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Summary. The article contains theorems about convergent se-
quences and the limit of sequences occurring in [3] such as Bolzano-
Weirrstrass theorem, Cauchy theorem and others. Bounded sets of real
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The papers [7], [2], [5], [3], [1], [4], [8], and [6] provide the notation and ter-
minology for this paper. For simplicity we follow a convention: n, k, m will
denote natural numbers, r, r1, p, g, g1, g2, s will denote real numbers, seq, seq1

will denote sequences of real numbers, Nseq will denote an increasing sequence
of naturals, and X, Y will denote subsets of � . One can prove the following
propositions:

(1) If 0 < r1 and r1 ≤ r and 0 < g, then g

r
≤ g

r1
.

(2) If r < p, then 0 < p − r.

(3) r − (r − s) = s and r + (s − r) = s and (r + s) − r = s.

(4) If 0 < s, then 0 < s

3
.

(5) ( s

3
+ s

3
) + s

3
= s.

(6) If 0 < g and 0 < r and g ≤ g1 and r < r1, then g · r < g1 · r1 and
r · g < r1 · g1.

(7) If 0 < g and 0 < r and g ≤ g1 and r ≤ r1, then g · r ≤ g1 · r1 and
r · g ≤ r1 · g1.

(8) Given X, Y . Then if there exists r such that r ∈ X and there exists r

such that r ∈ Y and for all r, p such that r ∈ X and p ∈ Y holds r < p,
then there exists g such that for all r, p such that r ∈ X and p ∈ Y holds
r ≤ g and g ≤ p.
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(9) If 0 < p and there exists r such that r ∈ X and for every r such that
r ∈ X holds r + p ∈ X, then for every g there exists r such that r ∈ X

and g < r.

(10) For every r there exists n such that r < n.

We now define two new predicates. Let us consider X. Let us assume that
there exists r such that r ∈ X. We say that X is upper bounded if and only if:

there exists p such that for every r such that r ∈ X holds r ≤ p.
We say that X is lower bounded if and only if:

there exists p such that for every r such that r ∈ X holds p ≤ r.

Let us consider X. Let us assume that there exists r such that r ∈ X. We
say that X is bounded if and only if:

X is lower bounded and X is upper bounded.

We now state several propositions:

(11) If there exists r such that r ∈ X, then X is upper bounded if and only
if there exists p such that for every r such that r ∈ X holds r ≤ p.

(12) If there exists r such that r ∈ X, then X is lower bounded if and only
if there exists p such that for every r such that r ∈ X holds p ≤ r.

(13) If there exists r such that r ∈ X, then X is bounded if and only if X is
upper bounded and X is lower bounded.

(14) If there exists r such that r ∈ X, then X is bounded if and only if there
exists s such that 0 < s and for every r such that r ∈ X holds |r| < s.

(15) If X = {r}, then X is bounded.

(16) If there exists r such that r ∈ X and X is upper bounded, then there
exists g such that for every r such that r ∈ X holds r ≤ g and for every
s such that 0 < s there exists r such that r ∈ X and g − s < r.

(17) Suppose that
(i) for every r such that r ∈ X holds r ≤ g1,

(ii) for every s such that 0 < s there exists r such that r ∈ X and g1−s < r,
(iii) for every r such that r ∈ X holds r ≤ g2,
(iv) for every s such that 0 < s there exists r such that r ∈ X and g2−s < r.

Then g1 = g2.

(18) If there exists r such that r ∈ X and X is lower bounded, then there
exists g such that for every r such that r ∈ X holds g ≤ r and for every
s such that 0 < s there exists r such that r ∈ X and r < g + s.

(19) Suppose that
(i) for every r such that r ∈ X holds g1 ≤ r,

(ii) for every s such that 0 < s there exists r such that r ∈ X and r < g1+s,
(iii) for every r such that r ∈ X holds g2 ≤ r,
(iv) for every s such that 0 < s there exists r such that r ∈ X and r < g2+s.

Then g1 = g2.

Let us consider X. Let us assume that there exists r such that r ∈ X and
X is upper bounded. The functor sup X yielding a real number, is defined as
follows:
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for every r such that r ∈ X holds r ≤ sup X and for every s such that 0 < s

there exists r such that r ∈ X and (sup X) − s < r.

Let us consider X. Let us assume that there exists r such that r ∈ X and
X is lower bounded. The functor inf X yields a real number and is defined by:

for every r such that r ∈ X holds inf X ≤ r and for every s such that 0 < s

there exists r such that r ∈ X and r < (inf X) + s.

One can prove the following propositions:

(20) If there exists r such that r ∈ X and X is upper bounded, then sup X =
g if and only if for every r such that r ∈ X holds r ≤ g and for every s

such that 0 < s there exists r such that r ∈ X and g − s < r.

