# Variables in Formulae of the First Order Language ${ }^{1}$ 

Czesław Byliński<br>Warsaw University<br>Białystok

Grzegorz Bancerek<br>Warsaw University<br>Białystok


#### Abstract

Summary. We develop the first order language defined in [5]. We continue the work done in the article [1]. We prove some schemes of defining by structural induction. We deal with notions of closed subformulae and of still not bound variables in a formula. We introduce the concept of the set of all free variables and the set of all fixed variables occurring in a formula.


MML Identifier: QC_LANG3.

The notation and terminology used in this paper have been introduced in the following articles: [6], [3], [4], [2], [5], and [1]. For simplicity we follow the rules: $i, j, k$ are natural numbers, $x$ is a bound variable, $a$ is a free variable, $p, q$ are elements of WFF, $l$ is a finite sequence of elements of Var, $P$ is a predicate symbol, and $V$ is a non-empty subset of Var. Let $F$ be a function from WFF into WFF, and let us consider $p$. Then $F(p)$ is an element of WFF.

In the article we present several logical schemes. The scheme QC_Func_Uniq deals with a non-empty set $\mathcal{A}$, a function $\mathcal{B}$ from WFF into $\mathcal{A}$, a function $\mathcal{C}$ from WFF into $\mathcal{A}$, an element $\mathcal{D}$ of $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$ and states that:
$\mathcal{B}=\mathcal{C}$
provided the following conditions are satisfied:

- Given $p$. Let $d_{1}, d_{2}$ be elements of $\mathcal{A}$. Then
(i) if $p=$ VERUM, then $\mathcal{B}(p)=\mathcal{D}$,
(ii) if $p$ is atomic, then $\mathcal{B}(p)=\mathcal{F}(p)$,
(iii) if $p$ is negative and $d_{1}=\mathcal{B}(\operatorname{Arg}(p))$, then $\mathcal{B}(p)=\mathcal{G}\left(d_{1}\right)$,
(iv) if $p$ is conjunctive and $d_{1}=\mathcal{B}(\operatorname{Left} \operatorname{Arg}(p))$ and

[^0]$d_{2}=\mathcal{B}(\operatorname{Right} \operatorname{Arg}(p))$,
then $\mathcal{B}(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$,
(v) if $p$ is universal and $d_{1}=\mathcal{B}(\operatorname{Scope}(p))$, then $\mathcal{B}(p)=\mathcal{I}\left(p, d_{1}\right)$,

- Given $p$. Let $d_{1}, d_{2}$ be elements of $\mathcal{A}$. Then
(i) if $p=\mathrm{VERUM}$, then $\mathcal{C}(p)=\mathcal{D}$,
(ii) if $p$ is atomic, then $\mathcal{C}(p)=\mathcal{F}(p)$,
(iii) if $p$ is negative and $d_{1}=\mathcal{C}(\operatorname{Arg}(p))$, then $\mathcal{C}(p)=\mathcal{G}\left(d_{1}\right)$,
(iv) if $p$ is conjunctive and $d_{1}=\mathcal{C}(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=\mathcal{C}(\operatorname{Right} \operatorname{Arg}(p))$, then $\mathcal{C}(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$,
(v) if $p$ is universal and $d_{1}=\mathcal{C}(\operatorname{Scope}(p))$, then $\mathcal{C}(p)=\mathcal{I}\left(p, d_{1}\right)$.

The scheme $Q C_{-}$Def_ $D$ deals with a non-empty set $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, an element $\mathcal{C}$ of WFF, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$ and states that:
(i) there exists an element $d$ of $\mathcal{A}$ and there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(\mathcal{C})$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
(ii) for all elements $x_{1}, x_{2}$ of $\mathcal{A}$ such that there exists a function $F$ from WFF into $\mathcal{A}$ such that $x_{1}=F(\mathcal{C})$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=$ $\mathcal{H}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$ and there exists a function $F$ from WFF into $\mathcal{A}$ such that $x_{2}=F(\mathcal{C})$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ but if $p$ is negative and $d_{1}=$ $F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$ holds $x_{1}=x_{2}$ for all values of the parameters.

