# Monotone Real Sequences. Subsequences 

Jarosław Kotowicz ${ }^{1}$<br>Warsaw University, Białystok


#### Abstract

Summary. The article contains definitions of constant, increasing, decreasing, non decreasing, non increasing sequences, the definition of a subsequence and their basic properties.


MML Identifier: SEQM_3.

The articles [2], [4], [3], [1], and [5] provide the terminology and notation for this paper. We adopt the following convention: $n, m, k$ will be natural numbers, $r$ will be a real number, and $s e q, s e q_{1}, s e q_{2}$ will be sequences of real numbers. We now define five new predicates. Let us consider seq. We say that seq is increasing if and only if:
for every $n$ holds $\operatorname{seq}(n)<\operatorname{seq}(n+1)$.
We say that seq is decreasing if and only if:
for every $n$ holds $\operatorname{seq}(n+1)<\operatorname{seq}(n)$.
We say that seq is non-decreasing if and only if:
for every $n$ holds $\operatorname{seq}(n) \leq \operatorname{seq}(n+1)$.
We say that seq is non-increasing if and only if:
for every $n$ holds $\operatorname{seq}(n+1) \leq \operatorname{seq}(n)$.
We say that seq is constant if and only if:
there exists $r$ such that for every $n$ holds $\operatorname{seq}(n)=r$.
Let us consider seq. We say that seq is monotone if and only if:
seq is non-decreasing or seq is non-increasing.
We now state a number of propositions:
(1) seq is increasing if and only if for every $n$ holds $\operatorname{seq}(n)<s e q(n+1)$.
(2) seq is decreasing if and only if for every $n$ holds $\operatorname{seq}(n+1)<\operatorname{seq}(n)$.
(3) $s e q$ is non-decreasing if and only if for every $n$ holds $\operatorname{seq}(n) \leq \operatorname{seq}(n+1)$.
(4) seq is non-increasing if and only if for every $n$ holds $\operatorname{seq}(n+1) \leq \operatorname{seq}(n)$.

[^0](5) seq is constant if and only if there exists $r$ such that for every $n$ holds $\operatorname{seq}(n)=r$.
(6) seq is monotone if and only if seq is non-decreasing or seq is nonincreasing.
(7) seq is increasing if and only if for all $n, m$ such that $n<m$ holds $\operatorname{seq}(n)<\operatorname{seq}(m)$.
(8) $\operatorname{seq}$ is increasing if and only if for all $n, k$ holds $\operatorname{seq}(n)<\operatorname{seq}((n+1)+k)$.
(9) seq is decreasing if and only if for all $n, k$ holds $\operatorname{seq}((n+1)+k)<\operatorname{seq}(n)$.
(10) seq is decreasing if and only if for all $n$, $m$ such that $n<m$ holds $\operatorname{seq}(m)<\operatorname{seq}(n)$.
(11) $s e q$ is non-decreasing if and only if for all $n, k$ holds $\operatorname{seq}(n) \leq \operatorname{seq}(n+k)$.
(12) seq is non-decreasing if and only if for all $n, m$ such that $n \leq m$ holds $\operatorname{seq}(n) \leq s e q(m)$.
(13) $s e q$ is non-increasing if and only if for all $n, k$ holds $\operatorname{seq}(n+k) \leq \operatorname{seq}(n)$.
(14) seq is non-increasing if and only if for all $n, m$ such that $n \leq m$ holds $\operatorname{seq}(m) \leq \operatorname{seq}(n)$.
seq is constant if and only if there exists $r$ such that rng seq $=\{r\}$.
$s e q$ is constant if and only if for every $n$ holds $\operatorname{seq}(n)=\operatorname{seq}(n+1)$.
$s e q$ is constant if and only if for all $n, k$ holds $\operatorname{seq}(n)=\operatorname{seq}(n+k)$.
(19) If seq is increasing, then for every $n$ such that $0<n$ holds $\operatorname{seq}(0)<$ seq(n).
(20) If seq is decreasing, then for every $n$ such that $0<n$ holds $\operatorname{seq}(n)<$ seq(0).
(21) If seq is non-decreasing, then for every $n$ holds $\operatorname{seq}(0) \leq \operatorname{seq}(n)$.
(22) If $\operatorname{seq}$ is non-increasing, then for every $n$ holds $\operatorname{seq}(n) \leq \operatorname{seq}(0)$.
(23) If seq is increasing, then seq is non-decreasing.
(24) If seq is decreasing, then seq is non-increasing.
(25) If $s e q$ is constant, then $s e q$ is non-decreasing.
(26) If seq is constant, then seq is non-increasing.
(27) If seq is non-decreasing and seq is non-increasing, then $s e q$ is constant.

