Group and Field Definitions

Józef Białas ${ }^{1}$
Łódź University

Abstract

Summary. The article contains exactly the same definitions of group and field as those in [3]. These definitions were prepared without the help of the definitions and properties of Nat and Real modes icluded in the MML. This is the first of a series of articles in which we are going to introduce the concept of the set of real numbers in a elementary axiomatic way.

MML Identifier: REALSET1.

The terminology and notation used here are introduced in the following papers: [4], [1], and [2]. Let x be arbitrary. The functor single (x) yields a set and is defined as follows:
single $(x)=\{x\}$.
One can prove the following proposition
(1) For arbitrary x holds single $(x)=\{x\}$.

Let X, Y be sets. The functor $X \# Y$ yields a set and is defined by:
$X \# Y=[X, Y:]$.
We now state several propositions:
(2) For all sets X, Y holds $X \# Y=\lceil X, Y$: .
(3) For arbitrary z and for every set A holds $z \in A \# A$ if and only if there exist arbitrary x, y such that $x \in A$ and $y \in A$ and $z=\langle x, y\rangle$.
(4) For every set X and for every subset A of X holds $A \# A \subseteq X \# X$.
(5) For every set X such that $X=\emptyset$ holds $X \# X=\emptyset$.
(6) For every set X such that $X \# X=\emptyset$ holds $X=\emptyset$.
(7) For every set X holds $X \# X=\emptyset$ if and only if $X=\emptyset$.

Let X be a set. A binary operation of X is a function from $X \# X$ into X.
The following propositions are true:

[^0](8) For every set X and for every function F from $X \# X$ into X holds F is a binary operation of X.
(9) For every set X and for every function F holds F is a function from $X \# X$ into X if and only if F is a binary operation of X.
(10) For every set X and for every function F from $X \# X$ into X and for arbitrary x such that $x \in X \# X$ holds $F(x) \in X$.
(11) For every set X and for every binary operation F of X there exists a subset A of X such that for arbitrary x such that $x \in A \# A$ holds $F(x) \in A$.
Let X be a set, and let F be a binary operation of X, and let A be a subset of X. We say that F is in A if and only if:
for arbitrary x such that $x \in A \# A$ holds $F(x) \in A$.
Next we state a proposition
(12) For every set X and for every binary operation F of X and for every subset A of X holds F is in A if and only if for arbitrary x such that $x \in A \# A$ holds $F(x) \in A$.
Let X be a set, and let F be a binary operation of X. A subset of X is said to be a set closed w.r.t. F if:
for arbitrary x such that $x \in$ it\#it holds $F(x) \in$ it.
The following propositions are true:
(13) For every set X and for every binary operation F of X and for every subset A of X holds A is a set closed w.r.t. F if and only if for arbitrary x such that $x \in A \# A$ holds $F(x) \in A$.
(14) For every set X and for every binary operation F of X and for every set A closed w.r.t. F holds $F \upharpoonright(A \# A)$ is a binary operation of A.
Let X be a set, and let F be a binary operation of X, and let A be a set closed w.r.t. F. The functor $F \upharpoonright A$ yielding a binary operation of A, is defined by:
$F \upharpoonright A=F \upharpoonright(A \# A)$.
The following propositions are true:
(15) For every set X and for every binary operation F of X and for every set A closed w.r.t. F holds $F \upharpoonright A=F \upharpoonright(A \# A)$.
(16) For every set X and for every binary operation F of X and for every subset A of X such that A is a set closed w.r.t. F holds $F \upharpoonright(A \# A)$ is a binary operation of A.
(17) For every set X and for every binary operation F of X and for every set A closed w.r.t. F holds $F \upharpoonright A$ is a binary operation of A.
We consider group structures which are systems
〈 a carrier, an addition, a zero 〉
where the carrier is a non-empty set, the addition is a binary operation of the carrier, and the zero is an element of the carrier. Let A be a non-empty
set, and let $o g$ be a binary operation of A, and let $n g$ be an element of A. The functor $\operatorname{group}(A, o g, n g)$ yielding a group structure, is defined as follows:
$A=$ the carrier of $\operatorname{group}(A, o g, n g)$ and $o g=$ the addition of $\operatorname{group}(A, o g, n g)$ and $n g=$ the zero of $\operatorname{group}(A, o g, n g)$.

