Convergent Real Sequences. Upper and Lower Bound of Sets of Real Numbers

Jarosław Kotowicz¹ Warsaw University, Białystok

Summary. The article contains theorems about convergent sequences and the limit of sequences occurring in [3] such as Bolzano-Weirrstrass theorem, Cauchy theorem and others. Bounded sets of real numbers and lower and upper bound of subset of real numbers are defined.

MML Identifier: SEQ_4.

The papers [7], [2], [5], [3], [1], [4], [8], and [6] provide the notation and terminology for this paper. For simplicity we follow a convention: n, k, m will denote natural numbers, $r, r_1, p, g, g_1, g_2, s$ will denote real numbers, seq, seq_1 will denote sequences of real numbers, Nseq will denote an increasing sequence of naturals, and X, Y will denote subsets of \mathbb{R} . One can prove the following propositions:

- (1) If $0 < r_1$ and $r_1 \le r$ and 0 < g, then $\frac{g}{r} \le \frac{g}{r_1}$.
- (2) If r < p, then 0 .
- (3) r (r s) = s and r + (s r) = s and (r + s) r = s.
- (4) If 0 < s, then $0 < \frac{s}{3}$.
- (5) $\left(\frac{s}{3} + \frac{s}{3}\right) + \frac{s}{3} = s.$
- (6) If 0 < g and 0 < r and $g \leq g_1$ and $r < r_1$, then $g \cdot r < g_1 \cdot r_1$ and $r \cdot g < r_1 \cdot g_1$.
- (7) If 0 < g and 0 < r and $g \leq g_1$ and $r \leq r_1$, then $g \cdot r \leq g_1 \cdot r_1$ and $r \cdot g \leq r_1 \cdot g_1$.
- (8) Given X, Y. Then if there exists r such that $r \in X$ and there exists r such that $r \in Y$ and for all r, p such that $r \in X$ and $p \in Y$ holds r < p, then there exists g such that for all r, p such that $r \in X$ and $p \in Y$ holds $r \leq p$.

¹Supported by RPBP III.24

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (9) If 0 < p and there exists r such that $r \in X$ and for every r such that $r \in X$ holds $r + p \in X$, then for every g there exists r such that $r \in X$ and g < r.
- (10) For every r there exists n such that r < n.

We now define two new predicates. Let us consider X. Let us assume that there exists r such that $r \in X$. We say that X is upper bounded if and only if:

there exists p such that for every r such that $r \in X$ holds $r \leq p$.

We say that X is lower bounded if and only if:

there exists p such that for every r such that $r \in X$ holds $p \leq r$.

Let us consider X. Let us assume that there exists r such that $r \in X$. We say that X is bounded if and only if:

X is lower bounded and X is upper bounded.

We now state several propositions:

- (11) If there exists r such that $r \in X$, then X is upper bounded if and only if there exists p such that for every r such that $r \in X$ holds $r \leq p$.
- (12) If there exists r such that $r \in X$, then X is lower bounded if and only if there exists p such that for every r such that $r \in X$ holds $p \leq r$.
- (13) If there exists r such that $r \in X$, then X is bounded if and only if X is upper bounded and X is lower bounded.
- (14) If there exists r such that $r \in X$, then X is bounded if and only if there exists s such that 0 < s and for every r such that $r \in X$ holds |r| < s.
- (15) If $X = \{r\}$, then X is bounded.
- (16) If there exists r such that $r \in X$ and X is upper bounded, then there exists g such that for every r such that $r \in X$ holds $r \leq g$ and for every s such that 0 < s there exists r such that $r \in X$ and g s < r.
- (17) Suppose that
 - (i) for every r such that $r \in X$ holds $r \leq g_1$,
 - (ii) for every s such that 0 < s there exists r such that $r \in X$ and $g_1 s < r$,
 - (iii) for every r such that $r \in X$ holds $r \leq g_2$,
 - (iv) for every s such that 0 < s there exists r such that $r \in X$ and $g_2 s < r$. Then $g_1 = g_2$.
- (18) If there exists r such that $r \in X$ and X is lower bounded, then there exists g such that for every r such that $r \in X$ holds $g \leq r$ and for every s such that 0 < s there exists r such that $r \in X$ and r < g + s.
- (19) Suppose that
 - (i) for every r such that $r \in X$ holds $g_1 \leq r$,
 - (ii) for every s such that 0 < s there exists r such that $r \in X$ and $r < g_1 + s$,
 - (iii) for every r such that $r \in X$ holds $g_2 \leq r$,
 - (iv) for every s such that 0 < s there exists r such that $r \in X$ and $r < g_2 + s$. Then $g_1 = g_2$.

Let us consider X. Let us assume that there exists r such that $r \in X$ and X is upper bounded. The functor sup X yielding a real number, is defined as follows:

for every r such that $r \in X$ holds $r \leq \sup X$ and for every s such that 0 < s there exists r such that $r \in X$ and $(\sup X) - s < r$.

Let us consider X. Let us assume that there exists r such that $r \in X$ and X is lower bounded. The functor inf X yields a real number and is defined by:

for every r such that $r \in X$ holds inf $X \leq r$ and for every s such that 0 < s there exists r such that $r \in X$ and $r < (\inf X) + s$.