The scheme $Q C_{-} D_{-}$Result'VERU deals with a non-empty set $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$ and states that:
$\mathcal{F}($ VERUM $)=\mathcal{B}$
provided the parameters fulfill the following condition:

- Let $p$ be a formula. Let $d$ be an element of $\mathcal{A}$. Then $d=\mathcal{F}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}$, $d_{2}$ of $\mathcal{A}$ holds if $p=\mathrm{VERUM}$, then $F(p)=\mathcal{B}$ but if $p$ is atomic,
then $F(p)=\mathcal{G}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{I}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{J}\left(p, d_{1}\right)$.
The scheme $Q C \_D \_$Result'atom concerns a non-empty set $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a formula $\mathcal{C}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$ and states that:
$\mathcal{F}(\mathcal{C})=\mathcal{G}(\mathcal{C})$
provided the following conditions are fulfilled:
- Let $p$ be a formula. Let $d$ be an element of $\mathcal{A}$. Then $d=\mathcal{F}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}$, $d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{G}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{I}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{J}\left(p, d_{1}\right)$,
- $\mathcal{C}$ is atomic.

The scheme $Q C_{-} D_{-}$Result'nega deals with a non-empty set $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a formula $\mathcal{C}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and a unary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$ and states that:
$\mathcal{J}(\mathcal{C})=\mathcal{G}(\mathcal{J}(\operatorname{Arg}(\mathcal{C})))$
provided the following requirements are met:

- Let $p$ be a formula. Let $d$ be an element of $\mathcal{A}$. Then $d=\mathcal{J}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}$, $d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
- $\mathcal{C}$ is negative.

The scheme $Q C_{-} D_{-}$Result'conj concerns a non-empty set $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$, and a formula $\mathcal{C}$ and states that:
for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ such that $d_{1}=\mathcal{J}(\operatorname{Left} \operatorname{Arg}(\mathcal{C}))$ and
$d_{2}=\mathcal{J}(\operatorname{Right} \operatorname{Arg}(\mathcal{C}))$
holds $\mathcal{J}(\mathcal{C})=\mathcal{H}\left(d_{1}, d_{2}\right)$
provided the parameters satisfy the following conditions:

- Let $p$ be a formula. Let $d$ be an element of $\mathcal{A}$. Then $d=\mathcal{J}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}$, $d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
- $\mathcal{C}$ is conjunctive.

The scheme $Q C_{-} D_{-}$Result'univ deals with a non-empty set $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a formula $\mathcal{C}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and a unary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$ and states that:
$\mathcal{J}(\mathcal{C})=\mathcal{I}(\mathcal{C}, \mathcal{J}(\operatorname{Scope}(\mathcal{C})))$
provided the following requirements are fulfilled:

- Let $p$ be a formula. Let $d$ be an element of $\mathcal{A}$. Then $d=\mathcal{J}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}$, $d_{2}$ of $\mathcal{A}$ holds if $p=\mathrm{VERUM}$, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
- $\mathcal{C}$ is universal.

Let us consider $V$. The functor $\emptyset_{V}$ yields an element of $2^{V}$ qua a non-empty set and is defined as follows:
$\emptyset_{V}=\emptyset$.
Next we state three propositions:
(1) $\emptyset_{V}=\emptyset$.
(2) For every $k$-ary predicate symbol $P$ holds $P$ is a predicate symbol.
(3) $\quad P$ is a $\operatorname{Arity}(P)$-ary predicate symbol.

Let us consider $l, V$. The functor variables $V(l)$ yielding an element of $2^{V}$, is defined by:
$\operatorname{variables}_{V}(l)=\{l(k): 1 \leq k \wedge k \leq \operatorname{len} l \wedge l(k) \in V\}$.
One can prove the following propositions:

$$
\begin{equation*}
\operatorname{variables}_{V}(l)=\{l(k): 1 \leq k \wedge k \leq \operatorname{len} l \wedge l(k) \in V\} \tag{4}
\end{equation*}
$$