(21) If there exists r such that r ∈ X and X is lower bounded, then inf X = g

if and only if for every r such that r ∈ X holds g ≤ r and for every s such
that 0 < s there exists r such that r ∈ X and r < g + s.

(22) If X = {r}, then inf X = r and sup X = r.

(23) If X = {r}, then inf X = sup X.

(24) If X is bounded and there exists r such that r ∈ X, then inf X ≤ sup X.

(25) If X is bounded and there exists r such that r ∈ X, then there exist r,
p such that r ∈ X and p ∈ X and p 6= r if and only if inf X < sup X.

The scheme SepNat concerns a unary predicate P, and states that:
there exists a X being sets of natural numbers such that for every n holds

n ∈ X if and only if P[n]
for all values of the parameter.

We now state a number of propositions:

(26) If seq is convergent, then |seq| is convergent.

(27) If seq is convergent, then lim |seq| = | lim seq|.

(28) If |seq| is convergent and lim |seq| = 0, then seq is convergent and
lim seq = 0.

(29) If seq1 is a subsequence of seq and seq is convergent, then seq1 is con-
vergent.

(30) If seq1 is a subsequence of seq and seq is convergent, then lim seq1 =
lim seq.

(31) If seq is convergent and there exists k such that for every n such that
k ≤ n holds seq1(n) = seq(n), then seq1 is convergent.

(32) If seq is convergent and there exists k such that for every n such that
k ≤ n holds seq1(n) = seq(n), then lim seq = lim seq1.

(33) If seq is convergent, then seq � k is convergent and lim(seq � k) = lim seq.

(34) If seq is convergent and there exists k such that seq1 = seq � k, then
seq1 is convergent and lim seq1 = lim seq.

(35) If seq is convergent and there exists k such that seq = seq1 � k, then
seq1 is convergent.

(36) If seq is convergent and there exists k such that seq = seq1 � k, then
lim seq1 = lim seq.
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(37) If seq is convergent and lim seq 6= 0, then there exists k such that seq � k

is non-zero.

(38) If seq is convergent and lim seq 6= 0, then there exists seq1 such that
seq1 is a subsequence of seq and seq1 is non-zero.

(39) If seq is constant, then seq is convergent.

(40) If seq is constant and r ∈ rng seq or seq is constant and there exists n

such that seq(n) = r, then lim seq = r.

(41) If seq is constant, then for every n holds lim seq = seq(n).

(42) If seq is convergent and lim seq 6= 0, then for every seq1 such that seq1 is
a subsequence of seq and seq1 is non-zero holds lim seq1

−1 = (lim seq)−1.

(43) For all r, seq such that 0 < r and for every n holds seq(n) = 1

n+r
holds

seq is convergent.

(44) For all r, seq such that 0 < r and for every n holds seq(n) = 1

n+r
holds

lim seq = 0.

(45) If for every n holds seq(n) = 1

n+1
, then seq is convergent and lim seq =

0.

(46) If 0 < r and for every n holds seq(n) = g

n+r
, then seq is convergent and

lim seq = 0.

(47) For all r, seq such that 0 < r and for every n holds seq(n) = 1

n·n+r

holds seq is convergent.

(48) For all r, seq such that 0 < r and for every n holds seq(n) = 1

n·n+r

holds lim seq = 0.

(49) If for every n holds seq(n) = 1

n·n+1
, then seq is convergent and lim seq =

0.

(50) If 0 < r and for every n holds seq(n) = g

n·n+r
, then seq is convergent

and lim seq = 0.

(51) If seq is non-decreasing and seq is upper bounded, then seq is conver-
gent.

(52) If seq is non-increasing and seq is lower bounded, then seq is convergent.

(53) If seq is monotone and seq is bounded, then seq is convergent.

(54) If seq is upper bounded and seq is non-decreasing, then for every n

holds seq(n) ≤ lim seq.

(55) If seq is lower bounded and seq is non-increasing, then for every n holds
lim seq ≤ seq(n).

(56) For every seq there exists Nseq such that seq · Nseq is monotone.

(57) If seq is bounded, then there exists seq1 such that seq1 is a subsequence
of seq and seq1 is convergent.

(58) seq is convergent if and only if for every s such that 0 < s there exists
n such that for every m such that n ≤ m holds |seq(m) − seq(n)| < s.

(59) Suppose seq is constant and seq1 is convergent. Then lim(seq +seq1) =
seq(0) + lim seq1 and lim(seq − seq1) = seq(0) − lim seq1 and lim(seq1 −
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seq) = lim seq1 − seq(0) and lim(seq · seq1) = seq(0) · (lim seq1).
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