Convergent Real Sequences. Upper and Lower Bound of Sets of Real Numbers

Jarosław Kotowicz ${ }^{1}$
Warsaw University, Białystok

Abstract

Summary. The article contains theorems about convergent sequences and the limit of sequences occurring in [3] such as BolzanoWeirrstrass theorem, Cauchy theorem and others. Bounded sets of real numbers and lower and upper bound of subset of real numbers are defined.

MML Identifier: SEQ_4.

The papers [7], [2], [5], [3], [1], [4], [8], and [6] provide the notation and terminology for this paper. For simplicity we follow a convention: n, k, m will denote natural numbers, $r, r_{1}, p, g, g_{1}, g_{2}$, s will denote real numbers, seq, seq will denote sequences of real numbers, N seq will denote an increasing sequence of naturals, and X, Y will denote subsets of \mathbb{R}. One can prove the following propositions:
(1) If $0<r_{1}$ and $r_{1} \leq r$ and $0<g$, then $\frac{g}{r} \leq \frac{g}{r_{1}}$.
(2) If $r<p$, then $0<p-r$.
(3) $r-(r-s)=s$ and $r+(s-r)=s$ and $(r+s)-r=s$.
(4) If $0<s$, then $0<\frac{s}{3}$.
(5) $\left(\frac{s}{3}+\frac{s}{3}\right)+\frac{s}{3}=s$.
(6) If $0<g$ and $0<r$ and $g \leq g_{1}$ and $r<r_{1}$, then $g \cdot r<g_{1} \cdot r_{1}$ and $r \cdot g<r_{1} \cdot g_{1}$.
(7) If $0<g$ and $0<r$ and $g \leq g_{1}$ and $r \leq r_{1}$, then $g \cdot r \leq g_{1} \cdot r_{1}$ and $r \cdot g \leq r_{1} \cdot g_{1}$.
(8) Given X, Y. Then if there exists r such that $r \in X$ and there exists r such that $r \in Y$ and for all r, p such that $r \in X$ and $p \in Y$ holds $r<p$, then there exists g such that for all r, p such that $r \in X$ and $p \in Y$ holds $r \leq g$ and $g \leq p$.

[^0](9) If $0<p$ and there exists r such that $r \in X$ and for every r such that $r \in X$ holds $r+p \in X$, then for every g there exists r such that $r \in X$ and $g<r$.
(10) For every r there exists n such that $r<n$.

We now define two new predicates. Let us consider X. Let us assume that there exists r such that $r \in X$. We say that X is upper bounded if and only if:
there exists p such that for every r such that $r \in X$ holds $r \leq p$.
We say that X is lower bounded if and only if:
there exists p such that for every r such that $r \in X$ holds $p \leq r$.
Let us consider X. Let us assume that there exists r such that $r \in X$. We say that X is bounded if and only if:
X is lower bounded and X is upper bounded.
We now state several propositions:
(11) If there exists r such that $r \in X$, then X is upper bounded if and only if there exists p such that for every r such that $r \in X$ holds $r \leq p$.
(12) If there exists r such that $r \in X$, then X is lower bounded if and only if there exists p such that for every r such that $r \in X$ holds $p \leq r$.
(13) If there exists r such that $r \in X$, then X is bounded if and only if X is upper bounded and X is lower bounded.
(14) If there exists r such that $r \in X$, then X is bounded if and only if there exists s such that $0<s$ and for every r such that $r \in X$ holds $|r|<s$.
(15) If $X=\{r\}$, then X is bounded.
(16) If there exists r such that $r \in X$ and X is upper bounded, then there exists g such that for every r such that $r \in X$ holds $r \leq g$ and for every s such that $0<s$ there exists r such that $r \in X$ and $g-s<r$.
(17) Suppose that
(i) for every r such that $r \in X$ holds $r \leq g_{1}$,
(ii) for every s such that $0<s$ there exists r such that $r \in X$ and $g_{1}-s<r$,
(iii) for every r such that $r \in X$ holds $r \leq g_{2}$,
(iv) for every s such that $0<s$ there exists r such that $r \in X$ and $g_{2}-s<r$. Then $g_{1}=g_{2}$.
(18) If there exists r such that $r \in X$ and X is lower bounded, then there exists g such that for every r such that $r \in X$ holds $g \leq r$ and for every s such that $0<s$ there exists r such that $r \in X$ and $r<g+s$.
(19) Suppose that
(i) for every r such that $r \in X$ holds $g_{1} \leq r$,
(ii) for every s such that $0<s$ there exists r such that $r \in X$ and $r<g_{1}+s$,
(iii) for every r such that $r \in X$ holds $g_{2} \leq r$,
(iv) for every s such that $0<s$ there exists r such that $r \in X$ and $r<g_{2}+s$. Then $g_{1}=g_{2}$.
Let us consider X. Let us assume that there exists r such that $r \in X$ and X is upper bounded. The functor $\sup X$ yielding a real number, is defined as follows:
for every r such that $r \in X$ holds $r \leq \sup X$ and for every s such that $0<s$ there exists r such that $r \in X$ and $(\sup X)-s<r$.