variables $_{V}(l) \subseteq V$.
$\operatorname{snb}(l)=$ variables $_{\text {BoundVar }}(l)$.
$\operatorname{snb}($ VERUM $)=\emptyset$.
(8) For every formula $p$ such that $p$ is atomic holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{Args}(p))$.
(9) For every $k$-ary predicate symbol $P$ and for every list of variables $l$ of the length $k$ holds $\operatorname{snb}(P[l])=\operatorname{snb}(l)$.
(10) For every formula $p$ such that $p$ is negative holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{Arg}(p))$.
(11) For every formula $p$ holds $\operatorname{snb}(\neg p)=\operatorname{snb}(p)$.
(12) $\quad \operatorname{snb}($ FALSUM $)=\emptyset$.
(13) For every formula $p$ such that $p$ is conjunctive holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{Left} \operatorname{Arg}(p)) \cup \operatorname{snb}(\operatorname{Right} \operatorname{Arg}(p))$.
(14) For all formulae $p, q$ holds $\operatorname{snb}(p \wedge q)=\operatorname{snb}(p) \cup \operatorname{snb}(q)$.
(15) For every formula $p$ such that $p$ is universal holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{Scope}(p)) \backslash\{\operatorname{Bound}(p)\}$.
(16) For every formula $p$ holds $\operatorname{snb}\left(\forall_{x} p\right)=\operatorname{snb}(p) \backslash\{x\}$.
(17) For every formula $p$ such that $p$ is disjunctive holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{LeftDisj}(p)) \cup \operatorname{snb}(\operatorname{RightDisj}(p))$.
(18) For all formulae $p, q$ holds $\operatorname{snb}(p \vee q)=\operatorname{snb}(p) \cup \operatorname{snb}(q)$.
(19) For every formula $p$ such that $p$ is conditional holds $\operatorname{snb}(p)=\operatorname{snb}($ Antecedent $(p)) \cup \operatorname{snb}($ Consequent $(p))$.
(20) For all formulae $p, q$ holds $\operatorname{snb}(p \Rightarrow q)=\operatorname{snb}(p) \cup \operatorname{snb}(q)$.
(21) For every formula $p$ such that $p$ is biconditional holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{LeftSide}(p)) \cup \operatorname{snb}(\operatorname{RightSide}(p))$.
(22) For all formulae $p, q$ holds $\operatorname{snb}(p \Leftrightarrow q)=\operatorname{snb}(p) \cup \operatorname{snb}(q)$.
(23) For every formula $p$ holds $\operatorname{snb}\left(\exists_{x} p\right)=\operatorname{snb}(p) \backslash\{x\}$.
(24) VERUM is closed and FALSUM is closed.
(25) For every formula $p$ holds $p$ is closed if and only if $\neg p$ is closed.
(26) For all formulae $p, q$ holds $p$ is closed and $q$ is closed if and only if $p \wedge q$ is closed.
(27) For every formula $p$ holds $\forall_{x} p$ is closed if and only if $\operatorname{snb}(p) \subseteq\{x\}$.
(28) For every formula $p$ such that $p$ is closed holds $\forall_{x} p$ is closed.
(29) For all formulae $p, q$ holds $p$ is closed and $q$ is closed if and only if $p \vee q$ is closed.
(30) For all formulae $p, q$ holds $p$ is closed and $q$ is closed if and only if $p \Rightarrow q$ is closed.
(31) For all formulae $p, q$ holds $p$ is closed and $q$ is closed if and only if $p \Leftrightarrow q$ is closed.
(32) For every formula $p$ holds $\exists_{x} p$ is closed if and only if $\operatorname{snb}(p) \subseteq\{x\}$.
(33) For every formula $p$ such that $p$ is closed holds $\exists_{x} p$ is closed.

Let us consider $V$, and let $F$ be a function from WFF into $2^{V}$, and let us consider $p$. Then $F(p)$ is an element of $2^{V}$.

Let us consider $k$. The functor $x_{k}$ yielding a bound variable, is defined as follows:

$$
x_{k}=\langle 4, k\rangle .
$$

One can prove the following propositions:

$$
\begin{equation*}
x_{k}=\langle 4, k\rangle . \tag{34}
\end{equation*}
$$

If $x_{i}=x_{j}$, then $i=j$.
(36) There exists $i$ such that $x_{i}=x$.

