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Summary. The article is continuation of [14]. At the beginning
we prove some theorems concerning sums of finite sequence of vectors.
We introduce the following notions: sum of finite subset of vectors, linear
combination, carrier of linear combination, linear combination of elements
of a given set of vectors, sum of linear combination. We also show that
the set of linear combinations is a real linear space. At the end of article
we prove some auxiliary theorems that should be proved in [16], [5], [7],
[1] or [8].

MML Identifier: RLVECT 2.

The papers [16], [7], [5], [3], [6], [14], [8], [13], [15], [11], [9], [10], [4], [12], and [2]
provide the notation and terminology for this paper. In the article we present
several logical schemes. The scheme LambdaSep1 deals with a non-empty set A,
a non-empty set B, an element C of A, an element D of B, and a unary functor
F yielding an element of B and states that:

there exists a function f from A into B such that f(C) = D and for every
element x of A such that x 6= C holds f(x) = F(x)
for all values of the parameters.

The scheme LambdaSep2 deals with a non-empty set A, a non-empty set B,
an element C of A, an element D of A, an element E of B, an element F of B,
and a unary functor F yielding an element of B and states that:

there exists a function f from A into B such that f(C) = E and f(D) = F
and for every element x of A such that x 6= C and x 6= D holds f(x) = F(x)
provided the following condition is satisfied:

• C 6= D.
Let D be a non-empty set. Then ∅D is a subset of D.

For simplicity we follow the rules: X, Y are sets, x is arbitrary, i, k, n are
natural numbers, S is an RLS structure, V is a real linear space, u, v, v1, v2,
v3 are vectors of V , a, b, r are real numbers, F , G, H are finite sequences of
elements of the vectors of V , A, B are subsets of the vectors of V , and f is a
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function from the vectors of V into � . Let us consider S, and let v be an element
of the vectors of S. The functor @v yielding a vector of S, is defined as follows:

@v = v.

One can prove the following proposition

(1) For every element v of the vectors of V holds v = @v.

Let us consider S, x. Let us assume that x ∈ S. The functor xS yielding a
vector of S, is defined as follows:

xS = x.

The following propositions are true:

(2) If x ∈ S, then xS = x.

(3) For every vector v of S holds vS = v.

(4) If len F = len G and len F = len H and for every k such that k ∈
Seg(len F ) holds H(k) = @(πkF ) + @(πkG), then

∑
H =

∑
F +

∑
G.

(5) If len F = len G and for every k such that k ∈ Seg(len F ) holds G(k) =
a · @(πkF ), then

∑
G = a ·

∑
F .

(6) If len F = len G and for every k such that k ∈ Seg(len F ) holds G(k) =
−@(πkF ), then

∑
G = −

∑
F .

(7) If len F = len G and len F = len H and for every k such that k ∈
Seg(len F ) holds H(k) = @(πkF ) − @(πkG), then

∑
H =

∑
F −

∑
G.

(8) For all F , G and for every permutation f of dom F such that len F =
len G and for every i such that i ∈ dom G holds G(i) = F (f(i)) holds
∑

F =
∑

G.

(9) For every permutation f of dom F such that G = F ·f holds
∑

F =
∑

G.

Let us consider V . A subset of the vectors of V is called a finite subset of V
if:

it is finite.

One can prove the following proposition

(10) A is a finite subset of V if and only if A is finite.

In the sequel S, T will be finite subsets of V . Let us consider V , S, T . Then
S ∪ T is a finite subset of V . Then S ∩ T is a finite subset of V . Then S \ T is
a finite subset of V . Then S−. T is a finite subset of V .

Let us consider V . The functor 0V yielding a finite subset of V , is defined
by:

0V = ∅.

One can prove the following proposition

(11) 0V = ∅.

Let us consider V , T . The functor
∑

T yields a vector of V and is defined
as follows:

there exists F such that rng F = T and F is one-to-one and
∑

T =
∑

F .

One can prove the following propositions:
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(12) There exists F such that rng F = T and F is one-to-one and
∑

T =
∑

F .

(13) If rng F = T and F is one-to-one and v =
∑

F , then v =
∑

T .

Let us consider V , v. Then {v} is a finite subset of V .

Let us consider V , v1, v2. Then {v1, v2} is a finite subset of V .

Let us consider V , v1, v2, v3. Then {v1, v2, v3} is a finite subset of V .

One can prove the following propositions:

(14)
∑

(0V ) = 0V .

(15)
∑
{v} = v.

(16) If v1 6= v2, then
∑
{v1, v2} = v1 + v2.

(17) If v1 6= v2 and v2 6= v3 and v1 6= v3, then
∑
{v1, v2, v3} = (v1 + v2) + v3.

(18) If T misses S, then
∑

(T ∪ S) =
∑

T +
∑

S.

(19)
∑

(T ∪ S) = (
∑

T +
∑

S) −
∑

(T ∩ S).

