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Summary. The article is continuation of [14]. At the beginning
we prove some theorems concerning sums of finite sequence of vectors.
We introduce the following notions: sum of finite subset of vectors, linear
combination, carrier of linear combination, linear combination of elements
of a given set of vectors, sum of linear combination. We also show that
the set of linear combinations is a real linear space. At the end of article
we prove some auxiliary theorems that should be proved in [16], [5], [7],
[1] or [8].

MML Identifier: RLVECT_2.

The papers [16], [7), [5], [3], (6], [14], (8], [13], [15], [11], [9], [10], [4], [12], and [2]
provide the notation and terminology for this paper. In the article we present
several logical schemes. The scheme LambdaSepl deals with a non-empty set A,
a non-empty set B3, an element C of A, an element D of B3, and a unary functor
F yielding an element of B and states that:

there exists a function f from A into B such that f(C) = D and for every
element x of A such that « # C holds f(z) = F(z)
for all values of the parameters.

The scheme LambdaSep2 deals with a non-empty set A, a non-empty set B,
an element C of A, an element D of A, an element £ of B, an element F of B,
and a unary functor F yielding an element of B and states that:

there exists a function f from A into B such that f(C) = £ and f(D) = F
and for every element x of A such that x # C and x # D holds f(x) = F(x)
provided the following condition is satisfied:

e C#D.

Let D be a non-empty set. Then () is a subset of D.

For simplicity we follow the rules: X, Y are sets, x is arbitrary, i, k, n are
natural numbers, S is an RLS structure, V is a real linear space, u, v, v1, vs,
vg are vectors of V', a, b, r are real numbers, F', G, H are finite sequences of
elements of the vectors of V', A, B are subsets of the vectors of V, and f is a
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function from the vectors of V into R. Let us consider S, and let v be an element
of the vectors of S. The functor @Quv yielding a vector of .S, is defined as follows:
Qv = v.
One can prove the following proposition
(1)  For every element v of the vectors of V' holds v = Qu.

Let us consider S, . Let us assume that z € S. The functor 2° yielding a
vector of S, is defined as follows:
¥ = 7.
The following propositions are true:
(2) Ifz €S, then 2° = 2.
(3)  For every vector v of S holds v° = v.
(4) IflenF = lenG and len F = len H and for every k such that k €
Seg(len F') holds H(k) = Q(m,F) + Q(m;G), then > H =Y F + Y G.
(5) Iflen F =len G and for every k such that k € Seg(len F') holds G(k) =
a-Q(mF), then > G=a-Y F.
(6) Iflen F =lenG and for every k such that k € Seg(len F') holds G(k) =
—Q(mF'), then > G = -3 F.
(7) IflenF = lenG and len F = len H and for every k such that k €
Seg(len F') holds H(k) = Q(nF) — Q(m;G), then > H =Y F — Y G.
(8) For all F, G and for every permutation f of dom F' such that len F' =
len G and for every ¢ such that ¢ € domG holds G(i) = F(f(i)) holds
YF=XG.
(9)  For every permutation f of dom F' such that G = F-f holds > F = > G.
Let us consider V. A subset of the vectors of V is called a finite subset of V'
if:
it is finite.
One can prove the following proposition
(10) A is a finite subset of V' if and only if A is finite.
In the sequel S, T will be finite subsets of V. Let us consider V', S, T. Then
S UT is a finite subset of V. Then SN T is a finite subset of V. Then S\ T is
a finite subset of V. Then S—+T' is a finite subset of V.

Let us consider V. The functor Oy yielding a finite subset of V, is defined
by:

0y = 0.

One can prove the following proposition

(11) oy =0.

Let us consider V, T. The functor > T yields a vector of V' and is defined
as follows:

there exists F' such that rng F' =T and F is one-to-one and >, T = > F.

One can prove the following propositions:
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(12)  There exists F' such that rng ' = T and F' is one-to-one and Y T =
S F.

(13) If rng F =T and F is one-to-one and v = Y F, then v = > T.

Let us consider V', v. Then {v} is a finite subset of V.

Let us consider V', vq, va. Then {vy,v2} is a finite subset of V.

Let us consider V', v1, vg, v3. Then {vy, vy, v3} is a finite subset of V.

One can prove the following propositions:
14)  >2(0v) = Oy.
) Y{vi=v.
) If vg # vy, then Y {v1,va} = vy + va.
) If vy # vy and vy # v3 and vy # vs, then > {v1,v2,v3} = (v1 + v2) + vs.
) If T misses S, then > (TUS) =T+ S.
) S(TUS)=(ST+X8) - X(TNS).
200 Y(TNnS)=CT+>X8)->(TuUs).
) X(T\S)=2(TuUS)-35s.
) (T\$)=TT-X(rnS)
) N(T=8) = X(TUS) - (TN S),

) N(T=S) = X(T\ S) + XS\ T).