The following propositions are true:
(18) For every non-empty set A and for every binary operation $o g$ of A and for every element $n g$ of A and for every $G R$ being a group structure holds $G R=\operatorname{group}(A, o g, n g)$ if and only if $A=$ the carrier of $G R$ and $o g=$ the addition of $G R$ and $n g=$ the zero of $G R$.
(19) For every non-empty set A and for every binary operation $o g$ of A and for every element $n g$ of A holds group $(A, o g, n g)$ is a group structure and $A=$ the carrier of $\operatorname{group}(A, o g, n g)$ and $o g=$ the addition of $\operatorname{group}(A, o g$, $n g)$ and $n g=$ the zero of $\operatorname{group}(A, o g, n g)$.
A group structure is called a group if:
there exists a non-empty set A and there exists a binary operation og of A and there exists an element $n g$ of A such that it $=\operatorname{group}(A, o g, n g)$ and for all elements a, b, c of A holds $o g(\langle o g(\langle a, b\rangle), c\rangle)=o g(\langle a, o g(\langle b, c\rangle)\rangle)$ and for every element a of A holds $o g(\langle a, n g\rangle)=a$ and $o g(\langle n g, a\rangle)=a$ and for every element a of A there exists an element b of A such that $o g(\langle a, b\rangle)=n g$ and $o g(\langle b, a\rangle)=n g$ and for all elements a, b of A holds $o g(\langle a, b\rangle)=o g(\langle b, a\rangle)$.

Let D be a group. The carrier of D yields a non-empty set and is defined as follows:
there exists a binary operation od of the carrier of D and there exists an element $n d$ of the carrier of D such that $D=\operatorname{group}($ the carrier of $D, o d, n d)$.

The following two propositions are true:
(20) For every group D and for every non-empty set A holds
$A=$ the carrier of D
if and only if there exists a binary operation od of A and there exists an element $n d$ of A such that $D=\operatorname{group}(A, o d, n d)$.
(21) For every group D holds the carrier of D is a non-empty set and there exists a binary operation od of the carrier of D and there exists an element $n d$ of the carrier of D such that $D=\operatorname{group}($ the carrier of $D, o d, n d)$.
Let D be a group. The functor $+_{D}$ yielding a binary operation of the carrier of D, is defined as follows:
there exists an element $n d$ of the carrier of D such that
$D=\operatorname{group}\left(\right.$ the carrier of $\left.D,+_{D}, n d\right)$.
The following propositions are true:
(22) For every group D and for every binary operation od of the carrier of D holds $o d=+{ }_{D}$ if and only if there exists an element $n d$ of the carrier of D such that $D=\operatorname{group}($ the carrier of $D, o d, n d)$.
(23) For every group D holds $+_{D}$ is a binary operation of the carrier of D and there exists an element $n d$ of the carrier of D such that
$D=\operatorname{group}\left(\right.$ the carrier of $\left.D,{ }_{D}, n d\right)$.

Let D be a group. The functor $\mathbf{0}_{D}$ yielding an element of the carrier of D, is defined by:
$D=\operatorname{group}\left(\right.$ the carrier of $\left.D,{ }_{D}, \mathbf{0}_{D}\right)$.
Next we state a number of propositions:
(24) For every group D and for every element $n g$ of the carrier of D holds $n g=\mathbf{0}_{D}$ if and only if $D=\operatorname{group}\left(\right.$ the carrier of $\left.D,+_{D}, n g\right)$.
(25) For every group D holds $\mathbf{0}_{D}$ is an element of the carrier of D and $D=$ group(the carrier of $D,+_{D}, \mathbf{0}_{D}$).
(26) For every group D holds $D=\operatorname{group}\left(\right.$ the carrier of $\left.D,+_{D}, \mathbf{0}_{D}\right)$. operation og of A and for every element $n g$ of A such that $D=\operatorname{group}(A$, $o g, n g$) holds the carrier of $D=A$ and $+_{D}=o g$ and $\mathbf{0}_{D}=n g$.
(28) For every group D and for all elements a, b, c of the carrier of D holds $+_{D}\left(\left\langle+_{D}(\langle a, b\rangle), c\right\rangle\right)=+_{D}\left(\left\langle a,+_{D}(\langle b, c\rangle)\right\rangle\right)$.
(29) For every group D and for every element a of the carrier of D holds $+_{D}\left(\left\langle a, \mathbf{0}_{D}\right\rangle\right)=a$ and $+_{D}\left(\left\langle\mathbf{0}_{D}, a\right\rangle\right)=a$.
(30) For every group D and for every element a of the carrier of D there exists an element b of the carrier of D such that $+_{D}(\langle a, b\rangle)=\mathbf{0}_{D}$ and $+_{D}(\langle b, a\rangle)=\mathbf{0}_{D}$.
(31) For every group D and for all elements a, b of the carrier of D holds $+_{D}(\langle a, b\rangle)=+_{D}(\langle b, a\rangle)$.
(32) There exist arbitrary x, y such that $x \neq y$.
(33) There exists a non-empty set A such that for every element z of A holds $A \backslash \operatorname{single}(z)$ is a non-empty set.
A non-empty set is said to be an at least 2-elements set if:
for every element x of it holds it $\backslash \operatorname{single}(x)$ is a non-empty set.
We now state two propositions:
(34) For every non-empty set A holds A is an at least 2 -elements set if and only if for every element x of A holds $A \backslash \operatorname{single}(x)$ is a non-empty set.
(35) For every non-empty set A such that for every element x of A holds $A \backslash \operatorname{single}(x)$ is a non-empty set holds A is an at least 2 -elements set.
We consider field structures which are systems
〈 a carrier, an addition, a multiplication, a zero, a unit 〉
where the carrier is an at least 2-elements set, the addition is a binary operation of the carrier, the multiplication is a binary operation of the carrier, the zero is an element of the carrier, and the unit is an element of the carrier. Let A be an at least 2-elements set, and let od, om be binary operations of A, and let $n d$ be an element of A, and let $n m$ be an element of $A \backslash \operatorname{single}(n d)$. The functor field $(A, o d, o m, n d, n m)$ yielding a field structure, is defined as follows:
$A=$ the carrier of field $(A, o d, o m, n d, n m)$ and $o d=$ the addition of field $(A$, $o d, o m, n d, n m)$ and $o m=$ the multiplication of field $(A, o d, o m, n d, n m)$ and
$n d=$ the zero of field $(A, o d, o m, n d, n m)$ and $n m=$ the unit of field $(A, o d$, $o m, n d, n m)$.

