Variables in Formulae of the First Order Language ¹

Czesław Byliński Warsaw University Białystok Grzegorz Bancerek Warsaw University Białystok

Summary. We develop the first order language defined in [5]. We continue the work done in the article [1]. We prove some schemes of defining by structural induction. We deal with notions of closed subformulae and of still not bound variables in a formula. We introduce the concept of the set of all free variables and the set of all fixed variables occurring in a formula.

MML Identifier: QC_LANG3.

The notation and terminology used in this paper have been introduced in the following articles: [6], [3], [4], [2], [5], and [1]. For simplicity we follow the rules: i, j, k are natural numbers, x is a bound variable, a is a free variable, p, q are elements of WFF, l is a finite sequence of elements of Var, P is a predicate symbol, and V is a non-empty subset of Var. Let F be a function from WFF into WFF, and let us consider p. Then F(p) is an element of WFF.

In the article we present several logical schemes. The scheme QC_Func_Uniq deals with a non-empty set \mathcal{A} , a function \mathcal{B} from WFF into \mathcal{A} , a function \mathcal{C} from WFF into \mathcal{A} , an element \mathcal{D} of \mathcal{A} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor \mathcal{H} yielding an element of \mathcal{A} , and a binary functor \mathcal{I} yielding an element of \mathcal{A} and states that: $\mathcal{B} = \mathcal{C}$

provided the following conditions are satisfied:

- Given p. Let d_1 , d_2 be elements of \mathcal{A} . Then
 - (i) if p = VERUM, then $\mathcal{B}(p) = \mathcal{D}$,
 - (ii) if p is atomic, then $\mathcal{B}(p) = \mathcal{F}(p)$,
 - (iii) if p is negative and $d_1 = \mathcal{B}(\operatorname{Arg}(p))$, then $\mathcal{B}(p) = \mathcal{G}(d_1)$,
 - (iv) if p is conjunctive and $d_1 = \mathcal{B}(\text{LeftArg}(p))$ and

¹Partially supported by RPBP III.24.C1

459

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 $d_2 = \mathcal{B}(\operatorname{RightArg}(p))$,

then $\mathcal{B}(p) = \mathcal{H}(d_1, d_2),$

(v) if p is universal and $d_1 = \mathcal{B}(\text{Scope}(p))$, then $\mathcal{B}(p) = \mathcal{I}(p, d_1)$,

- Given p. Let d_1, d_2 be elements of \mathcal{A} . Then
 - (i) if p = VERUM, then $\mathcal{C}(p) = \mathcal{D}$,
 - (ii) if p is atomic, then $\mathcal{C}(p) = \mathcal{F}(p)$,
 - (iii) if p is negative and $d_1 = \mathcal{C}(\operatorname{Arg}(p))$, then $\mathcal{C}(p) = \mathcal{G}(d_1)$,
 - (iv) if p is conjunctive and $d_1 = \mathcal{C}(\text{LeftArg}(p))$ and

 $d_2 = \mathcal{C}(\operatorname{RightArg}(p))$,

then $\mathcal{C}(p) = \mathcal{H}(d_1, d_2),$

(v) if p is universal and $d_1 = \mathcal{C}(\text{Scope}(p))$, then $\mathcal{C}(p) = \mathcal{I}(p, d_1)$.

The scheme QC_Def_D deals with a non-empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , an element \mathcal{C} of WFF, a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor \mathcal{H} yielding an element of \mathcal{A} , and a binary functor \mathcal{I} yielding an element of \mathcal{A} and states that:

(i) there exists an element d of \mathcal{A} and there exists a function F from WFF into \mathcal{A} such that $d = F(\mathcal{C})$ and for every element p of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{F}(p)$ but if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ but if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ but if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$,