Let us consider X. Let us assume that there exists r such that $r \in X$ and X is lower bounded. The functor $\inf X$ yields a real number and is defined by:
for every r such that $r \in X$ holds inf $X \leq r$ and for every s such that $0<s$ there exists r such that $r \in X$ and $r<(\inf X)+s$.

One can prove the following propositions:
(20) If there exists r such that $r \in X$ and X is upper bounded, then $\sup X=$ g if and only if for every r such that $r \in X$ holds $r \leq g$ and for every s such that $0<s$ there exists r such that $r \in X$ and $g-s<r$.
(21) If there exists r such that $r \in X$ and X is lower bounded, then inf $X=g$ if and only if for every r such that $r \in X$ holds $g \leq r$ and for every s such that $0<s$ there exists r such that $r \in X$ and $r<g+s$.
(22) If $X=\{r\}$, then $\inf X=r$ and $\sup X=r$.
(23) If $X=\{r\}$, then $\inf X=\sup X$.
(24) If X is bounded and there exists r such that $r \in X$, then $\inf X \leq \sup X$.
(25) If X is bounded and there exists r such that $r \in X$, then there exist r, p such that $r \in X$ and $p \in X$ and $p \neq r$ if and only if $\inf X<\sup X$.
The scheme SepNat concerns a unary predicate \mathcal{P}, and states that:
there exists a X being sets of natural numbers such that for every n holds $n \in X$ if and only if $\mathcal{P}[n]$
for all values of the parameter.
We now state a number of propositions:
(26) If $s e q$ is convergent, then $|s e q|$ is convergent.
(27) If $s e q$ is convergent, then $\lim |s e q|=|\lim s e q|$.
(28) If $|s e q|$ is convergent and $\lim |s e q|=0$, then $s e q$ is convergent and $\lim s e q=0$.
(29) If $s e q_{1}$ is a subsequence of $s e q$ and $s e q$ is convergent, then $s e q_{1}$ is convergent.
(30) If $s e q_{1}$ is a subsequence of $s e q$ and $s e q$ is convergent, then lim $s e q_{1}=$ $\lim s e q$.
(31) If seq is convergent and there exists k such that for every n such that $k \leq n$ holds $s e q_{1}(n)=s e q(n)$, then $s e q_{1}$ is convergent.
(32) If seq is convergent and there exists k such that for every n such that $k \leq n$ holds $s e q_{1}(n)=s e q(n)$, then $\lim s e q=\lim s e q_{1}$.
(33) If $s e q$ is convergent, then $s e q^{\wedge} k$ is convergent and $\lim \left(s e q^{\wedge} k\right)=\lim s e q$.
(34) If seq is convergent and there exists k such that $s e q_{1}=s e q{ }^{\wedge} k$, then $s e q_{1}$ is convergent and $\lim s e q_{1}=\lim s e q$.
(35) If seq is convergent and there exists k such that $s e q=s e q_{1} \curvearrowleft k$, then $s e q_{1}$ is convergent.
(36) If $s e q$ is convergent and there exists k such that $s e q=s e q_{1}{ }^{\wedge} k$, then $\lim s e q_{1}=\lim s e q$.
(37) If $s e q$ is convergent and $\lim \operatorname{seq} \neq 0$, then there exists k such that $s e q^{\curvearrowleft} k$ is non-zero.
(38) If $s e q$ is convergent and $\lim s e q \neq 0$, then there exists $s e q_{1}$ such that $s e q_{1}$ is a subsequence of $s e q$ and $s e q_{1}$ is non-zero.
