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Summary. The article contains exactly the same definitions of
group and field as those in [3]. These definitions were prepared without
the help of the definitions and properties of Nat and Real modes icluded
in the MML. This is the first of a series of articles in which we are going to
introduce the concept of the set of real numbers in a elementary axiomatic
way.

MML Identifier: REALSET1.

The terminology and notation used here are introduced in the following papers:
[4], [1], and [2]. Let x be arbitrary. The functor single(x) yields a set and is
defined as follows:

single(x) = {x}.

One can prove the following proposition

(1) For arbitrary x holds single(x) = {x}.

Let X, Y be sets. The functor X#Y yields a set and is defined by:
X#Y = [: X, Y :].

We now state several propositions:

(2) For all sets X, Y holds X#Y = [: X, Y :].

(3) For arbitrary z and for every set A holds z ∈ A#A if and only if there
exist arbitrary x, y such that x ∈ A and y ∈ A and z = 〈〈x, y〉〉.

(4) For every set X and for every subset A of X holds A#A ⊆ X#X.

(5) For every set X such that X = ∅ holds X#X = ∅.

(6) For every set X such that X#X = ∅ holds X = ∅.

(7) For every set X holds X#X = ∅ if and only if X = ∅.

Let X be a set. A binary operation of X is a function from X#X into X.

The following propositions are true:
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(8) For every set X and for every function F from X#X into X holds F

is a binary operation of X.

(9) For every set X and for every function F holds F is a function from
X#X into X if and only if F is a binary operation of X.

(10) For every set X and for every function F from X#X into X and for
arbitrary x such that x ∈ X#X holds F (x) ∈ X.

(11) For every set X and for every binary operation F of X there exists
a subset A of X such that for arbitrary x such that x ∈ A#A holds
F (x) ∈ A.

Let X be a set, and let F be a binary operation of X, and let A be a subset
of X. We say that F is in A if and only if:

for arbitrary x such that x ∈ A#A holds F (x) ∈ A.

Next we state a proposition

(12) For every set X and for every binary operation F of X and for every
subset A of X holds F is in A if and only if for arbitrary x such that
x ∈ A#A holds F (x) ∈ A.

Let X be a set, and let F be a binary operation of X. A subset of X is said
to be a set closed w.r.t. F if:

for arbitrary x such that x ∈ it#it holds F (x) ∈ it.

The following propositions are true:

(13) For every set X and for every binary operation F of X and for every
subset A of X holds A is a set closed w.r.t. F if and only if for arbitrary
x such that x ∈ A#A holds F (x) ∈ A.

(14) For every set X and for every binary operation F of X and for every
set A closed w.r.t. F holds F

�
(A#A) is a binary operation of A.

Let X be a set, and let F be a binary operation of X, and let A be a set
closed w.r.t. F . The functor F

�
A yielding a binary operation of A, is defined

by:

F
�
A = F

�
(A#A).

The following propositions are true:

(15) For every set X and for every binary operation F of X and for every
set A closed w.r.t. F holds F

�
A = F

�
(A#A).

(16) For every set X and for every binary operation F of X and for every
subset A of X such that A is a set closed w.r.t. F holds F

�
(A#A) is a

binary operation of A.

(17) For every set X and for every binary operation F of X and for every
set A closed w.r.t. F holds F

�
A is a binary operation of A.

We consider group structures which are systems

〈 a carrier, an addition, a zero 〉
where the carrier is a non-empty set, the addition is a binary operation of

the carrier, and the zero is an element of the carrier. Let A be a non-empty
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set, and let og be a binary operation of A, and let ng be an element of A. The
functor group(A, og, ng) yielding a group structure, is defined as follows:

A = the carrier of group(A, og, ng) and og = the addition of group(A, og, ng)
and ng = the zero of group(A, og, ng).

The following propositions are true:

(18) For every non-empty set A and for every binary operation og of A and
for every element ng of A and for every GR being a group structure holds
GR = group(A, og, ng) if and only if A = the carrier of GR and og = the
addition of GR and ng = the zero of GR.

(19) For every non-empty set A and for every binary operation og of A and
for every element ng of A holds group(A, og, ng) is a group structure and
A = the carrier of group(A, og, ng) and og = the addition of group(A, og,

ng) and ng = the zero of group(A, og, ng).

A group structure is called a group if:
there exists a non-empty set A and there exists a binary operation og of A

and there exists an element ng of A such that it = group(A, og, ng) and for
all elements a, b, c of A holds og(〈〈og(〈〈a, b〉〉), c〉〉) = og(〈〈a, og(〈〈b, c〉〉)〉〉) and for
every element a of A holds og(〈〈a, ng〉〉) = a and og(〈〈ng, a〉〉) = a and for every
element a of A there exists an element b of A such that og(〈〈a, b〉〉) = ng and
og(〈〈b, a〉〉) = ng and for all elements a, b of A holds og(〈〈a, b〉〉) = og(〈〈b, a〉〉).