(ii) for all elements x_1 , x_2 of \mathcal{A} such that there exists a function F from WFF into \mathcal{A} such that $x_1 = F(\mathcal{C})$ and for every element p of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{F}(p)$ but if p is negative and $d_1 = F(\operatorname{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ but if pis conjunctive and $d_1 = F(\operatorname{LeftArg}(p))$ and $d_2 = F(\operatorname{RightArg}(p))$, then F(p) = $\mathcal{H}(d_1, d_2)$ but if p is universal and $d_1 = F(\operatorname{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$ and there exists a function F from WFF into \mathcal{A} such that $x_2 = F(\mathcal{C})$ and for every element p of WFF and for all elements d_1, d_2 of \mathcal{A} holds if $p = \operatorname{VERUM}$, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{F}(p)$ but if p is negative and $d_1 =$ $F(\operatorname{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ but if p is conjunctive and $d_1 = F(\operatorname{LeftArg}(p))$ and $d_2 = F(\operatorname{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ but if p is universal and $d_1 = F(\operatorname{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$ holds $x_1 = x_2$ for all values of the parameters.

The scheme $QC_D_Result'VERU$ deals with a non-empty set \mathcal{A} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a unary functor \mathcal{H} yielding an element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , and a binary functor \mathcal{J} yielding an element of \mathcal{A} and states that:

 $\mathcal{F}(\text{VERUM}) = \mathcal{B}$

provided the parameters fulfill the following condition:

• Let p be a formula. Let d be an element of \mathcal{A} . Then $d = \mathcal{F}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that d = F(p) and for every element p of WFF and for all elements d_1 , d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{G}(p)$ but if p is negative and $d_1 = F(\operatorname{Arg}(p))$, then $F(p) = \mathcal{H}(d_1)$ but if p is conjunctive and $d_1 = F(\operatorname{LeftArg}(p))$ and $d_2 = F(\operatorname{RightArg}(p))$, then $F(p) = \mathcal{I}(d_1, d_2)$ but if p is universal and $d_1 = F(\operatorname{Scope}(p))$, then $F(p) = \mathcal{J}(p, d_1)$.

The scheme $QC_D_Result'atom$ concerns a non-empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , a formula \mathcal{C} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a unary functor \mathcal{H} yielding an element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , and a binary functor \mathcal{J} yielding an element of \mathcal{A} and states that:

 $\mathcal{F}(\mathcal{C}) = \mathcal{G}(\mathcal{C})$

provided the following conditions are fulfilled:

• Let p be a formula. Let d be an element of \mathcal{A} . Then $d = \mathcal{F}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that d = F(p) and for every element p of WFF and for all elements d_1 , d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{G}(p)$ but if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{H}(d_1)$ but if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{I}(d_1, d_2)$ but if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = \mathcal{J}(p, d_1)$,

• C is atomic.

The scheme QC_D_Result 'nega deals with a non-empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a formula \mathcal{C} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor \mathcal{H} yielding an element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , and a unary functor \mathcal{J} yielding an element of \mathcal{A} , and a unary functor \mathcal{J} yielding an element of \mathcal{A} , and a unary functor \mathcal{J} yielding an element of \mathcal{A} and states that:

 $\mathcal{J}(\mathcal{C}) = \mathcal{G}(\mathcal{J}(\operatorname{Arg}(\mathcal{C})))$

provided the following requirements are met:

- Let p be a formula. Let d be an element of \mathcal{A} . Then $d = \mathcal{J}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that d = F(p) and for every element p of WFF and for all elements d_1 , d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{F}(p)$ but if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ but if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ but if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$,
- C is negative.

The scheme $QC_D_Result'conj$ concerns a non-empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor \mathcal{H} yielding an element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , a unary functor \mathcal{J} yielding an element of \mathcal{A} , and a formula \mathcal{C} and states that:

for all elements d_1 , d_2 of \mathcal{A} such that $d_1 = \mathcal{J}(\text{LeftArg}(\mathcal{C}))$ and

 $d_2 = \mathcal{J}(\operatorname{RightArg}(\mathcal{C}))$

holds $\mathcal{J}(\mathcal{C}) = \mathcal{H}(d_1, d_2)$

provided the parameters satisfy the following conditions:

- Let p be a formula. Let d be an element of \mathcal{A} . Then $d = \mathcal{J}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that d = F(p) and for every element p of WFF and for all elements d_1 , d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{F}(p)$ but if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ but if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ but if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$,
- C is conjunctive.