Let us consider V. An element of Rthe vectors of Vg called a linear combina-
tion of V if:
there exists T' such that for every v such that v ¢ T holds it(v) = 0.

In the sequel K, L, Ly, Lo, Lg will be linear combinations of V. Next we
state a proposition
(25)  There exists T such that for every v such that v ¢ T holds L(v) = 0.
In the sequel E denotes an element of Rthe vectors of Vi \y% now state a propo-
sition
(26)  If there exists T" such that for every v such that v ¢ T holds E(v) = 0,
then FE is a linear combination of V.

Let us consider V', L. The functor support L yields a finite subset of V' and
is defined as follows:

support L = {v : L(v) # 0}.
We now state two propositions:
(27)  support L = {v : L(v) # 0}.
(28)  L(v) =0 if and only if v ¢ support L.
Let us consider V. The functor Orc, yields a linear combination of V' and
is defined as follows:
support Oc,, = 0.
The following propositions are true:
(29) L = 0pc, if and only if support L = 0.
(30) O, (v)=0.
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Let us consider V, A. A linear combination of V is said to be a linear
combination of A if:
supportit C A.
One can prove the following proposition
(31) If support L C A, then L is a linear combination of A.

In the sequel [ is a linear combination of A. The following propositions are
true:

(32
33
4

support! C A.
If A C B, then [ is a linear combination of B.
Orc, is a linear combination of A.

~— — — ~—

3
36) L is a linear combination of support L.

at

For every linear combination ! of Qipe vectors of v holds I = Orc,,

A~~~ N N
w

Let us consider V', F', f. The functor f-F yields a finite sequence of elements
of the vectors of V' and is defined as follows:
len(f - F') =len F and for every ¢ such that ¢ € dom(f - F") holds (f - F)(i) =
Next we state several propositions:
(37) len(f-F)=lenF.
(38)  Forevery i such that i € dom(f-F) holds (f-F)(i) = f(Q(m,; F))-Q(m; F).
(39) IflenG = lenF and for every ¢ such that ¢ € domG holds G(i) =
f@Q(mF)) - Q(mF), then G = f - F.
If i € dom F and v = F(i), then (f - F)(i) = f(v) -

e

Ethe vectors of V' = Ethe vectors of V-
(v) = (f(v) - v).
(vi,v2) = (f(v1) w1, f(v2) - v2).
44)  f - (v1,v2,03) = (f(v1) - v1, f(v2) - v, f(v3) - v3).
Let us consider V', L. The functor }_ L yields a vector of V and is defined

by:

Y there exists F' such that F' is one-to-one and rng F' = support L and > L =
S(L-F).

The following propositions are true:

f.
f.
f.

(45)  There exists F' such that F' is one-to-one and rng F' = support L and

SL=%(L F).

(46) If F is one-to-one and rng F' = support L and u = > (L - F), then
u=> L.

47) A # () and A is linearly closed if and only if for every [ holds Y1 € A.

48) Y Opc, =0y.

For every linear combination I of (ine vectors of vV holds Y 1 = Oy.

(S
(=)

For every linear combination [ of {v} holds > 1 =1(v) - v.

AN N N N
ot N
— Nej
S N N N N

If v1 # vy, then for every linear combination [ of {v1,v9} holds Y 1 =
l(Ul) -v1 + l(UQ) - V9.
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(52)  If support L = (), then > L = Oy.
(53)  If support L = {v}, then Y L = L(v) - v.
(54)  If support L = {vy,v2} and vy # v, then Y L = L(vy) - v1 + L(v) - vs.
Let us consider V', L1, Lo. Let us note that one can characterize the predicate
L; = Ly by the following (equivalent) condition: for every v holds L;(v) = La(v).
One can prove the following proposition
(55)  If for every v holds Li(v) = La(v), then L; = Lo.
Let us consider V', L1, Ly. The functor L 4+ Lo yields a linear combination
of V and is defined as follows:
for every v holds (L; + Lo)(v) = Li(v) + La(v).
The following propositions are true:
(56)  If for every v holds L(v) = Li(v) + L2(v), then L = Ly + Lo.
(57) (L1 + Lg)(’u) = Ll(v) + Lg(?)).
(58)  support(L; + Lo) C support L; U support Lo.
(59)