Let us consider $k$. The functor $\mathbf{a}_{k}$ yields a free variable and is defined as follows:
$\mathbf{a}_{k}=\langle 6, k\rangle$.
One can prove the following propositions:
$\mathbf{a}_{k}=\langle 6, k\rangle$.
(38) If $\mathbf{a}_{i}=\mathbf{a}_{j}$, then $i=j$.
(40) For every element $c$ of FixedVar and for every element $a$ of FreeVar holds $c \neq a$.
(41) For every element $c$ of FixedVar and for every element $x$ of BoundVar holds $c \neq x$.
(42) For every element $a$ of FreeVar and for every element $x$ of BoundVar holds $a \neq x$.
Let us consider $V$, and let $V_{1}, V_{2}$ be elements of $2^{V}$. Then $V_{1} \cup V_{2}$ is an element of $2^{V}$.

Let $D$ be a non-empty family of sets, and let $d$ be an element of $D$. The functor @d yields an element of $D$ qua a non-empty set and is defined as follows:
$@ d=d$.
One can prove the following proposition
(43) For every non-empty family $D$ of sets and for every element $d$ of $D$ holds @ $d=d$.
Let $D$ be a non-empty family of sets, and let $d$ be an element of $D$ quaa non-empty set. The functor @ $d$ yielding an element of $D$, is defined as follows:
$@ d=d$.
We now state a proposition
(44) For every non-empty family $D$ of sets and for every element $d$ of $D$ qua a non-empty set holds $@ d=d$.
Now we present several schemes. The scheme QC_Def_SETD deals with a non-empty family $\mathcal{A}$ of sets, an element $\mathcal{B}$ of $\mathcal{A}$, an element $\mathcal{C}$ of WFF, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$ and states that:
(i) there exists an element $d$ of $\mathcal{A}$ and there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(\mathcal{C})$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
(ii) for all elements $x_{1}, x_{2}$ of $\mathcal{A}$ such that there exists a function $F$ from WFF into $\mathcal{A}$ such that $x_{1}=F(\mathcal{C})$ and for every element $p$ of WFF and for all
elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=$ $\mathcal{H}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$ and there exists a function $F$ from WFF into $\mathcal{A}$ such that $x_{2}=F(\mathcal{C})$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ but if $p$ is negative and $d_{1}=$ $F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$ holds $x_{1}=x_{2}$
for all values of the parameters.
The scheme $Q C_{-}$SETD_Result' $V$ concerns a non-empty family $\mathcal{A}$ of sets, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$ and states that:
$\mathcal{F}($ VERUM $)=\mathcal{B}$
provided the parameters meet the following requirement:

- Let $p$ be an element of WFF. Let $d$ be an element of $\mathcal{A}$. Then $d=$ $\mathcal{F}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{G}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{I}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{J}\left(p, d_{1}\right)$.
The scheme QC_SETD_Result'a concerns a non-empty family $\mathcal{A}$ of sets, an element $\mathcal{B}$ of $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, an element $\mathcal{C}$ of WFF, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$ and states that:
$\mathcal{F}(\mathcal{C})=\mathcal{G}(\mathcal{C})$
provided the parameters fulfill the following requirements:
- Let $p$ be an element of WFF. Let $d$ be an element of $\mathcal{A}$. Then $d=$ $\mathcal{F}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{G}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{I}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{J}\left(p, d_{1}\right)$,
- $\mathcal{C}$ is atomic.

The scheme $Q C \_S E T D \_R e s u l t ' n$ deals with a non-empty family $\mathcal{A}$ of sets, an element $\mathcal{B}$ of $\mathcal{A}$, an element $\mathcal{C}$ of WFF, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an
element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and a unary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$ and states that:
$\mathcal{J}(\mathcal{C})=\mathcal{G}(\mathcal{J}(\operatorname{Arg}(\mathcal{C})))$
provided the following requirements are met:

- Let $p$ be an element of WFF. Let $d$ be an element of $\mathcal{A}$. Then $d=$ $\mathcal{J}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
- $\mathcal{C}$ is negative.