The scheme $QC_D_Result'univ$ deals with a non-empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a formula \mathcal{C} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor \mathcal{H} yielding an element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , and a unary functor \mathcal{J} yielding an element of \mathcal{A} and states that:

 $\mathcal{J}(\mathcal{C}) = \mathcal{I}(\mathcal{C}, \mathcal{J}(\operatorname{Scope}(\mathcal{C})))$

provided the following requirements are fulfilled:

• Let p be a formula. Let d be an element of \mathcal{A} . Then $d = \mathcal{J}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that d = F(p) and for every element p of WFF and for all elements d_1 , d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{F}(p)$ but if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ but if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ but if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$,

•
$$\mathcal{C}$$
 is universal.

Let us consider V. The functor \emptyset_V yields an element of 2^V **qua** a non-empty set and is defined as follows:

 $\emptyset_V = \emptyset.$

Next we state three propositions:

- (1) $\emptyset_V = \emptyset.$
- (2) For every k-ary predicate symbol P holds P is a predicate symbol.
- (3) P is a Arity(P)-ary predicate symbol.

Let us consider l, V. The functor variables_V(l) yielding an element of 2^{V} , is defined by:

$$\operatorname{variables}_{V}(l) = \{l(k) : 1 \le k \land k \le \operatorname{len} l \land l(k) \in V\}.$$

One can prove the following propositions:

- (4) variables_V(l) = { $l(k) : 1 \le k \land k \le \text{len } l \land l(k) \in V$ }.
- (5) variables_V $(l) \subseteq V$.
- (6) $\operatorname{snb}(l) = \operatorname{variables}_{\operatorname{BoundVar}}(l).$
- (7) $\operatorname{snb}(\operatorname{VERUM}) = \emptyset.$
- (8) For every formula p such that p is atomic holds $\operatorname{snb}(p) = \operatorname{snb}(\operatorname{Args}(p))$.
- (9) For every k-ary predicate symbol P and for every list of variables l of the length k holds $\operatorname{snb}(P[l]) = \operatorname{snb}(l)$.

- (10) For every formula p such that p is negative holds $\operatorname{snb}(p) = \operatorname{snb}(\operatorname{Arg}(p))$.
- (11) For every formula p holds $\operatorname{snb}(\neg p) = \operatorname{snb}(p)$.
- (12) $\operatorname{snb}(\operatorname{FALSUM}) = \emptyset.$
- (13) For every formula p such that p is conjunctive holds $\operatorname{snb}(p) = \operatorname{snb}(\operatorname{LeftArg}(p)) \cup \operatorname{snb}(\operatorname{RightArg}(p))$.
- (14) For all formulae p, q holds $\operatorname{snb}(p \wedge q) = \operatorname{snb}(p) \cup \operatorname{snb}(q)$.
- (15) For every formula p such that p is universal holds $\operatorname{snb}(p) = \operatorname{snb}(\operatorname{Scope}(p)) \setminus \{\operatorname{Bound}(p)\}$.
- (16) For every formula p holds $\operatorname{snb}(\forall_x p) = \operatorname{snb}(p) \setminus \{x\}$.
- (17) For every formula p such that p is disjunctive holds $\operatorname{snb}(p) = \operatorname{snb}(\operatorname{LeftDisj}(p)) \cup \operatorname{snb}(\operatorname{RightDisj}(p))$.
- (18) For all formulae p, q holds $\operatorname{snb}(p \lor q) = \operatorname{snb}(p) \cup \operatorname{snb}(q)$.
- (19) For every formula p such that p is conditional holds $\operatorname{snb}(p) = \operatorname{snb}(\operatorname{Antecedent}(p)) \cup \operatorname{snb}(\operatorname{Consequent}(p))$.
- (20) For all formulae p, q holds $\operatorname{snb}(p \Rightarrow q) = \operatorname{snb}(p) \cup \operatorname{snb}(q)$.
- (21) For every formula p such that p is biconditional holds $\operatorname{snb}(p) = \operatorname{snb}(\operatorname{LeftSide}(p)) \cup \operatorname{snb}(\operatorname{RightSide}(p))$.
- (22) For all formulae p, q holds $\operatorname{snb}(p \Leftrightarrow q) = \operatorname{snb}(p) \cup \operatorname{snb}(q)$.
- (23) For every formula p holds $\operatorname{snb}(\exists_x p) = \operatorname{snb}(p) \setminus \{x\}$.
- (24) VERUM is closed and FALSUM is closed.
- (25) For every formula p holds p is closed if and only if $\neg p$ is closed.
- (26) For all formulae p, q holds p is closed and q is closed if and only if $p \wedge q$ is closed.
- (27) For every formula p holds $\forall_x p$ is closed if and only if $\operatorname{snb}(p) \subseteq \{x\}$.
- (28) For every formula p such that p is closed holds $\forall_x p$ is closed.
- (29) For all formulae p, q holds p is closed and q is closed if and only if $p \lor q$ is closed.
- (30) For all formulae p, q holds p is closed and q is closed if and only if $p \Rightarrow q$ is closed.
- (31) For all formulae p, q holds p is closed and q is closed if and only if $p \Leftrightarrow q$ is closed.
- (32) For every formula p holds $\exists_x p$ is closed if and only if $\operatorname{snb}(p) \subseteq \{x\}$.
- (33) For every formula p such that p is closed holds $\exists_x p$ is closed.

