ if and only if $X \in \mathcal{A}$ and $\mathcal{P}[X]$

for all values of the parameters.

The following four propositions are true:

(6) For all x, y, W such that $x \in \text{field } W$ and $y \in \text{field } W$ and W is well ordering relation holds if $x \notin W - \text{Seg}(y)$, then $\langle y, x \rangle \in W$.

¹Supported by RPBP III.24 $\overline{C9}$

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (7) For all x, y, W such that $x \in \text{field } W$ and $y \in \text{field } W$ and W is well ordering relation holds if $x \in W \text{Seg}(y)$, then $\langle y, x \rangle \notin W$.
- (8) Given F, D. Suppose for every X such that $X \in D$ holds $F(X) \notin X$ and $F(X) \in \bigcup D$. Then there exists R such that field $R \subseteq \bigcup D$ and R is well ordering relation and field $R \notin D$ and for every y such that $y \in$ field Rholds R-Seg $(y) \in D$ and F(R-Seg(y)) = y.
- (9) For every N there exists R such that R is well ordering relation and field R = N.

References

- Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123-129, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [5] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received October 27, 1989