The scheme $Q C \_S E T D \_$Result' $\mathcal{C}$ deals with a non-empty family $\mathcal{A}$ of sets, an element $\mathcal{B}$ of $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$, and an element $\mathcal{C}$ of WFF and states that:
for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ such that $d_{1}=\mathcal{J}(\operatorname{Left} \operatorname{Arg}(\mathcal{C}))$ and
$d_{2}=\mathcal{J}(\operatorname{Right} \operatorname{Arg}(\mathcal{C}))$
holds $\mathcal{J}(\mathcal{C})=\mathcal{H}\left(d_{1}, d_{2}\right)$
provided the parameters fulfill the following conditions:

- Let $p$ be an element of WFF. Let $d$ be an element of $\mathcal{A}$. Then $d=$ $\mathcal{J}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
- $\mathcal{C}$ is conjunctive.

The scheme $Q C \_S E T D \_R e s u l t$ ' $u$ deals with a non-empty family $\mathcal{A}$ of sets, an element $\mathcal{B}$ of $\mathcal{A}$, an element $\mathcal{C}$ of WFF, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and a unary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$ and states that:
$\mathcal{J}(\mathcal{C})=\mathcal{I}(\mathcal{C}, \mathcal{J}(\operatorname{Scope}(\mathcal{C})))$
provided the parameters meet the following requirements:

- Let $p$ be an element of WFF. Let $d$ be an element of $\mathcal{A}$. Then $d=$ $\mathcal{J}(p)$ if and only if there exists a function $F$ from WFF into $\mathcal{A}$ such that $d=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if $p$ is atomic, then $F(p)=\mathcal{F}(p)$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and
$d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
- $\mathcal{C}$ is universal.

Let us consider $V, p$. The functor $\operatorname{Vars}_{V}(p)$ yielding an element of $2^{V}$, is defined as follows:
there exists a function $F$ from WFF into $2^{V}$ such that $\operatorname{Vars}_{V}(p)=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $2^{V}$ holds if $p=$ VERUM, then $F(p)=@\left(\emptyset_{V}\right)$ but if $p$ is atomic, then $F(p)=\operatorname{variables}_{V}(\operatorname{Args}(p))$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=d_{1}$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=d_{1} \cup d_{2}$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=d_{1}$.

We now state a number of propositions:
(45) Let $X$ be an element of $2^{V}$. Then $X=\operatorname{Vars}_{V}(p)$ if and only if there exists a function $F$ from WFF into $2^{V}$ such that $X=F(p)$ and for every element $p$ of WFF and for all elements $d_{1}, d_{2}$ of $2^{V}$ holds if $p=$ VERUM, then $F(p)=@\left(\emptyset_{V}\right)$ but if $p$ is atomic, then $F(p)=$ variables $_{V}(\operatorname{Args}(p))$ but if $p$ is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=d_{1}$ but if $p$ is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=d_{1} \cup d_{2}$ but if $p$ is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=d_{1}$.
(46) $\quad \operatorname{Vars}_{V}($ VERUM $)=\emptyset$.
(47) If $p$ is atomic, then $\operatorname{Vars}_{V}(p)=\operatorname{variables}_{V}(\operatorname{Args}(p))$ and $\operatorname{Vars}_{V}(p)=$ $\{\operatorname{Args}(p)(k): 1 \leq k \wedge k \leq \operatorname{len} \operatorname{Args}(p) \wedge \operatorname{Args}(p)(k) \in V\}$.
(48) For every $k$-ary predicate symbol $P$ and for every list of variables $l$ of the length $k$ holds $\operatorname{Vars}_{V}(P[l])=\operatorname{variables}_{V}(l)$ and $\operatorname{Vars}_{V}(P[l])=\{l(i):$
$1 \leq i \wedge i \leq \operatorname{len} l \wedge l(i) \in V\}$.
(49) If $p$ is negative, then $\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Arg}(p))$.
(50) $\operatorname{Vars}_{V}(\neg p)=\operatorname{Vars}_{V}(p)$.
(51) $\quad \operatorname{Vars}_{V}($ FALSUM $)=\emptyset$.
(52) If $p$ is conjunctive, then
$\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Left} \operatorname{Arg}(p)) \cup \operatorname{Vars}_{V}(\operatorname{Right} \operatorname{Arg}(p))$.
(53) $\operatorname{Vars}_{V}(p \wedge q)=\operatorname{Vars}_{V}(p) \cup \operatorname{Vars}_{V}(q)$.
(54) If $p$ is universal, then $\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Scope}(p))$.
(55) $\operatorname{Vars}_{V}\left(\forall_{x} p\right)=\operatorname{Vars}_{V}(p)$.
(56) If $p$ is disjunctive, then
$\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{LeftDisj}(p)) \cup \operatorname{Vars}_{V}(\operatorname{RightDisj}(p))$.
$\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Antecedent}(p)) \cup \operatorname{Vars}_{V}(\operatorname{Consequent}(p))$.
(59) $\operatorname{Vars}_{V}(p \Rightarrow q)=\operatorname{Vars}_{V}(p) \cup \operatorname{Vars}_{V}(q)$.
(60) If $p$ is biconditional, then
$\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{LeftSide}(p)) \cup \operatorname{Vars}_{V}(\operatorname{RightSide}(p))$.
(61) $\operatorname{Vars}_{V}(p \Leftrightarrow q)=\operatorname{Vars}_{V}(p) \cup \operatorname{Vars}_{V}(q)$.
(62) If $p$ is existential, then $\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Arg}(\operatorname{Scope}(\operatorname{Arg}(p))))$.
(63) $\operatorname{Vars}_{V}\left(\exists_{x} p\right)=\operatorname{Vars}_{V}(p)$.