Let us consider V, and let F be a function from WFF into 2^V , and let us consider p. Then F(p) is an element of 2^V .

Let us consider k. The functor x_k yielding a bound variable, is defined as follows:

 $x_k = \langle 4, k \rangle.$

One can prove the following propositions:

 $(34) \quad x_k = \langle 4, k \rangle.$

(35) If $x_i = x_j$, then i = j.

(36) There exists *i* such that $x_i = x$.

Let us consider k. The functor \mathbf{a}_k yields a free variable and is defined as follows:

 $\mathbf{a}_k = \langle 6, k \rangle.$

One can prove the following propositions:

- (37) $\mathbf{a}_k = \langle 6, k \rangle.$
- (38) If $\mathbf{a}_i = \mathbf{a}_j$, then i = j.
- (39) There exists *i* such that $\mathbf{a}_i = a$.
- (40) For every element c of FixedVar and for every element a of FreeVar holds $c \neq a$.
- (41) For every element c of FixedVar and for every element x of BoundVar holds $c \neq x$.
- (42) For every element a of FreeVar and for every element x of BoundVar holds $a \neq x$.

Let us consider V, and let V_1 , V_2 be elements of 2^V . Then $V_1 \cup V_2$ is an element of 2^V .

Let D be a non-empty family of sets, and let d be an element of D. The functor @d yields an element of D **qua** a non-empty set and is defined as follows:

$$@d = d.$$

One can prove the following proposition

(43) For every non-empty family D of sets and for every element d of D holds @d = d.

Let D be a non-empty family of sets, and let d be an element of D **qua** a non-empty set. The functor @d yielding an element of D, is defined as follows: @d = d.

We now state a proposition

(44) For every non-empty family D of sets and for every element d of D qua a non-empty set holds @d = d.

Now we present several schemes. The scheme QC_Def_SETD deals with a non-empty family \mathcal{A} of sets, an element \mathcal{B} of \mathcal{A} , an element \mathcal{C} of WFF, a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor \mathcal{H} yielding an element of \mathcal{A} , and a binary functor \mathcal{I} yielding an element of \mathcal{A} and states that:

(i) there exists an element d of \mathcal{A} and there exists a function F from WFF into \mathcal{A} such that $d = F(\mathcal{C})$ and for every element p of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{F}(p)$ but if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ but if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ but if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$,

(ii) for all elements x_1 , x_2 of \mathcal{A} such that there exists a function F from WFF into \mathcal{A} such that $x_1 = F(\mathcal{C})$ and for every element p of WFF and for all

elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{F}(p)$ but if p is negative and $d_1 = F(\operatorname{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ but if p is conjunctive and $d_1 = F(\operatorname{LeftArg}(p))$ and $d_2 = F(\operatorname{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ but if p is universal and $d_1 = F(\operatorname{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$ and there exists a function F from WFF into \mathcal{A} such that $x_2 = F(\mathcal{C})$ and for every element p of WFF and for all elements d_1, d_2 of \mathcal{A} holds if $p = \operatorname{VERUM}$, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{F}(p)$ but if p is negative and $d_1 = F(\operatorname{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ but if p is conjunctive and $d_1 = F(\operatorname{LeftArg}(p))$ and $d_2 = F(\operatorname{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ but if p is universal and $d_1 = F(\operatorname{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$ holds $x_1 = x_2$ for all values of the parameters.

