Linear Combinations in Real Linear Space

Wojciech A. Trybulec
Warsaw University

Abstract

Summary. The article is continuation of [14]. At the beginning we prove some theorems concerning sums of finite sequence of vectors. We introduce the following notions: sum of finite subset of vectors, linear combination, carrier of linear combination, linear combination of elements of a given set of vectors, sum of linear combination. We also show that the set of linear combinations is a real linear space. At the end of article we prove some auxiliary theorems that should be proved in [16], [5], [7], [1] or [8].

MML Identifier: RLVECT_2.

The papers [16], [7], [5], [3], [6], [14], [8], [13], [15], [11], [9], [10], [4], [12], and [2] provide the notation and terminology for this paper. In the article we present several logical schemes. The scheme LambdaSep 1 deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, an element \mathcal{C} of \mathcal{A}, an element \mathcal{D} of \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:
there exists a function f from \mathcal{A} into \mathcal{B} such that $f(\mathcal{C})=\mathcal{D}$ and for every element x of \mathcal{A} such that $x \neq \mathcal{C}$ holds $f(x)=\mathcal{F}(x)$ for all values of the parameters.

The scheme LambdaSep2 deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, an element \mathcal{C} of \mathcal{A}, an element \mathcal{D} of \mathcal{A}, an element \mathcal{E} of \mathcal{B}, an element \mathcal{F} of \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:
there exists a function f from \mathcal{A} into \mathcal{B} such that $f(\mathcal{C})=\mathcal{E}$ and $f(\mathcal{D})=\mathcal{F}$ and for every element x of \mathcal{A} such that $x \neq \mathcal{C}$ and $x \neq \mathcal{D}$ holds $f(x)=\mathcal{F}(x)$ provided the following condition is satisfied:

- $\mathcal{C} \neq \mathcal{D}$.

Let D be a non-empty set. Then \emptyset_{D} is a subset of D.
For simplicity we follow the rules: X, Y are sets, x is arbitrary, i, k, n are natural numbers, S is an RLS structure, V is a real linear space, u, v, v_{1}, v_{2}, v_{3} are vectors of V, a, b, r are real numbers, F, G, H are finite sequences of elements of the vectors of V, A, B are subsets of the vectors of V, and f is a
function from the vectors of V into \mathbb{R}. Let us consider S, and let v be an element of the vectors of S. The functor $@ v$ yielding a vector of S, is defined as follows: $@ v=v$.
One can prove the following proposition
(1) For every element v of the vectors of V holds $v=@ v$.

Let us consider S, x. Let us assume that $x \in S$. The functor x^{S} yielding a vector of S, is defined as follows:

$$
x^{S}=x
$$

The following propositions are true:
(2) If $x \in S$, then $x^{S}=x$.
(3) For every vector v of S holds $v^{S}=v$.
(4) If $\operatorname{len} F=\operatorname{len} G$ and $\operatorname{len} F=\operatorname{len} H$ and for every k such that $k \in$ Seg $(\operatorname{len} F)$ holds $H(k)=@\left(\pi_{k} F\right)+@\left(\pi_{k} G\right)$, then $\sum H=\sum F+\sum G$.
(5) If len $F=\operatorname{len} G$ and for every k such that $k \in \operatorname{Seg}(\operatorname{len} F)$ holds $G(k)=$ $a \cdot @\left(\pi_{k} F\right)$, then $\sum G=a \cdot \sum F$.
(6) If len $F=\operatorname{len} G$ and for every k such that $k \in \operatorname{Seg}(\operatorname{len} F)$ holds $G(k)=$ $-@\left(\pi_{k} F\right)$, then $\sum G=-\sum F$.
(7) If len $F=\operatorname{len} G$ and len $F=\operatorname{len} H$ and for every k such that $k \in$ $\operatorname{Seg}(\operatorname{len} F)$ holds $H(k)=@\left(\pi_{k} F\right)-@\left(\pi_{k} G\right)$, then $\sum H=\sum F-\sum G$.
(8) For all F, G and for every permutation f of $\operatorname{dom} F$ such that len $F=$ len G and for every i such that $i \in \operatorname{dom} G$ holds $G(i)=F(f(i))$ holds $\sum F=\sum G$.
(9) For every permutation f of $\operatorname{dom} F$ such that $G=F \cdot f$ holds $\sum F=\sum G$.