(20)
∑

(T ∩ S) = (
∑

T +
∑

S) −
∑

(T ∪ S).

(21)
∑

(T \ S) =
∑

(T ∪ S) −
∑

S.

(22)
∑

(T \ S) =
∑

T −
∑

(T ∩ S).

(23)
∑

(T−. S) =
∑

(T ∪ S) −
∑

(T ∩ S).

(24)
∑

(T−. S) =
∑

(T \ S) +
∑

(S \ T ).

Let us consider V . An element of � the vectors of V is called a linear combina-
tion of V if:

there exists T such that for every v such that v /∈ T holds it(v) = 0.

In the sequel K, L, L1, L2, L3 will be linear combinations of V . Next we
state a proposition

(25) There exists T such that for every v such that v /∈ T holds L(v) = 0.

In the sequel E denotes an element of � the vectors of V . We now state a propo-
sition

(26) If there exists T such that for every v such that v /∈ T holds E(v) = 0,
then E is a linear combination of V .

Let us consider V , L. The functor supportL yields a finite subset of V and
is defined as follows:

supportL = {v : L(v) 6= 0}.

We now state two propositions:

(27) supportL = {v : L(v) 6= 0}.

(28) L(v) = 0 if and only if v /∈ supportL.

Let us consider V . The functor 0LCV
yields a linear combination of V and

is defined as follows:
support0LCV

= ∅.

The following propositions are true:

(29) L = 0LCV
if and only if supportL = ∅.

(30) 0LCV
(v) = 0.
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Let us consider V , A. A linear combination of V is said to be a linear
combination of A if:

support it ⊆ A.

One can prove the following proposition

(31) If supportL ⊆ A, then L is a linear combination of A.

In the sequel l is a linear combination of A. The following propositions are
true:

(32) support l ⊆ A.

(33) If A ⊆ B, then l is a linear combination of B.

(34) 0LCV
is a linear combination of A.

(35) For every linear combination l of ∅the vectors of V holds l = 0LCV
.

(36) L is a linear combination of supportL.

Let us consider V , F , f . The functor f ·F yields a finite sequence of elements
of the vectors of V and is defined as follows:

len(f ·F ) = len F and for every i such that i ∈ dom(f ·F ) holds (f ·F )(i) =
f(@(πiF )) · @(πiF ).

Next we state several propositions:

(37) len(f · F ) = len F .

(38) For every i such that i ∈ dom(f ·F ) holds (f ·F )(i) = f(@(πiF ))·@(πiF ).

(39) If len G = len F and for every i such that i ∈ dom G holds G(i) =
f(@(πiF )) · @(πiF ), then G = f · F .

(40) If i ∈ dom F and v = F (i), then (f · F )(i) = f(v) · v.

(41) f · εthe vectors of V = εthe vectors of V .

(42) f · 〈v〉 = 〈f(v) · v〉.

(43) f · 〈v1, v2〉 = 〈f(v1) · v1, f(v2) · v2〉.

(44) f · 〈v1, v2, v3〉 = 〈f(v1) · v1, f(v2) · v2, f(v3) · v3〉.

Let us consider V , L. The functor
∑

L yields a vector of V and is defined
by:

there exists F such that F is one-to-one and rng F = supportL and
∑

L =
∑

(L · F ).

The following propositions are true:

(45) There exists F such that F is one-to-one and rng F = supportL and
∑

L =
∑

(L · F ).

(46) If F is one-to-one and rng F = supportL and u =
∑

(L · F ), then
u =

∑
L.

(47) A 6= ∅ and A is linearly closed if and only if for every l holds
∑

l ∈ A.

(48)
∑

0LCV
= 0V .

(49) For every linear combination l of ∅the vectors of V holds
∑

l = 0V .

(50) For every linear combination l of {v} holds
∑

l = l(v) · v.

(51) If v1 6= v2, then for every linear combination l of {v1, v2} holds
∑

l =
l(v1) · v1 + l(v2) · v2.



Linear Combinations in Real Linear Space 585

(52) If supportL = ∅, then
∑

L = 0V .

(53) If supportL = {v}, then
∑

L = L(v) · v.

(54) If supportL = {v1, v2} and v1 6= v2, then
∑

L = L(v1) · v1 + L(v2) · v2.

Let us consider V , L1, L2. Let us note that one can characterize the predicate
L1 = L2 by the following (equivalent) condition: for every v holds L1(v) = L2(v).

One can prove the following proposition

(55) If for every v holds L1(v) = L2(v), then L1 = L2.

Let us consider V , L1, L2. The functor L1 + L2 yields a linear combination
of V and is defined as follows:

for every v holds (L1 + L2)(v) = L1(v) + L2(v).

The following propositions are true:

(56) If for every v holds L(v) = L1(v) + L2(v), then L = L1 + L2.

(57) (L1 + L2)(v) = L1(v) + L2(v).