The scheme $QC_SETD_Result'V$ concerns a non-empty family \mathcal{A} of sets, a unary functor \mathcal{F} yielding an element of \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a unary functor \mathcal{H} yielding an element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , and a binary functor \mathcal{J} yielding an element of \mathcal{A} and states that:

 $\mathcal{F}(\text{VERUM}) = \mathcal{B}$

provided the parameters meet the following requirement:

• Let p be an element of WFF. Let d be an element of \mathcal{A} . Then $d = \mathcal{F}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that d = F(p) and for every element p of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{G}(p)$ but if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{H}(d_1)$ but if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{I}(d_1, d_2)$ but if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = \mathcal{J}(p, d_1)$.

The scheme $QC_SETD_Result'a$ concerns a non-empty family \mathcal{A} of sets, an element \mathcal{B} of \mathcal{A} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , an element \mathcal{C} of WFF, a unary functor \mathcal{G} yielding an element of \mathcal{A} , a unary functor \mathcal{H} yielding an element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , and a binary functor \mathcal{J} yielding an element of \mathcal{A} and states that:

 $\mathcal{F}(\mathcal{C}) = \mathcal{G}(\mathcal{C})$

provided the parameters fulfill the following requirements:

- Let p be an element of WFF. Let d be an element of \mathcal{A} . Then $d = \mathcal{F}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that d = F(p) and for every element p of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{G}(p)$ but if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{H}(d_1)$ but if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{I}(d_1, d_2)$ but if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = \mathcal{J}(p, d_1)$,
- C is atomic.

The scheme $QC_SETD_Result'n$ deals with a non-empty family \mathcal{A} of sets, an element \mathcal{B} of \mathcal{A} , an element \mathcal{C} of WFF, a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor \mathcal{H} yielding an

element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , and a unary functor \mathcal{J} yielding an element of \mathcal{A} and states that:

 $\mathcal{J}(\mathcal{C}) = \mathcal{G}(\mathcal{J}(\operatorname{Arg}(\mathcal{C})))$

provided the following requirements are met:

- Let p be an element of WFF. Let d be an element of \mathcal{A} . Then $d = \mathcal{J}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that d = F(p) and for every element p of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{F}(p)$ but if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ but if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{I}(d_1, d_2)$ but if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$,
- C is negative.

The scheme $QC_SETD_Result'c$ deals with a non-empty family \mathcal{A} of sets, an element \mathcal{B} of \mathcal{A} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor \mathcal{H} yielding an element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , a unary functor \mathcal{J} yielding an element of \mathcal{A} , and an element \mathcal{C} of WFF and states that:

for all elements d_1 , d_2 of \mathcal{A} such that $d_1 = \mathcal{J}(\text{LeftArg}(\mathcal{C}))$ and

 $d_2 = \mathcal{J}(\operatorname{RightArg}(\mathcal{C}))$

holds $\mathcal{J}(\mathcal{C}) = \mathcal{H}(d_1, d_2)$

provided the parameters fulfill the following conditions:

- Let p be an element of WFF. Let d be an element of \mathcal{A} . Then $d = \mathcal{J}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that d = F(p) and for every element p of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{F}(p)$ but if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ but if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{I}(d_1, d_2)$ but if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$,
- C is conjunctive.