Let us consider V. A subset of the vectors of V is called a finite subset of V if:
it is finite.
One can prove the following proposition
(10) $\quad A$ is a finite subset of V if and only if A is finite.

In the sequel S, T will be finite subsets of V. Let us consider V, S, T. Then $S \cup T$ is a finite subset of V. Then $S \cap T$ is a finite subset of V. Then $S \backslash T$ is a finite subset of V. Then $S \dot{\subset}$ is a finite subset of V.

Let us consider V. The functor 0_{V} yielding a finite subset of V, is defined by:
$0_{V}=\emptyset$.
One can prove the following proposition
(11) $\quad 0_{V}=\emptyset$.

Let us consider V, T. The functor $\sum T$ yields a vector of V and is defined as follows:
there exists F such that $\operatorname{rng} F=T$ and F is one-to-one and $\sum T=\sum F$.
One can prove the following propositions:
(12) There exists F such that rng $F=T$ and F is one-to-one and $\sum T=$ $\sum F$.
(13) If $\operatorname{rng} F=T$ and F is one-to-one and $v=\sum F$, then $v=\sum T$.

Let us consider V, v. Then $\{v\}$ is a finite subset of V.
Let us consider V, v_{1}, v_{2}. Then $\left\{v_{1}, v_{2}\right\}$ is a finite subset of V.
Let us consider V, v_{1}, v_{2}, v_{3}. Then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a finite subset of V.
One can prove the following propositions:
(16) If $v_{1} \neq v_{2}$, then $\sum\left\{v_{1}, v_{2}\right\}=v_{1}+v_{2}$.
(17) If $v_{1} \neq v_{2}$ and $v_{2} \neq v_{3}$ and $v_{1} \neq v_{3}$, then $\sum\left\{v_{1}, v_{2}, v_{3}\right\}=\left(v_{1}+v_{2}\right)+v_{3}$.
(18) If T misses S, then $\sum(T \cup S)=\sum T+\sum S$.
(19) $\quad \sum(T \cup S)=\left(\sum T+\sum S\right)-\sum(T \cap S)$.
(20) $\quad \sum(T \cap S)=\left(\sum T+\sum S\right)-\sum(T \cup S)$.
(21) $\quad \sum(T \backslash S)=\sum(T \cup S)-\sum S$.
(22) $\quad \sum(T \backslash S)=\sum T-\sum(T \cap S)$.
(23) $\quad \sum(T \dot{\dot{\circ}} S)=\sum(T \cup S)-\sum(T \cap S)$.
(24) $\quad \sum(T \doteq S)=\sum(T \backslash S)+\sum(S \backslash T)$.

Let us consider V. An element of $\mathbb{R}^{\text {the }}$ vectors of V is called a linear combination of V if:
there exists T such that for every v such that $v \notin T$ holds it $(v)=0$.
In the sequel $K, L, L_{1}, L_{2}, L_{3}$ will be linear combinations of V. Next we state a proposition
(25) There exists T such that for every v such that $v \notin T$ holds $L(v)=0$.

In the sequel E denotes an element of $\mathbb{R}^{\text {the vectors of } V}$. We now state a proposition
(26) If there exists T such that for every v such that $v \notin T$ holds $E(v)=0$, then E is a linear combination of V.
Let us consider V, L. The functor support L yields a finite subset of V and is defined as follows:
support $L=\{v: L(v) \neq 0\}$.
We now state two propositions:
(27) $\operatorname{support} L=\{v: L(v) \neq 0\}$.
(28) $L(v)=0$ if and only if $v \notin \operatorname{support} L$.

Let us consider V. The functor $\mathbf{0}_{\mathrm{LC}_{V}}$ yields a linear combination of V and is defined as follows:
support $\mathbf{0}_{\mathrm{LC}_{V}}=\emptyset$.
The following propositions are true:
(29) $L=\mathbf{0}_{\mathrm{LC}_{V}}$ if and only if support $L=\emptyset$.

$$
\begin{equation*}
\mathbf{0}_{\mathrm{LC}_{V}}(v)=0 . \tag{30}
\end{equation*}
$$

Let us consider V, A. A linear combination of V is said to be a linear combination of A if:
support it $\subseteq A$.
One can prove the following proposition
(31) If support $L \subseteq A$, then L is a linear combination of A.