Let us consider $p$. The functor Free $p$ yielding an element of $2^{\text {FreeVar }}$, is defined as follows:

Free $p=\operatorname{Vars}_{\text {FreeVar }}(p)$.
One can prove the following propositions:
(64) Free $p=\operatorname{Vars}_{\text {FreeVar }}(p)$.
(65) Free VERUM $=\emptyset$.
(66) For every $k$-ary predicate symbol $P$ and for every list of variables $l$ of the length $k$ holds Free $(P[l])=\{l(i): 1 \leq i \wedge i \leq \operatorname{len} l \wedge l(i) \in$ FreeVar $\}$.
(67) Free $\neg p=$ Free $p$.
(68) Free FALSUM $=\emptyset$.
(69) Free $p \wedge q=$ Free $p \cup$ Free $q$.
(70) Free $\forall_{x} p=$ Free $p$.
(71) Free $p \vee q=$ Free $p \cup$ Free $q$.
(72) Free $p \Rightarrow q=$ Free $p \cup$ Free $q$.
(73) Free $p \Leftrightarrow q=$ Free $p \cup$ Free $q$.
(74) Free $\exists_{x} p=$ Free $p$.

Let us consider $p$. The functor Fixed $p$ yielding an element of $2^{\text {FixedVar }}$, is defined as follows:

Fixed $p=\operatorname{Vars}_{\text {FixedVar }}(p)$.
Next we state a number of propositions:
(75) $\quad$ Fixed $p=\operatorname{Vars}_{\text {FixedVar }}(p)$.
(76) Fixed VERUM $=\emptyset$.
(77) For every $k$-ary predicate symbol $P$ and for every list of variables $l$ of the length $k$ holds Fixed $(P[l])=\{l(i): 1 \leq i \wedge i \leq \operatorname{len} l \wedge l(i) \in$ FixedVar $\}$.
(78) Fixed $\neg p=$ Fixed $p$.
(79) Fixed FALSUM $=\emptyset$.
(80) Fixed $p \wedge q=$ Fixed $p \cup$ Fixed $q$.
(81) $\operatorname{Fixed}\left({ }_{x} p\right)=$ Fixed $p$.
(82) Fixed $p \vee q=$ Fixed $p \cup$ Fixed $q$.
(83) Fixed $p \Rightarrow q=$ Fixed $p \cup$ Fixed $q$.
(84) Fixed $p \Leftrightarrow q=$ Fixed $p \cup$ Fixed $q$.
(85) $\quad \operatorname{Fixed}\left(\exists_{x} p\right)=$ Fixed $p$.

## References

[1] Grzegorz Bancerek. Connectives and subformulae of the first order language. Formalized Mathematics, 1(3):451-458, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received November 23, 1989


[^0]:    ${ }^{1}$ Partially supported by RPBP III.24.C1