The scheme $QC_SETD_Result'u$ deals with a non-empty family \mathcal{A} of sets, an element \mathcal{B} of \mathcal{A} , an element \mathcal{C} of WFF, a unary functor \mathcal{F} yielding an element of \mathcal{A} , a unary functor \mathcal{G} yielding an element of \mathcal{A} , a binary functor \mathcal{H} yielding an element of \mathcal{A} , a binary functor \mathcal{I} yielding an element of \mathcal{A} , and a unary functor \mathcal{J} yielding an element of \mathcal{A} , and a unary functor \mathcal{J} yielding an element of \mathcal{A} , and a unary functor \mathcal{J} yielding an element of \mathcal{A} and states that:

 $\mathcal{J}(\mathcal{C}) = \mathcal{I}(\mathcal{C}, \mathcal{J}(\operatorname{Scope}(\mathcal{C})))$

provided the parameters meet the following requirements:

• Let p be an element of WFF. Let d be an element of \mathcal{A} . Then $d = \mathcal{J}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that d = F(p) and for every element p of WFF and for all elements d_1, d_2 of \mathcal{A} holds if p = VERUM, then $F(p) = \mathcal{B}$ but if p is atomic, then $F(p) = \mathcal{F}(p)$ but if p is negative and $d_1 = F(\text{Arg}(p))$, then $F(p) = \mathcal{G}(d_1)$ but if p is conjunctive and $d_1 = F(\text{LeftArg}(p))$ and

 $d_2 = F(\text{RightArg}(p))$, then $F(p) = \mathcal{H}(d_1, d_2)$ but if p is universal and $d_1 = F(\text{Scope}(p))$, then $F(p) = \mathcal{I}(p, d_1)$,

• \mathcal{C} is universal.

Let us consider V, p. The functor $\operatorname{Vars}_V(p)$ yielding an element of 2^V , is defined as follows:

there exists a function F from WFF into 2^V such that $\operatorname{Vars}_V(p) = F(p)$ and for every element p of WFF and for all elements d_1, d_2 of 2^V holds if p =VERUM, then $F(p) = @(\emptyset_V)$ but if p is atomic, then F(p) = variables_V(Args(p)) but if p is negative and $d_1 = F(\operatorname{Arg}(p))$, then $F(p) = d_1$ but if p is conjunctive and $d_1 = F(\operatorname{LeftArg}(p))$ and $d_2 = F(\operatorname{RightArg}(p))$, then $F(p) = d_1 \cup d_2$ but if p is universal and $d_1 = F(\operatorname{Scope}(p))$, then $F(p) = d_1$.

We now state a number of propositions:

- (45) Let X be an element of 2^V . Then $X = \operatorname{Vars}_V(p)$ if and only if there exists a function F from WFF into 2^V such that X = F(p) and for every element p of WFF and for all elements d_1, d_2 of 2^V holds if $p = \operatorname{VERUM}$, then $F(p) = @(\emptyset_V)$ but if p is atomic, then $F(p) = \operatorname{variables}_V(\operatorname{Args}(p))$ but if p is negative and $d_1 = F(\operatorname{Arg}(p))$, then $F(p) = d_1$ but if p is conjunctive and $d_1 = F(\operatorname{LeftArg}(p))$ and $d_2 = F(\operatorname{RightArg}(p))$, then $F(p) = d_1 \cup d_2$ but if p is universal and $d_1 = F(\operatorname{Scope}(p))$, then $F(p) = d_1$.
- (46) $\operatorname{Vars}_V(\operatorname{VERUM}) = \emptyset.$
- (47) If p is atomic, then $\operatorname{Vars}_V(p) = \operatorname{variables}_V(\operatorname{Args}(p))$ and $\operatorname{Vars}_V(p) = {\operatorname{Args}(p)(k) : 1 \le k \land k \le \operatorname{len} \operatorname{Args}(p) \land \operatorname{Args}(p)(k) \in V}.$
- (48) For every k-ary predicate symbol P and for every list of variables l of the length k holds $\operatorname{Vars}_V(P[l]) = \operatorname{variables}_V(l)$ and $\operatorname{Vars}_V(P[l]) = \{l(i) : 1 \le i \land i \le \operatorname{len} l \land l(i) \in V\}.$
- (49) If p is negative, then $\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{Arg}(p))$.
- (50) $\operatorname{Vars}_V(\neg p) = \operatorname{Vars}_V(p).$
- (51) $\operatorname{Vars}_V(\operatorname{FALSUM}) = \emptyset.$
- (52) If p is conjunctive, then $\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{LeftArg}(p)) \cup \operatorname{Vars}_V(\operatorname{RightArg}(p))$.
- (53) $\operatorname{Vars}_V(p \wedge q) = \operatorname{Vars}_V(p) \cup \operatorname{Vars}_V(q).$
- (54) If p is universal, then $\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{Scope}(p))$.
- (55) $\operatorname{Vars}_V(\forall_x p) = \operatorname{Vars}_V(p).$
- (56) If p is disjunctive, then $\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{LeftDisj}(p)) \cup \operatorname{Vars}_V(\operatorname{RightDisj}(p))$.
- (57) $\operatorname{Vars}_V(p \lor q) = \operatorname{Vars}_V(p) \cup \operatorname{Vars}_V(q).$