Let D be a group. The carrier of D yields a non-empty set and is defined as
follows:

there exists a binary operation od of the carrier of D and there exists an
element nd of the carrier of D such that D = group(the carrier of D, od, nd).

The following two propositions are true:

(20) For every group D and for every non-empty set A holds
A = the carrier of D

if and only if there exists a binary operation od of A and there exists an
element nd of A such that D = group(A, od, nd).

(21) For every group D holds the carrier of D is a non-empty set and there
exists a binary operation od of the carrier of D and there exists an element
nd of the carrier of D such that D = group(the carrier of D, od, nd).

Let D be a group. The functor +D yielding a binary operation of the
carrier of D, is defined as follows:

there exists an element nd of the carrier of D such that
D = group(the carrier of D, +D, nd) .

The following propositions are true:

(22) For every group D and for every binary operation od of the carrier of D

holds od = +D if and only if there exists an element nd of the carrier of D

such that D = group(the carrier of D, od, nd).

(23) For every group D holds +D is a binary operation of the carrier of D

and there exists an element nd of the carrier of D such that
D = group(the carrier of D, +D, nd) .
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Let D be a group. The functor 0D yielding an element of the carrier of D, is
defined by:

D = group(the carrier of D, +D,0D).

Next we state a number of propositions:

(24) For every group D and for every element ng of the carrier of D holds
ng = 0D if and only if D = group(the carrier of D, +D, ng).

(25) For every group D holds 0D is an element of the carrier of D and D =
group(the carrier of D, +D,0D).

(26) For every group D holds D = group(the carrier of D, +D,0D).

(27) For every group D and for every non-empty set A and for every binary
operation og of A and for every element ng of A such that D = group(A,

og, ng) holds the carrier of D = A and +D = og and 0D = ng.

(28) For every group D and for all elements a, b, c of the carrier of D holds
+D(〈〈+D(〈〈a, b〉〉), c〉〉) = +D(〈〈a, +D(〈〈b, c〉〉)〉〉).

(29) For every group D and for every element a of the carrier of D holds
+D(〈〈a,0D〉〉) = a and +D(〈〈0D, a〉〉) = a.

(30) For every group D and for every element a of the carrier of D there
exists an element b of the carrier of D such that +D(〈〈a, b〉〉) = 0D and
+D(〈〈b, a〉〉) = 0D.

(31) For every group D and for all elements a, b of the carrier of D holds
+D(〈〈a, b〉〉) = +D(〈〈b, a〉〉).

(32) There exist arbitrary x, y such that x 6= y.

(33) There exists a non-empty set A such that for every element z of A holds
A \ single(z) is a non-empty set.

A non-empty set is said to be an at least 2-elements set if:

for every element x of it holds it \ single(x) is a non-empty set.

We now state two propositions:

(34) For every non-empty set A holds A is an at least 2-elements set if and
only if for every element x of A holds A \ single(x) is a non-empty set.

(35) For every non-empty set A such that for every element x of A holds
A \ single(x) is a non-empty set holds A is an at least 2-elements set.

We consider field structures which are systems

〈 a carrier, an addition, a multiplication, a zero, a unit 〉
where the carrier is an at least 2-elements set, the addition is a binary oper-

ation of the carrier, the multiplication is a binary operation of the carrier, the
zero is an element of the carrier, and the unit is an element of the carrier. Let
A be an at least 2-elements set, and let od, om be binary operations of A, and
let nd be an element of A, and let nm be an element of A \ single(nd). The
functor field(A, od, om, nd, nm) yielding a field structure, is defined as follows:

A = the carrier of field(A, od, om, nd, nm) and od = the addition of field(A,

od, om, nd, nm) and om = the multiplication of field(A, od, om, nd, nm) and
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nd = the zero of field(A, od, om, nd, nm) and nm = the unit of field(A, od,

om, nd, nm).

We now state two propositions:

(36) Let A be an at least 2-elements set. Let od, om be binary operations
of A. Then for every element nd of A and for every element nm of
A \ single(nd) and for every F being a field structure holds F = field(A,

od, om, nd, nm) if and only if A = the carrier of F and od = the addition
of F and om = the multiplication of F and nd = the zero of F and nm =
the unit of F .

(37) Let A be an at least 2-elements set. Let od, om be binary operations of
A. Let nd be an element of A. Let nm be an element of A \ single(nd).
Then

(i) field(A, od, om, nd, nm) is a field structure,
(ii) A = the carrier of field(A, od, om, nd, nm),

(iii) od = the addition of field(A, od, om, nd, nm),
(iv) om = the multiplication of field(A, od, om, nd, nm),
(v) nd = the zero of field(A, od, om, nd, nm),
(vi) nm = the unit of field(A, od, om, nd, nm).

Let X be an at least 2-elements set, and let F be a binary operation of X,
and let x be an element of X. We say that F is binary operation preserving x

if and only if:
X \single(x) is a set closed w.r.t. F and F

�
((X \single(x))#(X \single(x)))

is a binary operation of X \ single(x).