A sequence of real numbers is said to be an increasing sequence of naturals if:
rng it $\subseteq \mathbb{N}$ and for every $n$ holds $\operatorname{it}(n)<\operatorname{it}(n+1)$.
Let us consider seq, $k$. The functor $s e q \wedge$ yielding a sequence of real numbers, is defined as follows:
for every $n$ holds $(s e q \wedge k)(n)=\operatorname{seq}(n+k)$.
In the sequel $N s e q, N s e q_{1}$ will be increasing sequences of naturals. Next we state four propositions:
(28) $s e q$ is an increasing sequence of naturals if and only if $r n g s e q \subseteq \mathbb{N}$ and for every $n$ holds $\operatorname{seq}(n)<\operatorname{seq}(n+1)$.
(29) seq is an increasing sequence of naturals if and only if seq is increasing and for every $n$ holds $\operatorname{seq}(n)$ is a natural number.
$s e q_{1}=s e q-k$ if and only if for every $n$ holds $\operatorname{seq}_{1}(n)=\operatorname{seq}(n+k)$.
(31) For every $n$ holds $(s e q \cdot N s e q)(n)=s e q(N s e q(n))$.

Let us consider $N s e q, n$. Then $N \operatorname{seq}(n)$ is a natural number.
Let us consider $N s e q$, seq. Then seq $\cdot N$ seq is a sequence of real numbers.
Let us consider $N s e q, N s e q_{1}$. Then $N s e q_{1} \cdot N s e q$ is an increasing sequence of naturals.

Let us consider $N s e q, k$. Then $N s e q-k$ is an increasing sequence of naturals.
Let us consider seq, seq. We say that seq is a subsequence of $s e q_{1}$ if and only if:
there exists $N s e q$ such that $s e q=s e q_{1} \cdot N s e q$.
Next we state a number of propositions:
(32) $s e q$ is a subsequence of $s e q_{1}$ if and only if there exists $N s e q$ such that $s e q=s e q_{1} \cdot N s e q$.
(33) For every $n$ holds $n \leq N \operatorname{seq}(n)$.
(34) $\quad s e q \wedge^{\wedge} 0=s e q$.
(35) $\quad\left(s e q q^{\wedge}\right)^{\wedge} m=\left(s e q^{\wedge} m\right)^{\wedge} k$.
(36) $\quad\left(s e q q^{\wedge} k\right)^{\wedge} m=s e q^{\wedge}(k+m)$.
(37) $\quad\left(s e q+s e q_{1}\right)^{\wedge} k=s e q \wedge k+s e q_{1} \wedge k$.
(38) $(-s e q)^{\wedge} k=-s e q^{\wedge} k$.
(39) $\quad\left(s e q-s e q_{1}\right) \wedge k=s e q \wedge k-s e q_{1} 乞 k$.
(40) If seq is non-zero, then $s e q^{\wedge} k$ is non-zero.
(41) If seq is non-zero, then $s e q^{-1} \sim k=(s e q-k)^{-1}$.
(42) $\left(s e q \cdot s e q_{1}\right)^{\wedge} k=\left(s e q^{\wedge} k\right) \cdot\left(s e q_{1} \wedge k\right)$.
(43) If $\operatorname{seq}_{1}$ is non-zero, then $\frac{s e q}{s e q_{1}} \_k=\frac{s e q^{\wedge} k}{s e q_{1} \wedge k}$.
(44) $(r \cdot s e q)^{\wedge} k=r \cdot(s e q \wedge k)$.
(45) $\quad(\text { seq } \cdot N s e q)^{\wedge} k=s e q \cdot(N s e q \wedge k)$.
(46) seq is a subsequence of seq.
(47) $s e q^{-} k$ is a subsequence of seq.
(48) If $s e q$ is a subsequence of $s e q_{1}$ and $s e q_{1}$ is a subsequence of $s e q_{2}$, then $s e q$ is a subsequence of $s e q_{2}$.
(49) If $s e q$ is increasing and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is increasing.
(50) If $s e q$ is decreasing and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is decreasing.
(51) If $s e q$ is non-decreasing and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is non-decreasing.
(52) If $s e q$ is non-increasing and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is non-increasing.
(53) If $s e q$ is monotone and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is monotone.
(54) If $s e q$ is constant and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is constant.
(55) If $s e q$ is constant and $s e q_{1}$ is a subsequence of $s e q$, then $s e q=s e q_{1}$.
(56) If $s e q$ is upper bounded and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is upper bounded.
(57) If $s e q$ is lower bounded and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is lower bounded.
(58) If $s e q$ is bounded and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is bounded.