(58) support(L1 + L2) ⊆ supportL1 ∪ supportL2.

(59) If L1 is a linear combination of A and L2 is a linear combination of A,
then L1 + L2 is a linear combination of A.

(60) L1 + L2 = L2 + L1.

(61) L1 + (L2 + L3) = (L1 + L2) + L3.

(62) L + 0LCV
= L and 0LCV

+ L = L.

Let us consider V , a, L. The functor a · L yielding a linear combination of
V , is defined by:

for every v holds (a · L)(v) = a · L(v).

The following propositions are true:

(63) If for every v holds K(v) = a · L(v), then K = a · L.

(64) (a · L)(v) = a · L(v).

(65) If a 6= 0, then support(a · L) = supportL.

(66) 0 · L = 0LCV
.

(67) If L is a linear combination of A, then a · L is a linear combination of
A.

(68) (a + b) · L = a · L + b · L.

(69) a · (L1 + L2) = a · L1 + a · L2.

(70) a · (b · L) = (a · b) · L.

(71) 1 · L = L.

Let us consider V , L. The functor −L yielding a linear combination of V , is
defined as follows:

−L = (−1) · L.

Next we state several propositions:

(72) −L = (−1) · L.

(73) (−L)(v) = −L(v).

(74) If L1 + L2 = 0LCV
, then L2 = −L1.
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(75) support(−L) = supportL.

(76) If L is a linear combination of A, then −L is a linear combination of A.

(77) −(−L) = L.

Let us consider V , L1, L2. The functor L1 − L2 yields a linear combination
of V and is defined by:

L1 − L2 = L1 + (−L2).

The following propositions are true:

(78) L1 − L2 = L1 + (−L2).

(79) (L1 − L2)(v) = L1(v) − L2(v).

(80) support(L1 − L2) ⊆ supportL1 ∪ supportL2.

(81) If L1 is a linear combination of A and L2 is a linear combination of A,
then L1 − L2 is a linear combination of A.

(82) L − L = 0LCV
.

Let us consider V . The functor LCV yields a non-empty set and is defined
by:

x ∈ LCV if and only if x is a linear combination of V .

In the sequel D denotes a non-empty set and e, e1, e2 denote elements of
LCV . The following propositions are true:

(83) If for every x holds x ∈ D if and only if x is a linear combination of V ,
then D = LCV .

(84) L ∈ LCV .

Let us consider V , e. The functor @e yields a linear combination of V and
is defined by:

@e = e.

The following proposition is true

(85) @e = e.

Let us consider V , L. The functor @L yields an element of LCV and is
defined as follows:

@L = L.

Next we state a proposition

(86) @L = L.

Let us consider V . The functor +LCV
yields a binary operation on LCV and

is defined by:
for all e1, e2 holds +LCV

(e1, e2) = @e1 + @e2.

In the sequel o is a binary operation on LCV . Next we state two propositions:

(87) If for all e1, e2 holds o(e1, e2) = @e1 + @e2, then o = +LCV
.

(88) +LCV
(e1, e2) = @e1 + @e2.

Let us consider V . The functor ·LCV
yields a function from [: � , LCV :] into

LCV and is defined as follows:
for all a, e holds ·LCV

(〈〈a, e〉〉) = a · @e.
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In the sequel g denotes a function from [: � , LCV :] into LCV . We now state
two propositions:

(89) If for all a, e holds g(〈〈a, e〉〉) = a · @e, then g = ·LCV
.

(90) ·LCV
(〈〈a, e〉〉) = a · @e.

Let us consider V . The functor � � V yielding a real linear space, is defined
as follows:

� � V = 〈LCV , @0LCV
, +LCV

, ·LCV
〉.

Next we state several propositions:

(91) � � V = 〈LCV , @0LCV
, +LCV

, ·LCV
〉.

(92) The vectors of � � V = LCV .

(93) The zero of � � V = 0LCV
.

(94) The addition of � � V = +LCV
.

(95) The multiplication1 of � � V = ·LCV
.

(96) L1

� �
V + L2

� �
V = L1 + L2.

(97) a · L
� �

V = a · L.

(98) −L
� �

V = −L.

(99) L1

� �
V − L2

� �
V = L1 − L2.

Let us consider V , A. The functor � � A yielding a subspace of � � V , is defined
by:

the vectors of � � A = {l}.

In the sequel W denotes a subspace of � � V . Next we state two propositions:

(100) If the vectors of W = {l}, then W = � � A.

(101) The vectors of � � A = {l}.

We now state several propositions:

(102) X \ Y misses Y \ X.

(103) If k < n, then n − 1 is a natural number.

(104) −1 6= 0.

(105) (−1) · r = −r.

(106) r − 1 < r.

(107) If X is finite and Y is finite, then X−. Y is finite.

(108) For every function f such that f −1 X = f −1 Y and X ⊆ rng f and
Y ⊆ rng f holds X = Y .
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