(58) If p is conditional, then

$$\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{Antecedent}(p)) \cup \operatorname{Vars}_V(\operatorname{Consequent}(p))$$
.

- (59) $\operatorname{Vars}_V(p \Rightarrow q) = \operatorname{Vars}_V(p) \cup \operatorname{Vars}_V(q).$
- (60) If p is biconditional, then $\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{LeftSide}(p)) \cup \operatorname{Vars}_V(\operatorname{RightSide}(p))$.
- (61) $\operatorname{Vars}_V(p \Leftrightarrow q) = \operatorname{Vars}_V(p) \cup \operatorname{Vars}_V(q).$

- (62) If p is existential, then $\operatorname{Vars}_V(p) = \operatorname{Vars}_V(\operatorname{Arg}(\operatorname{Scope}(\operatorname{Arg}(p)))))$.
- (63) $\operatorname{Vars}_V(\exists_x p) = \operatorname{Vars}_V(p).$

Let us consider p. The functor Free p yielding an element of 2^{FreeVar} , is defined as follows:

Free $p = \operatorname{Vars}_{\operatorname{FreeVar}}(p)$.

One can prove the following propositions:

- (64) Free $p = \operatorname{Vars}_{\operatorname{FreeVar}}(p)$.
- (65) Free VERUM = \emptyset .
- (66) For every k-ary predicate symbol P and for every list of variables l of the length k holds $\operatorname{Free}(P[l]) = \{l(i) : 1 \leq i \wedge i \leq \operatorname{len} l \wedge l(i) \in \operatorname{FreeVar}\}.$
- (67) Free $\neg p$ = Free p.
- (68) Free FALSUM = \emptyset .
- (69) Free $p \wedge q$ = Free $p \cup$ Free q.
- (70) Free $\forall_x p = \text{Free } p$.
- (71) Free $p \lor q$ = Free $p \cup$ Free q.
- (72) Free $p \Rightarrow q = \text{Free } p \cup \text{Free } q$.
- (73) Free $p \Leftrightarrow q = \text{Free } p \cup \text{Free } q$.
- (74) Free $\exists_x p = \text{Free } p$.

Let us consider p. The functor Fixed p yielding an element of 2^{FixedVar} , is defined as follows:

Fixed $p = \text{Vars}_{\text{FixedVar}}(p)$.

Next we state a number of propositions:

- (75) Fixed $p = \operatorname{Vars}_{\operatorname{FixedVar}}(p)$.
- (76) Fixed VERUM = \emptyset .

(77) For every k-ary predicate symbol P and for every list of variables l of the length k holds $\operatorname{Fixed}(P[l]) = \{l(i) : 1 \le i \land i \le \operatorname{len} l \land l(i) \in \operatorname{FixedVar}\}.$

- (78) Fixed $\neg p = \text{Fixed } p$.
- (79) Fixed FALSUM = \emptyset .
- (80) Fixed $p \wedge q$ = Fixed $p \cup$ Fixed q.
- (81) Fixed $(\forall_x p) =$ Fixed p.
- (82) Fixed $p \lor q =$ Fixed $p \cup$ Fixed q.
- (83) Fixed $p \Rightarrow q =$ Fixed $p \cup$ Fixed q.
- (84) Fixed $p \Leftrightarrow q = \text{Fixed } p \cup \text{Fixed } q$.
- (85) Fixed $(\exists_x p) =$ Fixed p.

References

 Grzegorz Bancerek. Connectives and subformulae of the first order language. Formalized Mathematics, 1(3):451–458, 1990.

- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [5] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303–311, 1990.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received November 23, 1989