We now state two propositions:
(36) Let A be an at least 2-elements set. Let od, om be binary operations of A. Then for every element $n d$ of A and for every element $n m$ of $A \backslash \operatorname{single}(n d)$ and for every F being a field structure holds $F=\operatorname{field}(A$, $o d, o m, n d, n m)$ if and only if $A=$ the carrier of F and $o d=$ the addition of F and $o m=$ the multiplication of F and $n d=$ the zero of F and $n m=$ the unit of F.
(37) Let A be an at least 2-elements set. Let od, om be binary operations of A. Let $n d$ be an element of A. Let $n m$ be an element of $A \backslash \operatorname{single}(n d)$. Then
(i) field $(A, o d, o m, n d, n m)$ is a field structure,
(ii) $\quad A=$ the carrier of field $(A, o d, o m, n d, n m)$,
(iii) $\quad o d=$ the addition of field $(A, o d, o m, n d, n m)$,
(iv) $\quad o m=$ the multiplication of field $(A, o d, o m, n d, n m)$,
(v) $n d=$ the zero of field $(A, o d, o m, n d, n m)$,
(vi) $n m=$ the unit of field $(A, o d, o m, n d, n m)$.

Let X be an at least 2-elements set, and let F be a binary operation of X, and let x be an element of X. We say that F is binary operation preserving x if and only if:
$X \backslash \operatorname{single}(x)$ is a set closed w.r.t. F and $F \upharpoonright((X \backslash \operatorname{single}(x)) \#(X \backslash \operatorname{single}(x)))$ is a binary operation of $X \backslash \operatorname{single}(x)$.

Next we state two propositions:
(38) For every at least 2 -elements set X and for every binary operation F of X and for every element x of X holds F is binary operation preserving x if and only if $X \backslash \operatorname{single}(x)$ is a set closed w.r.t. F and $F \upharpoonright((X \backslash$ $\operatorname{single}(x)) \#(X \backslash \operatorname{single}(x)))$ is a binary operation of $X \backslash \operatorname{single}(x)$.
(39) For every set X and for every subset A of X there exists a binary operation F of X such that for arbitrary x such that $x \in A \# A$ holds $F(x) \in A$.
Let X be a set, and let A be a subset of X. A binary operation of X is said to be a binary operation of X preserving A if:
for arbitrary x such that $x \in A \# A$ holds it $(x) \in A$.
One can prove the following two propositions:
(40) For every set X and for every subset A of X and for every binary operation F of X holds F is a binary operation of X preserving A if and only if for arbitrary x such that $x \in A \# A$ holds $F(x) \in A$.
(41) For every set X and for every subset A of X and for every binary operation F of X preserving A holds $F \upharpoonright(A \# A)$ is a binary operation of A.
Let X be a set, and let A be a subset of X, and let F be a binary operation of X preserving A. The functor $F \upharpoonright A$ yielding a binary operation of A, is defined
as follows:
$F \upharpoonright A=F \upharpoonright(A \# A)$.
We now state two propositions:
(42) For every set X and for every subset A of X and for every binary operation F of X preserving A holds $F \upharpoonright A=F \upharpoonright(A \# A)$.
(43) For every at least 2-elements set A and for every element x of A there exists a binary operation F of A such that for arbitrary y such that $y \in(A \backslash \operatorname{single}(x)) \#(A \backslash \operatorname{single}(x))$ holds $F(y) \in A \backslash \operatorname{single}(x)$.
Let A be an at least 2 -elements set, and let x be an element of A. A binary operation of A is called a binary operation of A preserving $A \backslash\{x\}$ if:
for arbitrary y such that $y \in(A \backslash \operatorname{single}(x)) \#(A \backslash \operatorname{single}(x))$ holds $\operatorname{it}(y) \in$ $A \backslash$ single (x).