In the sequel l is a linear combination of A. The following propositions are true:
support $l \subseteq A$.
(33) If $A \subseteq B$, then l is a linear combination of B.
(34) $0_{\mathrm{LC}_{V}}$ is a linear combination of A.
(35) For every linear combination l of $\emptyset_{\text {the }}$ vectors of V holds $l=\mathbf{0}_{\mathrm{LC}_{V}}$.
(36) L is a linear combination of support L.

Let us consider V, F, f. The functor $f \cdot F$ yields a finite sequence of elements of the vectors of V and is defined as follows:
$\operatorname{len}(f \cdot F)=\operatorname{len} F$ and for every i such that $i \in \operatorname{dom}(f \cdot F)$ holds $(f \cdot F)(i)=$ $f\left(@\left(\pi_{i} F\right)\right) \cdot @\left(\pi_{i} F\right)$.

Next we state several propositions:
(37) $\operatorname{len}(f \cdot F)=\operatorname{len} F$.
(38) For every i such that $i \in \operatorname{dom}(f \cdot F)$ holds $(f \cdot F)(i)=f\left(@\left(\pi_{i} F\right)\right) \cdot @\left(\pi_{i} F\right)$.
(39) If len $G=\operatorname{len} F$ and for every i such that $i \in \operatorname{dom} G$ holds $G(i)=$ $f\left(@\left(\pi_{i} F\right)\right) \cdot @\left(\pi_{i} F\right)$, then $G=f \cdot F$.
(40) If $i \in \operatorname{dom} F$ and $v=F(i)$, then $(f \cdot F)(i)=f(v) \cdot v$.
(41) $f \cdot \varepsilon_{\text {the vectors of } V}=\varepsilon_{\text {the vectors of } V}$.
(42) $\quad f \cdot\langle v\rangle=\langle f(v) \cdot v\rangle$.
(43) $f \cdot\left\langle v_{1}, v_{2}\right\rangle=\left\langle f\left(v_{1}\right) \cdot v_{1}, f\left(v_{2}\right) \cdot v_{2}\right\rangle$.
(44) $f \cdot\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle f\left(v_{1}\right) \cdot v_{1}, f\left(v_{2}\right) \cdot v_{2}, f\left(v_{3}\right) \cdot v_{3}\right\rangle$.

Let us consider V, L. The functor $\sum L$ yields a vector of V and is defined by:
there exists F such that F is one-to-one and $\operatorname{rng} F=\operatorname{support} L$ and $\sum L=$ $\sum(L \cdot F)$.

The following propositions are true:
(45) There exists F such that F is one-to-one and $\operatorname{rng} F=\operatorname{support} L$ and $\sum L=\sum(L \cdot F)$.
(46) If F is one-to-one and $\operatorname{rng} F=\operatorname{support} L$ and $u=\sum(L \cdot F)$, then $u=\sum L$.
(47) $\quad A \neq \emptyset$ and A is linearly closed if and only if for every l holds $\sum l \in A$.
(48) $\quad \sum \mathbf{0}_{\mathrm{LC}_{V}}=0_{V}$.
(49) For every linear combination l of $\emptyset_{\text {the }}$ vectors of V holds $\sum l=0_{V}$.
(50) For every linear combination l of $\{v\}$ holds $\sum l=l(v) \cdot v$.
(51) If $v_{1} \neq v_{2}$, then for every linear combination l of $\left\{v_{1}, v_{2}\right\}$ holds $\sum l=$ $l\left(v_{1}\right) \cdot v_{1}+l\left(v_{2}\right) \cdot v_{2}$.

$$
\begin{equation*}
\text { If support } L=\emptyset, \text { then } \sum L=0_{V} \tag{52}
\end{equation*}
$$

(53) If support $L=\{v\}$, then $\sum L=L(v) \cdot v$.
(54) If support $L=\left\{v_{1}, v_{2}\right\}$ and $v_{1} \neq v_{2}$, then $\sum L=L\left(v_{1}\right) \cdot v_{1}+L\left(v_{2}\right) \cdot v_{2}$.

Let us consider V, L_{1}, L_{2}. Let us note that one can characterize the predicate $L_{1}=L_{2}$ by the following (equivalent) condition: for every v holds $L_{1}(v)=L_{2}(v)$.

One can prove the following proposition
(55) If for every v holds $L_{1}(v)=L_{2}(v)$, then $L_{1}=L_{2}$.

