Monotone Real Sequences. Subsequences

Jarosław Kotowicz¹ Warsaw University, Białystok

Summary. The article contains definitions of constant, increasing, decreasing, non decreasing, non increasing sequences, the definition of a subsequence and their basic properties.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{SEQM_3}.$

The articles [2], [4], [3], [1], and [5] provide the terminology and notation for this paper. We adopt the following convention: n, m, k will be natural numbers, r will be a real number, and seq, seq_1 , seq_2 will be sequences of real numbers. We now define five new predicates. Let us consider seq. We say that seq is increasing if and only if:

for every n holds seq(n) < seq(n+1).

We say that seq is decreasing if and only if: for every n holds seq(n+1) < seq(n).

We say that seq is non-decreasing if and only if: for every n holds $seq(n) \leq seq(n+1)$.

We say that seq is non-increasing if and only if: for every n holds $seq(n + 1) \le seq(n)$.

We say that *seq* is constant if and only if:

there exists r such that for every n holds seq(n) = r.

Let us consider *seq*. We say that *seq* is monotone if and only if:

seq is non-decreasing or seq is non-increasing.

We now state a number of propositions:

- (1) seq is increasing if and only if for every n holds seq(n) < seq(n+1).
- (2) seq is decreasing if and only if for every n holds seq(n+1) < seq(n).
- (3) seq is non-decreasing if and only if for every n holds $seq(n) \le seq(n+1)$.
- (4) seq is non-increasing if and only if for every n holds $seq(n+1) \leq seq(n)$.

¹Supported by RPBP III.24

471

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

JAROSŁAW KOTOWICZ

- (5) seq is constant if and only if there exists r such that for every n holds seq(n) = r.
- (6) *seq* is monotone if and only if *seq* is non-decreasing or *seq* is non-increasing.
- (7) seq is increasing if and only if for all n, m such that n < m holds seq(n) < seq(m).
- (8) seq is increasing if and only if for all n, k holds seq(n) < seq((n+1)+k).
- (9) seq is decreasing if and only if for all n, k holds seq((n+1)+k) < seq(n).
- (10) seq is decreasing if and only if for all n, m such that n < m holds seq(m) < seq(n).
- (11) seq is non-decreasing if and only if for all n, k holds $seq(n) \le seq(n+k)$.
- (12) seq is non-decreasing if and only if for all n, m such that $n \le m$ holds $seq(n) \le seq(m)$.
- (13) seq is non-increasing if and only if for all n, k holds $seq(n+k) \le seq(n)$.
- (14) seq is non-increasing if and only if for all n, m such that $n \le m$ holds $seq(m) \le seq(n)$.
- (15) seq is constant if and only if there exists r such that $\operatorname{rng} seq = \{r\}$.
- (16) seq is constant if and only if for every n holds seq(n) = seq(n+1).
- (17) seq is constant if and only if for all n, k holds seq(n) = seq(n+k).
- (18) seq is constant if and only if for all n, m holds seq(n) = seq(m).
- (19) If seq is increasing, then for every n such that 0 < n holds seq(0) < seq(n).
- (20) If seq is decreasing, then for every n such that 0 < n holds seq(n) < seq(0).
- (21) If seq is non-decreasing, then for every n holds $seq(0) \le seq(n)$.
- (22) If seq is non-increasing, then for every n holds $seq(n) \leq seq(0)$.
- (23) If seq is increasing, then seq is non-decreasing.
- (24) If seq is decreasing, then seq is non-increasing.
- (25) If seq is constant, then seq is non-decreasing.
- (26) If *seq* is constant, then *seq* is non-increasing.
- (27) If seq is non-decreasing and seq is non-increasing, then seq is constant.
- A sequence of real numbers is said to be an increasing sequence of naturals if:

rng it $\subseteq \mathbb{N}$ and for every *n* holds it(*n*) < it(*n* + 1).

Let us consider seq, k. The functor seq^k yielding a sequence of real numbers, is defined as follows:

for every n holds $(seq \cap k)(n) = seq(n+k)$.