One can prove the following two propositions:
(44) For every at least 2 -elements set A and for every element x of A and for every binary operation F of A holds F is a binary operation of A preserving $A \backslash\{x\}$ if and only if for arbitrary y such that $y \in(A \backslash$ single $(x)) \#(A \backslash \operatorname{single}(x))$ holds $F(y) \in A \backslash \operatorname{single}(x)$.
(45) For every at least 2-elements set A and for every element x of A and for every binary operation F of A preserving $A \backslash\{x\}$ holds $F \upharpoonright((A \backslash$ $\operatorname{single}(x)) \#(A \backslash \operatorname{single}(x)))$ is a binary operation of $A \backslash \operatorname{single}(x)$.
Let A be an at least 2-elements set, and let x be an element of A, and let F be a binary operation of A preserving $A \backslash\{x\}$. The functor $F \upharpoonright_{x} A$ yields a binary operation of $A \backslash \operatorname{single}(x)$ and is defined as follows:
$F \upharpoonright_{x} A=F \upharpoonright((A \backslash \operatorname{single}(x)) \#(A \backslash \operatorname{single}(x)))$.
One can prove the following proposition
(46) For every at least 2-elements set A and for every element x of A and for every binary operation F of A preserving $A \backslash\{x\}$ holds $F \upharpoonright_{x} A=F \upharpoonright$ $((A \backslash \operatorname{single}(x)) \#(A \backslash \operatorname{single}(x)))$.
A field structure is said to be a field if:
there exists an at least 2-elements set A and there exists a binary operation od of A and there exists an element $n d$ of A and there exists a binary operation om of A preserving $A \backslash\{n d\}$ and there exists an element $n m$ of $A \backslash \operatorname{single}(n d)$ such that it $=\operatorname{field}(A, o d, o m, n d, n m)$ and $\operatorname{group}(A, o d, n d)$ is a group and for every non-empty set B and for every binary operation P of B and for every element e of B such that $B=A \backslash \operatorname{single}(n d)$ and $e=n m$ and $P=o m \upharpoonright_{n d} A$ holds $\operatorname{group}(B$, $P, e)$ is a group and for all elements x, y, z of A holds $\operatorname{om}(\langle x, \operatorname{od}(\langle y, z\rangle)\rangle)=$ $\operatorname{od}(\langle o m(\langle x, y\rangle), \operatorname{om}(\langle x, z\rangle)\rangle)$.

We now state two propositions:
(47) Let F be a group structure. Then F is a group if and only if there exists a non-empty set A and there exists a binary operation og of A and there exists an element $n g$ of A such that $F=\operatorname{group}(A, o g, n g)$ and for all elements a, b, c of A holds $o g(\langle o g(\langle a, b\rangle), c\rangle)=o g(\langle a, o g(\langle b, c\rangle)\rangle)$ and for every element a of A holds $o g(\langle a, n g\rangle)=a$ and $o g(\langle n g, a\rangle)=a$
and for every element a of A there exists an element b of A such that $o g(\langle a, b\rangle)=n g$ and $o g(\langle b, a\rangle)=n g$ and for all elements a, b of A holds $o g(\langle a, b\rangle)=o g(\langle b, a\rangle)$.
(48) Let F be a field structure. Then F is a field if and only if there exists an at least 2-elements set A and there exists a binary operation od of A and there exists an element $n d$ of A and there exists a binary operation om of A preserving $A \backslash\{n d\}$ and there exists an element $n m$ of $A \backslash \operatorname{single}(n d)$ such that $F=\operatorname{field}(A, o d, o m, n d, n m)$ and $\operatorname{group}(A, o d, n d)$ is a group and for every non-empty set B and for every binary operation P of B and for every element e of B such that $B=A \backslash \operatorname{single}(n d)$ and $e=n m$ and $P=o m \upharpoonright_{n d} A$ holds $\operatorname{group}(B, P, e)$ is a group and for all elements x, y, z of A holds $\operatorname{om}(\langle x, \operatorname{od}(\langle y, z\rangle)\rangle)=\operatorname{od}(\langle o m(\langle x, y\rangle), o m(\langle x, z\rangle)\rangle)$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Jean Dieudonné. Foundations of Modern Analises. Academic Press, New York and London, 1960.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received October 27, 1989

[^0]: ${ }^{1}$ Supported by RPBP III. 24 C 9