59 If Ly is a linear combination of A and Ls is a linear combination of A,

then L1 + Lo is a linear combination of A.
(60) L1+ Lo= Lo+ L.
(61) L+ (L2 + Lg) = (Ll + Lg) + Ls.
(62) L+ Orc, = L and Oy ¢, + L = L.
Let us consider V', a, L. The functor a - L yielding a linear combination of
V', is defined by:
for every v holds (a- L)(v) = a - L(v).
The following propositions are true:
63) If for every v holds K(v) = a- L(v), then K =a- L.
) (a-L)(w)=a-L(v).
) If a # 0, then support(a - L) = support L.
66) 0-L=0yc,-
) If L is a linear combination of A, then a - L is a linear combination of

(a+b)-L=a-L+0b-L.
‘(L1+L2) =a-Li+a- L.
-(b-L)=1(a-b)- L.
71) 1-L=0L.
Let us consider V', L. The functor —L yielding a linear combination of V| is
defined as follows:

—L=(-1)-L.
Next we state several propositions:
(72) —L=(-1)-L.
(73)  (=L)(v) = =L(v).
(74) If L1 + Ly = Orc,,, then Ly = —L;.
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(75)  support(—L) = support L.
(76)  If L is a linear combination of A, then —L is a linear combination of A.
(77)  —(-L)=L.
Let us consider V', Lq, Ly. The functor Ly — Lo yields a linear combination
of V and is defined by:
L1 — L2 = L1 + (—Lg).
The following propositions are true:
(78) Ly — Ly = L1+ (—Ly).
(79) (L1 — L2)(v) = L1(v) = La(v).
(80)  support(Ly — Le) C support Ly Usupport Lo.
(81)

81 If Ly is a linear combination of A and L9 is a linear combination of A,

then L; — Lo is a linear combination of A.
(82) L-L= Orcy, -
Let us consider V. The functor LCy yields a non-empty set and is defined
by:
x € LCy if and only if z is a linear combination of V.

In the sequel D denotes a non-empty set and e, eq, eo denote elements of
LCy . The following propositions are true:

(83) If for every = holds = € D if and only if x is a linear combination of V',
then D = LCy.

(84) L eLCy.

Let us consider V', e. The functor @e yields a linear combination of V' and
is defined by:

Qe =e.
The following proposition is true
(85) @e=ce.

Let us consider V', L. The functor QL yields an element of LCy and is
defined as follows:

QL =1L.
Next we state a proposition
(86) @L=1L.

Let us consider V. The functor +1,¢,, yields a binary operation on LCy and
is defined by:
for all eq, ez holds +1,c,, (€1, €e2) = @Qe; + Qes.
In the sequel o is a binary operation on LCy . Next we state two propositions:
(87) If for all ey, e holds o(eq, e2) = @Qe; + Qey, then 0o = +1,¢,, -
(88) +LCy (61, 62) = Qe + Qesy.
Let us consider V. The functor -1,c, yields a function from [ R, LCy { into
LCy and is defined as follows:
for all a, e holds -1,c,, ({a,€)) = a - Qe.
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In the sequel g denotes a function from [ R, LCy | into LCy. We now state
two propositions:

(89)
(90)

If for all a, e holds g({a,e)) = a - Qe, then g = -1¢, -
1oy ({a,€)) = a- Qe.

Let us consider V. The functor LCy yielding a real linear space, is defined
as follows:

LCy = (LCy, QOr,cy, +1L.Cy s LOy ) -

Next we state several propositions:

91
92
93

Ne)
=~

Ne)
(=)

N N N N N N N N /N
Ne) Ne)
-~ ot

NN 2N BN NSNS NN N

99

LCy = (LCy,@0c,,, +1LCy» LCy)-
The vectors of LCy = LCy .

The zero of LCy = Orc,, -

The addition of LCy = +1.¢,, -

The multiplication; of LCy = - ¢,,.
L™V + LMV = Ly + L.
a-L'*v =qa- L.

—LYCv = L.

L'V — L'V = L — Lo.

Let us consider V', A. The functor LC 4 yielding a subspace of L.Cy, is defined

by:

the vectors of LC4 = {l}.
In the sequel W denotes a subspace of LCy,. Next we state two propositions:

(100)
(101)

If the vectors of W = {l}, then W = LC 4.
The vectors of LC 4 = {l}.

We now state several propositions:

(102
(103
(104
(105
(106
(107
(108

~— N N N

X \'Y misses Y\ X.

If kK < n, then n — 1 is a natural number.

—1#0.

(=1)-r=—r.

r—1<r.

If X is finite and Y is finite, then X =Y is finite.

For every function f such that f ' X = f 'Y and X C rng f and

Y Crng f holds X =Y.
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