Fano-Desargues Parallelity Spaces ${ }^{1}$

Eugeniusz Kusak
Warsaw University
Białystok

Wojciech Leończuk
Warsaw University
Białystok

Abstract

Summary. This article is the second part of Parallelity Space. It contain definition of a Fano-Desargues space, axioms of a Fano-Desargues parallelity space, definition of the relations: collinearity, parallelogram and directed congruence and some basic facts concerned with them.

MML Identifier: PARSP_2.

The papers [2], and [1] provide the notation and terminology for this paper. In the sequel F will denote a field. We now state a proposition
(1) $\quad \operatorname{Aff}_{F^{3}}$ is a parallelity space.

We follow the rules: a, b, c, d, p, q, r will denote elements of the universum of $\operatorname{Aff}_{F^{3}}, e, f, g, h$ will denote elements of : the carrier of F, the carrier of F, the carrier of F !, and K, L will denote elements of the carrier of F. One can prove the following propositions:
(2) $a, b \| c, d$ if and only if there exist e, f, g, h such that $\langle a, b, c, d\rangle=$ $\langle e, f, g, h\rangle$ but there exists K such that $K \cdot\left(e_{1}-f_{1}\right)=g_{1}-h_{\mathbf{1}}$ and $K \cdot\left(e_{\mathbf{2}}-f_{\mathbf{2}}\right)=g_{\mathbf{2}}-h_{\mathbf{2}}$ and $K \cdot\left(e_{\mathbf{3}}-f_{\mathbf{3}}\right)=g_{\mathbf{3}}-h_{\mathbf{3}}$ or $e_{\mathbf{1}}-f_{\mathbf{1}}=0_{F}$ and $e_{\mathbf{2}}-f_{\mathbf{2}}=0_{F}$ and $e_{\mathbf{3}}-f_{\mathbf{3}}=0_{F}$.
(3) If $a, b \nmid a, c$ and $\langle a, b, a, c\rangle=\langle e, f, e, g\rangle$, then $e \neq f$ and $e \neq g$ and $f \neq g$.
(4) Suppose that
(i) $a, b \nmid a, c$,
(ii) $\langle a, b, a, c\rangle=\langle e, f, e, g\rangle$,
(iii) $K \cdot\left(e_{\mathbf{1}}-f_{\mathbf{1}}\right)=L \cdot\left(e_{\mathbf{1}}-g_{\mathbf{1}}\right)$,
(iv) $K \cdot\left(e_{\mathbf{2}}-f_{\mathbf{2}}\right)=L \cdot\left(e_{\mathbf{2}}-g_{\mathbf{2}}\right)$,
(v) $K \cdot\left(e_{\mathbf{3}}-f_{\mathbf{3}}\right)=L \cdot\left(e_{\mathbf{3}}-g_{\mathbf{3}}\right)$.

Then $K=0_{F}$ and $L=0_{F}$.

[^0](5) Suppose $a, b \nVdash a, c$ and $a, b \| c, d$ and $a, c \| b, d$ and $\langle a, b, c, d\rangle=$ $\langle e, f, g, h\rangle$. Then $h_{\mathbf{1}}=\left(f_{1}+g_{1}\right)-e_{\mathbf{1}}$ and $h_{\mathbf{2}}=\left(f_{\mathbf{2}}+g_{\mathbf{2}}\right)-e_{\mathbf{2}}$ and $h_{\mathbf{3}}=\left(f_{\mathbf{3}}+g_{\mathbf{3}}\right)-e_{\mathbf{3}}$.
(6) There exist a, b, c such that $a, b \nVdash a, c$.
(7) If $1_{F}+1_{F} \neq 0_{F}$ and $b, c \| a, d$ and $a, b \| c, d$ and $a, c \| b, d$, then $a, b \| a, c$.
(8) If $a, p \nmid a, b$ and $a, p \nmid a, c$ and $a, p \| b, q$ and $a, p \| c, r$ and $a, b \| p, q$ and $a, c \| p, r$, then $b, c \| q, r$.
A parallelity space is called a Fano-Desarques space if:
(i) there exist elements a, b, c of the universum of it such that $a, b \nmid a, c$,
(ii) for all elements a, b, c, d of the universum of it such that $b, c \| a, d$ and $a, b \| c, d$ and $a, c \| b, d$ holds $a, b \| a, c$,
(iii) for all elements a, b, c, p, q, r of the universum of it such that $a, p \nmid a, b$ and $a, p \nVdash a, c$ and $a, p \| b, q$ and $a, p \| c, r$ and $a, b \| p, q$ and $a, c \| p, r$ holds $b, c \| q, r$.