Next we state two propositions:

(38) For every at least 2-elements set X and for every binary operation F of
X and for every element x of X holds F is binary operation preserving
x if and only if X \ single(x) is a set closed w.r.t. F and F

�
((X \

single(x))#(X \ single(x))) is a binary operation of X \ single(x).

(39) For every set X and for every subset A of X there exists a binary
operation F of X such that for arbitrary x such that x ∈ A#A holds
F (x) ∈ A.

Let X be a set, and let A be a subset of X. A binary operation of X is said
to be a binary operation of X preserving A if:

for arbitrary x such that x ∈ A#A holds it(x) ∈ A.

One can prove the following two propositions:

(40) For every set X and for every subset A of X and for every binary
operation F of X holds F is a binary operation of X preserving A if and
only if for arbitrary x such that x ∈ A#A holds F (x) ∈ A.

(41) For every set X and for every subset A of X and for every binary
operation F of X preserving A holds F

�
(A#A) is a binary operation of

A.

Let X be a set, and let A be a subset of X, and let F be a binary operation of
X preserving A. The functor F

�
A yielding a binary operation of A, is defined



438 Józef Bia las

as follows:
F

�
A = F

�
(A#A).

We now state two propositions:

(42) For every set X and for every subset A of X and for every binary
operation F of X preserving A holds F

�
A = F

�
(A#A).

(43) For every at least 2-elements set A and for every element x of A there
exists a binary operation F of A such that for arbitrary y such that
y ∈ (A \ single(x))#(A \ single(x)) holds F (y) ∈ A \ single(x).

Let A be an at least 2-elements set, and let x be an element of A. A binary
operation of A is called a binary operation of A preserving A \ {x} if:

for arbitrary y such that y ∈ (A \ single(x))#(A \ single(x)) holds it(y) ∈
A \ single(x).

One can prove the following two propositions:

(44) For every at least 2-elements set A and for every element x of A and
for every binary operation F of A holds F is a binary operation of A

preserving A \ {x} if and only if for arbitrary y such that y ∈ (A \
single(x))#(A \ single(x)) holds F (y) ∈ A \ single(x).

(45) For every at least 2-elements set A and for every element x of A and
for every binary operation F of A preserving A \ {x} holds F

�
((A \

single(x))#(A \ single(x))) is a binary operation of A \ single(x).

Let A be an at least 2-elements set, and let x be an element of A, and let
F be a binary operation of A preserving A \ {x}. The functor F

�
x A yields a

binary operation of A \ single(x) and is defined as follows:
F

�
x A = F

�
((A \ single(x))#(A \ single(x))).

One can prove the following proposition

(46) For every at least 2-elements set A and for every element x of A and
for every binary operation F of A preserving A \ {x} holds F

�
x A = F

�

((A \ single(x))#(A \ single(x))).

A field structure is said to be a field if:
there exists an at least 2-elements set A and there exists a binary operation od

of A and there exists an element nd of A and there exists a binary operation om

of A preserving A \ {nd} and there exists an element nm of A \ single(nd) such
that it = field(A, od, om, nd, nm) and group(A, od, nd) is a group and for every
non-empty set B and for every binary operation P of B and for every element e of
B such that B = A \ single(nd) and e = nm and P = om

�
nd A holds group(B,

P, e) is a group and for all elements x, y, z of A holds om(〈〈x, od(〈〈y, z〉〉)〉〉) =
od(〈〈om(〈〈x, y〉〉), om(〈〈x, z〉〉)〉〉).

We now state two propositions:

(47) Let F be a group structure. Then F is a group if and only if there
exists a non-empty set A and there exists a binary operation og of A

and there exists an element ng of A such that F = group(A, og, ng) and
for all elements a, b, c of A holds og(〈〈og(〈〈a, b〉〉), c〉〉) = og(〈〈a, og(〈〈b, c〉〉)〉〉)
and for every element a of A holds og(〈〈a, ng〉〉) = a and og(〈〈ng, a〉〉) = a
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and for every element a of A there exists an element b of A such that
og(〈〈a, b〉〉) = ng and og(〈〈b, a〉〉) = ng and for all elements a, b of A holds
og(〈〈a, b〉〉) = og(〈〈b, a〉〉).

(48) Let F be a field structure. Then F is a field if and only if there exists an
at least 2-elements set A and there exists a binary operation od of A and
there exists an element nd of A and there exists a binary operation om of
A preserving A \ {nd} and there exists an element nm of A \ single(nd)
such that F = field(A, od, om, nd, nm) and group(A, od, nd) is a group
and for every non-empty set B and for every binary operation P of B and
for every element e of B such that B = A \ single(nd) and e = nm and
P = om

�
nd A holds group(B,P, e) is a group and for all elements x, y, z

of A holds om(〈〈x, od(〈〈y, z〉〉)〉〉) = od(〈〈om(〈〈x, y〉〉), om(〈〈x, z〉〉)〉〉).

References
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