In the sequel Nseq, $Nseq_1$ will be increasing sequences of naturals. Next we state four propositions:

(28) seq is an increasing sequence of naturals if and only if $rng seq \subseteq \mathbb{N}$ and for every n holds seq(n) < seq(n+1).

- (29) seq is an increasing sequence of naturals if and only if seq is increasing and for every n holds seq(n) is a natural number.
- (30) $seq_1 = seq \land k$ if and only if for every n holds $seq_1(n) = seq(n+k)$.
- (31) For every *n* holds $(seq \cdot Nseq)(n) = seq(Nseq(n))$.

Let us consider Nseq, n. Then Nseq(n) is a natural number.

Let us consider Nseq, seq. Then $seq \cdot Nseq$ is a sequence of real numbers.

Let us consider Nseq, $Nseq_1$. Then $Nseq_1 \cdot Nseq$ is an increasing sequence of naturals.

Let us consider Nseq, k. Then $Nseq \uparrow k$ is an increasing sequence of naturals. Let us consider seq, seq_1 . We say that seq is a subsequence of seq_1 if and only if:

there exists Nseq such that $seq = seq_1 \cdot Nseq$.

Next we state a number of propositions:

- (32) seq is a subsequence of seq_1 if and only if there exists Nseq such that $seq = seq_1 \cdot Nseq$.
- (33) For every n holds $n \leq Nseq(n)$.
- $(34) \quad seq \uparrow 0 = seq.$
- $(35) \quad (seq \cap k) \cap m = (seq \cap m) \cap k.$
- $(36) \quad (seq \land k) \land m = seq \land (k+m).$
- $(37) \quad (seq + seq_1) \cap k = seq \cap k + seq_1 \cap k.$
- $(38) \quad (-seq) \cap k = -seq \cap k.$
- $(39) \quad (seq seq_1) \land k = seq \land k seq_1 \land k.$
- (40) If seq is non-zero, then $seq \cap k$ is non-zero.
- (41) If seq is non-zero, then $seq^{-1} \cap k = (seq \cap k)^{-1}$.
- (42) $(seq \cdot seq_1) \cap k = (seq \cap k) \cdot (seq_1 \cap k).$
- (43) If seq_1 is non-zero, then $\frac{seq}{seq_1} \cap k = \frac{seq^{\wedge}k}{seq_1 \wedge k}$.
- (44) $(r \cdot seq) \cap k = r \cdot (seq \cap k).$
- (45) $(seq \cdot Nseq) \cap k = seq \cdot (Nseq \cap k).$
- (46) seq is a subsequence of seq.
- (47) $seq \cap k$ is a subsequence of seq.
- (48) If seq is a subsequence of seq_1 and seq_1 is a subsequence of seq_2 , then seq is a subsequence of seq_2 .
- (49) If seq is increasing and seq_1 is a subsequence of seq, then seq_1 is increasing.
- (50) If seq is decreasing and seq_1 is a subsequence of seq, then seq_1 is decreasing.
- (51) If seq is non-decreasing and seq_1 is a subsequence of seq, then seq_1 is non-decreasing.
- (52) If seq is non-increasing and seq_1 is a subsequence of seq, then seq_1 is non-increasing.