One can prove the following propositions:

- (20) If there exists r such that $r \in X$ and X is upper bounded, then $\sup X = g$ if and only if for every r such that $r \in X$ holds $r \leq g$ and for every s such that 0 < s there exists r such that $r \in X$ and g s < r.
- (21) If there exists r such that $r \in X$ and X is lower bounded, then X = g if and only if for every r such that $r \in X$ holds $g \leq r$ and for every s such that 0 < s there exists r such that $r \in X$ and r < g + s.
- (22) If $X = \{r\}$, then $\inf X = r$ and $\sup X = r$.
- (23) If $X = \{r\}$, then $\inf X = \sup X$.
- (24) If X is bounded and there exists r such that $r \in X$, then $\inf X \leq \sup X$.
- (25) If X is bounded and there exists r such that $r \in X$, then there exist r, p such that $r \in X$ and $p \in X$ and $p \neq r$ if and only if $X < \sup X$.

The scheme SepNat concerns a unary predicate \mathcal{P} , and states that:

there exists a X being sets of natural numbers such that for every n holds $n \in X$ if and only if $\mathcal{P}[n]$

for all values of the parameter.

We now state a number of propositions:

- (26) If seq is convergent, then |seq| is convergent.
- (27) If seq is convergent, then $\lim |seq| = |\lim seq|$.
- (28) If |seq| is convergent and $\lim |seq| = 0$, then seq is convergent and $\lim seq = 0$.
- (29) If seq_1 is a subsequence of seq and seq is convergent, then seq_1 is convergent.
- (30) If seq_1 is a subsequence of seq and seq is convergent, then $\lim seq_1 = \lim seq_2$.
- (31) If seq is convergent and there exists k such that for every n such that $k \leq n$ holds $seq_1(n) = seq(n)$, then seq_1 is convergent.
- (32) If seq is convergent and there exists k such that for every n such that $k \leq n$ holds $seq_1(n) = seq(n)$, then $\lim seq = \lim seq_1$.
- (33) If seq is convergent, then seq^k is convergent and $\lim(seq^k) = \lim seq$.
- (34) If seq is convergent and there exists k such that $seq_1 = seq \uparrow k$, then seq_1 is convergent and $\lim seq_1 = \lim seq$.
- (35) If seq is convergent and there exists k such that $seq = seq_1 \cap k$, then seq_1 is convergent.
- (36) If seq is convergent and there exists k such that $seq = seq_1 \cap k$, then $\lim seq_1 = \lim seq$.

- (37) If seq is convergent and $\lim seq \neq 0$, then there exists k such that $seq \uparrow k$ is non-zero.
- (38) If seq is convergent and $\lim seq \neq 0$, then there exists seq_1 such that seq_1 is a subsequence of seq and seq_1 is non-zero.
- (39) If seq is constant, then seq is convergent.
- (40) If seq is constant and $r \in \operatorname{rng} seq$ or seq is constant and there exists n such that seq(n) = r, then $\lim seq = r$.
- (41) If seq is constant, then for every n holds $\lim seq = seq(n)$.
- (42) If seq is convergent and $\lim seq \neq 0$, then for every seq_1 such that seq_1 is a subsequence of seq and seq_1 is non-zero holds $\lim seq_1^{-1} = (\lim seq)^{-1}$.
- (43) For all r, seq such that 0 < r and for every n holds $seq(n) = \frac{1}{n+r}$ holds seq is convergent.
- (44) For all r, seq such that 0 < r and for every n holds $seq(n) = \frac{1}{n+r}$ holds $\lim seq = 0$.
- (45) If for every *n* holds $seq(n) = \frac{1}{n+1}$, then seq is convergent and $\lim seq = 0$.
- (46) If 0 < r and for every *n* holds $seq(n) = \frac{g}{n+r}$, then seq is convergent and $\lim seq = 0$.
- (47) For all r, seq such that 0 < r and for every n holds $seq(n) = \frac{1}{n \cdot n + r}$ holds seq is convergent.
- (48) For all r, seq such that 0 < r and for every n holds $seq(n) = \frac{1}{n \cdot n + r}$ holds $\lim seq = 0$.
- (49) If for every *n* holds $seq(n) = \frac{1}{n \cdot n + 1}$, then seq is convergent and $\lim seq = 0$.
- (50) If 0 < r and for every *n* holds $seq(n) = \frac{g}{n \cdot n + r}$, then seq is convergent and $\lim seq = 0$.
- (51) If seq is non-decreasing and seq is upper bounded, then seq is convergent.
- (52) If seq is non-increasing and seq is lower bounded, then seq is convergent.
- (53) If seq is monotone and seq is bounded, then seq is convergent.
- (54) If seq is upper bounded and seq is non-decreasing, then for every n holds $seq(n) \leq \lim seq$.
- (55) If seq is lower bounded and seq is non-increasing, then for every n holds $\lim seq \leq seq(n)$.
- (56) For every seq there exists Nseq such that $seq \cdot Nseq$ is monotone.
- (57) If seq is bounded, then there exists seq_1 such that seq_1 is a subsequence of seq and seq_1 is convergent.
- (58) seq is convergent if and only if for every s such that 0 < s there exists n such that for every m such that $n \le m$ holds |seq(m) - seq(n)| < s.
- (59) Suppose seq is constant and seq₁ is convergent. Then $\lim(seq + seq_1) = seq(0) + \lim seq_1$ and $\lim(seq seq_1) = seq(0) \lim seq_1$ and $\lim(seq_1 seq_1) = seq(0) \lim seq_1$ and $\lim seq_1 seq(0) \lim se$

seq) = lim $seq_1 - seq(0)$ and lim $(seq \cdot seq_1) = seq(0) \cdot (\lim seq_1)$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [4] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- [5] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [6] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [8] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received November 23, 1989