Let us consider V, L_{1}, L_{2}. The functor $L_{1}+L_{2}$ yields a linear combination of V and is defined as follows:
for every v holds $\left(L_{1}+L_{2}\right)(v)=L_{1}(v)+L_{2}(v)$.
The following propositions are true:
(56) If for every v holds $L(v)=L_{1}(v)+L_{2}(v)$, then $L=L_{1}+L_{2}$.
(58) $\operatorname{support}\left(L_{1}+L_{2}\right) \subseteq \operatorname{support} L_{1} \cup \operatorname{support} L_{2}$.
(59) If L_{1} is a linear combination of A and L_{2} is a linear combination of A, then $L_{1}+L_{2}$ is a linear combination of A.
(60) $L_{1}+L_{2}=L_{2}+L_{1}$.
(61) $L_{1}+\left(L_{2}+L_{3}\right)=\left(L_{1}+L_{2}\right)+L_{3}$.
(62) $\quad L+\mathbf{0}_{\mathrm{LC}_{V}}=L$ and $\mathbf{0}_{\mathrm{LC}_{V}}+L=L$.

Let us consider V, a, L. The functor $a \cdot L$ yielding a linear combination of V, is defined by:
for every v holds $(a \cdot L)(v)=a \cdot L(v)$.
The following propositions are true:
(63) If for every v holds $K(v)=a \cdot L(v)$, then $K=a \cdot L$.
(64) $\quad(a \cdot L)(v)=a \cdot L(v)$.
(65) If $a \neq 0$, then $\operatorname{support}(a \cdot L)=\operatorname{support} L$.
(66) $0 \cdot L=\mathbf{0}_{\mathrm{LC}_{V}}$.
(67) If L is a linear combination of A, then $a \cdot L$ is a linear combination of A.
(68) $\quad(a+b) \cdot L=a \cdot L+b \cdot L$.
(69) $a \cdot\left(L_{1}+L_{2}\right)=a \cdot L_{1}+a \cdot L_{2}$.
(70) $a \cdot(b \cdot L)=(a \cdot b) \cdot L$.
(71) $\quad 1 \cdot L=L$.

Let us consider V, L. The functor $-L$ yielding a linear combination of V, is defined as follows:
$-L=(-1) \cdot L$.
Next we state several propositions:
(72) $\quad-L=(-1) \cdot L$.
(73) $\quad(-L)(v)=-L(v)$.
(74) If $L_{1}+L_{2}=\mathbf{0}_{\mathrm{LC}_{V}}$, then $L_{2}=-L_{1}$.

```
support}(-L)=\operatorname{support}L\mathrm{ .
```

If L is a linear combination of A, then $-L$ is a linear combination of A. $-(-L)=L$.
Let us consider V, L_{1}, L_{2}. The functor $L_{1}-L_{2}$ yields a linear combination of V and is defined by:
$L_{1}-L_{2}=L_{1}+\left(-L_{2}\right)$.
The following propositions are true:

$$
\begin{align*}
& L_{1}-L_{2}=L_{1}+\left(-L_{2}\right) \tag{78}\\
& \left(L_{1}-L_{2}\right)(v)=L_{1}(v)-L_{2}(v) \tag{79}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{support}\left(L_{1}-L_{2}\right) \subseteq \operatorname{support} L_{1} \cup \operatorname{support} L_{2} \tag{80}
\end{equation*}
$$

(81) If L_{1} is a linear combination of A and L_{2} is a linear combination of A, then $L_{1}-L_{2}$ is a linear combination of A.
(82) $\quad L-L=\mathbf{0}_{\mathrm{LC}_{V}}$.

Let us consider V. The functor LC_{V} yields a non-empty set and is defined by:
$x \in \mathrm{LC}_{V}$ if and only if x is a linear combination of V.
In the sequel D denotes a non-empty set and e, e_{1}, e_{2} denote elements of LC_{V}. The following propositions are true:
(83) If for every x holds $x \in D$ if and only if x is a linear combination of V, then $D=\mathrm{LC}_{V}$.
(84) $L \in \mathrm{LC}_{V}$.

Let us consider V, e. The functor @e yields a linear combination of V and is defined by:
$@ e=e$.
The following proposition is true

$$
\begin{equation*}
@ e=e . \tag{85}
\end{equation*}
$$

Let us consider V, L. The functor $@ L$ yields an element of LC_{V} and is defined as follows:
$@ L=L$.
Next we state a proposition
(86) $@ L=L$.