JAROSŁAW KOTOWICZ

- (53) If seq is monotone and seq_1 is a subsequence of seq, then seq_1 is monotone.
- (54) If seq is constant and seq_1 is a subsequence of seq, then seq_1 is constant.
- (55) If seq is constant and seq_1 is a subsequence of seq, then $seq = seq_1$.
- (56) If seq is upper bounded and seq_1 is a subsequence of seq, then seq_1 is upper bounded.
- (57) If seq is lower bounded and seq_1 is a subsequence of seq, then seq_1 is lower bounded.
- (58) If seq is bounded and seq_1 is a subsequence of seq, then seq_1 is bounded.
- (59) If seq is increasing and 0 < r, then $r \cdot seq$ is increasing but if seq is increasing and 0 = r, then $r \cdot seq$ is constant but if seq is increasing and r < 0, then $r \cdot seq$ is decreasing.
- (60) If seq is decreasing and 0 < r, then $r \cdot seq$ is decreasing but if seq is decreasing and 0 = r, then $r \cdot seq$ is constant but if seq is decreasing and r < 0, then $r \cdot seq$ is increasing.
- (61) If seq is non-decreasing and $0 \le r$, then $r \cdot seq$ is non-decreasing but if seq is non-decreasing and $r \le 0$, then $r \cdot seq$ is non-increasing.
- (62) If seq is non-increasing and $0 \le r$, then $r \cdot seq$ is non-increasing but if seq is non-increasing and $r \le 0$, then $r \cdot seq$ is non-decreasing.
- (63) If seq is increasing and seq_1 is increasing, then $seq + seq_1$ is increasing but if seq is decreasing and seq_1 is decreasing, then $seq + seq_1$ is decreasing but if seq is non-decreasing and seq_1 is non-decreasing, then $seq + seq_1$ is non-decreasing but if seq is non-increasing and seq_1 is non-increasing, then $seq + seq_1$ is non-increasing.
- (64) If seq is increasing and seq_1 is constant, then $seq + seq_1$ is increasing but if seq is decreasing and seq_1 is constant, then $seq + seq_1$ is decreasing but if seq is non-decreasing and seq_1 is constant, then $seq + seq_1$ is nondecreasing but if seq is non-increasing and seq_1 is constant, then $seq + seq_1$ is non-increasing.
- (65) If seq is constant, then for every r holds $r \cdot seq$ is constant and -seq is constant and |seq| is constant.
- (66) If seq is constant and seq_1 is constant, then $seq \cdot seq_1$ is constant and $seq + seq_1$ is constant.
- (67) If seq is constant and seq_1 is constant, then $seq seq_1$ is constant.
- (68) If seq is upper bounded and 0 < r, then $r \cdot seq$ is upper bounded but if seq is upper bounded and 0 = r, then $r \cdot seq$ is bounded but if seq is upper bounded and r < 0, then $r \cdot seq$ is lower bounded.
- (69) If seq is lower bounded and 0 < r, then $r \cdot seq$ is lower bounded but if seq is lower bounded and 0 = r, then $r \cdot seq$ is bounded but if seq is lower bounded and r < 0, then $r \cdot seq$ is upper bounded.
- (70) If seq is bounded, then for every r holds $r \cdot seq$ is bounded and -seq is bounded and |seq| is bounded.

- (71) If seq is upper bounded and seq_1 is upper bounded, then $seq + seq_1$ is upper bounded but if seq is lower bounded and seq_1 is lower bounded, then $seq + seq_1$ is lower bounded but if seq is bounded and seq_1 is bounded, then $seq + seq_1$ is bounded.
- (72) If seq is bounded and seq_1 is bounded, then $seq \cdot seq_1$ is bounded and $seq seq_1$ is bounded.
- (73) If seq is constant, then seq is bounded.
- (74) If seq is constant, then for every r holds $r \cdot seq$ is bounded and -seq is bounded and |seq| is bounded.
- (75) If seq is upper bounded and seq_1 is constant, then $seq + seq_1$ is upper bounded but if seq is lower bounded and seq_1 is constant, then $seq + seq_1$ is lower bounded but if seq is bounded and seq_1 is constant, then $seq + seq_1$ is bounded.
- (76) If seq is upper bounded and seq_1 is constant, then $seq seq_1$ is upper bounded but if seq is lower bounded and seq_1 is constant, then $seq - seq_1$ is lower bounded but if seq is bounded and seq_1 is constant, then $seq - seq_1$ is bounded and $seq_1 - seq$ is bounded and $seq \cdot seq_1$ is bounded.
- (77) If seq is upper bounded and seq_1 is non-increasing, then $seq + seq_1$ is upper bounded.
- (78) If seq is lower bounded and seq_1 is non-decreasing, then $seq + seq_1$ is lower bounded.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [4] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received November 23, 1989