(39) If seq is constant, then seq is convergent.
(40) If $s e q$ is constant and $r \in \operatorname{rng} s e q$ or $s e q$ is constant and there exists n such that $\operatorname{seq}(n)=r$, then $\lim \operatorname{seq}=r$.
(41) If $s e q$ is constant, then for every n holds $\lim s e q=s e q(n)$.
(42) If $s e q$ is convergent and $\lim s e q \neq 0$, then for every $s e q_{1}$ such that $s e q_{1}$ is a subsequence of $s e q$ and $s e q_{1}$ is non-zero holds $\lim s e q_{1}^{-1}=(\lim s e q)^{-1}$.
(43) For all r, seq such that $0<r$ and for every n holds $\operatorname{seq}(n)=\frac{1}{n+r}$ holds seq is convergent.
(44) For all r, seq such that $0<r$ and for every n holds $\operatorname{seq}(n)=\frac{1}{n+r}$ holds $\lim s e q=0$.
(45) If for every n holds $\operatorname{seq}(n)=\frac{1}{n+1}$, then seq is convergent and lim seq= 0.
(46) If $0<r$ and for every n holds $\operatorname{seq}(n)=\frac{g}{n+r}$, then seq is convergent and $\lim s e q=0$.
(47) For all r, seq such that $0<r$ and for every $n \operatorname{holds} \operatorname{seq}(n)=\frac{1}{n \cdot n+r}$ holds seq is convergent.
(48) For all r, seq such that $0<r$ and for every n holds $\operatorname{seq}(n)=\frac{1}{n \cdot n+r}$ holds $\lim s e q=0$.
(49) If for every n holds $\operatorname{seq}(n)=\frac{1}{n \cdot n+1}$, then seq is convergent and lim seq= 0.
(50) If $0<r$ and for every n holds $\operatorname{seq}(n)=\frac{g}{n \cdot n+r}$, then seq is convergent and $\lim s e q=0$.
(51) If $s e q$ is non-decreasing and $s e q$ is upper bounded, then $s e q$ is convergent.
(52) If $s e q$ is non-increasing and $s e q$ is lower bounded, then $s e q$ is convergent.
(53) If $s e q$ is monotone and $s e q$ is bounded, then seq is convergent.
(54) If $s e q$ is upper bounded and $s e q$ is non-decreasing, then for every n holds $\operatorname{seq}(n) \leq \lim s e q$.
(55) If $s e q$ is lower bounded and $s e q$ is non-increasing, then for every n holds $\lim s e q \leq \operatorname{seq}(n)$
(56) For every seq there exists $N s e q$ such that $s e q \cdot N s e q$ is monotone.
(57) If $s e q$ is bounded, then there exists $s e q_{1}$ such that $s e q_{1}$ is a subsequence of $s e q$ and $s e q_{1}$ is convergent.
(58) seq is convergent if and only if for every s such that $0<s$ there exists n such that for every m such that $n \leq m$ holds $|\operatorname{seq}(m)-s e q(n)|<s$.
(59) Suppose $s e q$ is constant and $s e q_{1}$ is convergent. Then $\lim \left(s e q+s e q_{1}\right)=$ $s e q(0)+\lim s e q_{1}$ and $\lim \left(s e q-s e q_{1}\right)=s e q(0)-\lim s e q_{1}$ and $\lim \left(s e q_{1}-\right.$
$s e q)=\lim s e q_{1}-s e q(0)$ and $\lim \left(s e q \cdot s e q_{1}\right)=s e q(0) \cdot\left(\lim s e q_{1}\right)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[4] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[5] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[6] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

[^0]: ${ }^{1}$ Supported by RPBP III. 24