Let us consider V. The functor $+_{\mathrm{LC}_{V}}$ yields a binary operation on LC_{V} and is defined by:
for all e_{1}, e_{2} holds $+_{\mathrm{LC}_{V}}\left(e_{1}, e_{2}\right)=@ e_{1}+@ e_{2}$.
In the sequel o is a binary operation on LC_{V}. Next we state two propositions:
(87) If for all e_{1}, e_{2} holds $o\left(e_{1}, e_{2}\right)=@ e_{1}+@ e_{2}$, then $o={ }_{{ }^{L C}}{ }_{V}$.
(88) $\quad+_{\mathrm{LC}_{V}}\left(e_{1}, e_{2}\right)=@ e_{1}+@ e_{2}$.

Let us consider V. The functor ${ }_{\mathrm{LC}_{V}}$ yields a function from $: \mathbb{R}, \mathrm{LC}_{V}$: into LC_{V} and is defined as follows:
for all a, e holds $\cdot{ }_{\mathrm{LC}_{V}}(\langle a, e\rangle)=a \cdot @ e$.

In the sequel g denotes a function from $: \mathbb{R}, \mathrm{LC}_{V}:$ into LC_{V}. We now state two propositions:
(89) If for all a, e holds $g(\langle a, e\rangle)=a \cdot @ e$, then $g={ }^{\cdot} \mathrm{LC}_{V}$.
(90) $\cdot{ }_{L_{V}}(\langle a, e\rangle)=a \cdot @ e$.

Let us consider V. The functor $\mathbb{C} \mathbb{C}_{V}$ yielding a real linear space, is defined as follows:
$\mathfrak{L C} C_{V}=\left\langle\mathrm{LC}_{V}, @_{\mathbf{0}_{V}},+\mathrm{LC}_{V}, \cdot{ }_{\mathrm{LC}_{V}}\right\rangle$.
Next we state several propositions:
(91) $\quad \mathbb{L} \mathbb{C}_{V}=\left\langle\mathrm{LC}_{V}, @ \mathbf{0}_{\mathrm{LC}_{V}},+\mathrm{LC}_{V}, \cdot{ }_{\mathrm{LC}_{V}}\right\rangle$.
(92) The vectors of $\mathbb{L} \mathbb{C}_{V}=\mathrm{LC}_{V}$.
(93) The zero of $\mathbb{C} \mathbb{C}_{V}=\mathbf{0}_{\mathrm{LC}_{V}}$.
(94) The addition of $\mathbb{L} \mathbb{C}_{V}=+{ }_{\mathrm{LC}_{V}}$.
(95) The multiplication ${ }_{1}$ of $\mathbb{L} \mathbb{C}_{V}=\cdot{ }^{L_{C}}{ }_{V}$.
(96) $\quad L_{1}{ }^{\mathbb{L C}} V_{V}+L_{2}{ }^{\mathbb{L C}} V_{V}=L_{1}+L_{2}$.
(97) $\quad a \cdot L^{\mathbb{L C}} \mathbb{C}_{V}=a \cdot L$.
(98) $\quad-L^{\mathbb{L C}_{V}}=-L$.
(99) $\quad L_{1}{ }^{\mathbb{L C} V}-L_{2}{ }^{\mathbb{L} \mathbb{C} V}=L_{1}-L_{2}$.

Let us consider V, A. The functor $\mathbb{L C} \mathbb{C}_{A}$ yielding a subspace of $\mathbb{C} \mathbb{C}_{V}$, is defined by:
the vectors of $\mathbb{C} \mathbb{C}_{A}=\{l\}$.
In the sequel W denotes a subspace of $\mathbb{C} \mathbb{C}_{V}$. Next we state two propositions:
(100) If the vectors of $W=\{l\}$, then $W=\mathbb{L} \mathbb{C}_{A}$.
(101) The vectors of $\mathbb{C} \mathbb{C}_{A}=\{l\}$.

We now state several propositions:
(102) $\quad X \backslash Y$ misses $Y \backslash X$.
(103) If $k<n$, then $n-1$ is a natural number.
(104) $\quad-1 \neq 0$.
(105) $\quad(-1) \cdot r=-r$.
(106) $r-1<r$.
(107) If X is finite and Y is finite, then $X \doteq Y$ is finite.
(108) For every function f such that $f^{-1} X=f^{-1} Y$ and $X \subseteq \operatorname{rng} f$ and $Y \subseteq \operatorname{rng} f$ holds $X=Y$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, $1(\mathbf{1}): 153-164,1990$.
[7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[10] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[13] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
[14] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