If seq is increasing and $0<r$, then $r \cdot s e q$ is increasing but if $s e q$ is increasing and $0=r$, then $r \cdot s e q$ is constant but if $s e q$ is increasing and $r<0$, then $r \cdot s e q$ is decreasing.
(60) If seq is decreasing and $0<r$, then $r \cdot s e q$ is decreasing but if seq is decreasing and $0=r$, then $r \cdot s e q$ is constant but if seq is decreasing and $r<0$, then $r \cdot s e q$ is increasing.
(61) If $s e q$ is non-decreasing and $0 \leq r$, then $r \cdot s e q$ is non-decreasing but if $s e q$ is non-decreasing and $r \leq 0$, then $r \cdot s e q$ is non-increasing.
(62) If $s e q$ is non-increasing and $0 \leq r$, then $r \cdot s e q$ is non-increasing but if $s e q$ is non-increasing and $r \leq 0$, then $r \cdot s e q$ is non-decreasing.
If $s e q$ is increasing and $s e q_{1}$ is increasing, then $s e q+s e q_{1}$ is increasing but if $s e q$ is decreasing and $s e q_{1}$ is decreasing, then $s e q+s e q_{1}$ is decreasing but if $s e q$ is non-decreasing and $s e q_{1}$ is non-decreasing, then $s e q+s e q_{1}$ is non-decreasing but if $s e q$ is non-increasing and $s e q_{1}$ is non-increasing, then $s e q+s e q_{1}$ is non-increasing.
(64) If $s e q$ is increasing and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is increasing but if $s e q$ is decreasing and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is decreasing but if $s e q$ is non-decreasing and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is nondecreasing but if $s e q$ is non-increasing and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is non-increasing.
(65) If $s e q$ is constant, then for every $r$ holds $r \cdot s e q$ is constant and $-s e q$ is constant and $|s e q|$ is constant.
(66) If $s e q$ is constant and $s e q_{1}$ is constant, then $s e q \cdot s e q_{1}$ is constant and $s e q+s e q_{1}$ is constant.
(67) If $s e q$ is constant and $s e q_{1}$ is constant, then $s e q-s e q_{1}$ is constant.
(68) If $s e q$ is upper bounded and $0<r$, then $r \cdot s e q$ is upper bounded but if $s e q$ is upper bounded and $0=r$, then $r \cdot s e q$ is bounded but if $s e q$ is upper bounded and $r<0$, then $r \cdot s e q$ is lower bounded.
(69) If seq is lower bounded and $0<r$, then $r \cdot s e q$ is lower bounded but if $s e q$ is lower bounded and $0=r$, then $r \cdot s e q$ is bounded but if seq is lower bounded and $r<0$, then $r \cdot s e q$ is upper bounded.
(70) If $s e q$ is bounded, then for every $r$ holds $r \cdot s e q$ is bounded and $-s e q$ is bounded and $|s e q|$ is bounded.
(71) If $s e q$ is upper bounded and $s e q_{1}$ is upper bounded, then $s e q+s e q_{1}$ is upper bounded but if $s e q$ is lower bounded and $s e q_{1}$ is lower bounded, then $s e q+s e q_{1}$ is lower bounded but if $s e q$ is bounded and $s e q_{1}$ is bounded, then $s e q+s e q_{1}$ is bounded.
(72) If $s e q$ is bounded and $s e q_{1}$ is bounded, then $s e q \cdot s e q_{1}$ is bounded and $s e q-s e q_{1}$ is bounded.
(73) If seq is constant, then seq is bounded.
(74) If seq is constant, then for every $r$ holds $r \cdot s e q$ is bounded and $-s e q$ is bounded and $\mid$ seq $\mid$ is bounded.
(75) If $s e q$ is upper bounded and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is upper bounded but if $s e q$ is lower bounded and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is lower bounded but if $s e q$ is bounded and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is bounded.
(76) If $s e q$ is upper bounded and $s e q_{1}$ is constant, then $s e q-s e q_{1}$ is upper bounded but if seq is lower bounded and $s e q_{1}$ is constant, then $s e q-s e q_{1}$ is lower bounded but if $s e q$ is bounded and $s e q_{1}$ is constant, then $s e q-s e q_{1}$ is bounded and $s e q_{1}-s e q$ is bounded and $s e q \cdot s e q_{1}$ is bounded.
(77) If $s e q$ is upper bounded and $s e q_{1}$ is non-increasing, then $s e q+s e q_{1}$ is upper bounded.
(78) If $s e q$ is lower bounded and $s e q_{1}$ is non-decreasing, then $s e q+s e q_{1}$ is lower bounded.

## References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[4] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received November 23, 1989


[^0]:    ${ }^{1}$ Supported by RPBP III. 24