We now state a proposition
(9) Let $F d$ be a parallelity space. Then the following conditions are equivalent:
(i) there exist elements a, b, c of the universum of $F d$ such that $a, b \nVdash a, c$ and for all elements a, b, c, d of the universum of $F d$ such that $b, c \| a, d$ and $a, b \| c, d$ and $a, c \| b, d$ holds $a, b \| a, c$ and for all elements a, b, c, p, q, r of the universum of $F d$ such that $a, p \nVdash a, b$ and $a, p \nVdash a, c$ and $a, p \| b, q$ and $a, p \| c, r$ and $a, b \| p, q$ and $a, c \| p, r$ holds $b, c \| q, r$,
(ii) $F d$ is a Fano-Desarques space.

We adopt the following convention: $F d S p$ is a Fano-Desarques space and a, $b, c, d, p, q, r, s, o, x, y$ are elements of the universum of $F d S p$. The following propositions are true:
(10) There exist a, b, c such that $a, b \nVdash a, c$.
(11) If $b, c \| a, d$ and $a, b \| c, d$ and $a, c \| b, d$, then $a, b \| a, c$.
(12) If $a, p \nVdash a, b$ and $a, p \nmid a, c$ and $a, p \| b, q$ and $a, p \| c, r$ and $a, b \| p, q$ and $a, c \| p, r$, then $b, c \| q, r$.
(13) If $p \neq q$, then there exists r such that $p, q \nVdash p, r$.

Let us consider $F d S p, a, b, c$. The predicate $\mathbf{L}(a, b, c)$ is defined as follows: $a, b \| a, c$.
The following propositions are true:
(14) $\mathbf{L}(a, b, c)$ if and only if $a, b \| a, c$.
(15) If $\mathbf{L}(a, b, c)$, then $\mathbf{L}(a, c, b)$ and $\mathbf{L}(c, b, a)$ and $\mathbf{L}(b, a, c)$ and $\mathbf{L}(b, c, a)$ and $\mathbf{L}(c, a, b)$.
(16) If not $\mathbf{L}(a, b, c)$, then not $\mathbf{L}(a, c, b)$ and $\operatorname{not} \mathbf{L}(c, b, a)$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}(b, c, a)$ and not $\mathbf{L}(c, a, b)$.
(17) If not $\mathbf{L}(a, b, c)$ and $a, b \| p, q$ and $a, c \| p, r$ and $p \neq q$ and $p \neq r$, then not $\mathbf{L}(p, q, r)$.
(18) If $a=b$ or $b=c$ or $c=a$, then $\mathbf{L}(a, b, c)$.
(19) If $a \neq b$ and $\mathbf{L}(a, b, p)$ and $\mathbf{L}(a, b, q)$ and $\mathbf{L}(a, b, r)$, then $\mathbf{L}(p, q, r)$.
(20) If $p \neq q$, then there exists r such that not $\mathbf{L}(p, q, r)$.
(21) If $\mathbf{L}(a, b, c)$ and $\mathbf{L}(a, b, d)$, then $a, b \| c, d$.
(22) If not $\mathbf{L}(a, b, c)$ and $a, b \| c, d$, then not $\mathbf{L}(a, b, d)$.
(23) If not $\mathbf{L}(a, b, c)$ and $a, b \| c, d$ and $c \neq d$, then not $\mathbf{L}(a, b, x)$ or $\operatorname{not} \mathbf{L}(c, d, x)$.
(24) If not $\mathbf{L}(o, a, b)$, then not $\mathbf{L}(o, a, x)$ or not $\mathbf{L}(o, b, x)$ or $o=x$.
(25) If $o \neq a$ and $o \neq b$ and $\mathbf{L}(o, a, b)$ and $\mathbf{L}(o, a, p)$ and $\mathbf{L}(o, b, q)$, then $a, b \| p, q$.
(26) If $a, b \nVdash c, d$ and $\mathbf{L}(a, b, p)$ and $\mathbf{L}(a, b, q)$ and $\mathbf{L}(c, d, p)$ and $\mathbf{L}(c, d, q)$, then $p=q$.
(27) If $a \neq b$ and $\mathbf{L}(a, b, c)$ and $a, b \| c, d$, then $a, c \| b, d$.
(28) If $a \neq b$ and $\mathbf{L}(a, b, c)$ and $a, b \| c, d$, then $c, b \| c, d$.
(29) If not $\mathbf{L}(o, a, c)$ and $\mathbf{L}(o, a, b)$ and $\mathbf{L}(o, c, p)$ and $\mathbf{L}(o, c, q)$ and $a, c \| b, p$ and $a, c \| b, q$, then $p=q$.
(30) If $a \neq b$ and $\mathbf{L}(a, b, c)$ and $\mathbf{L}(a, b, d)$, then $\mathbf{L}(a, c, d)$.
(31) If $\mathbf{L}(a, b, c)$ and $\mathbf{L}(a, c, d)$ and $a \neq c$, then $\mathbf{L}(b, c, d)$.
(32) $\mathbf{L}(a, b, c)$ if and only if $a, b \| a, c$.

Let us consider $F d S p, a, b, c, d$. The predicate $\mathbf{P}(a, b, c, d)$ is defined by: not $\mathbf{L}(a, b, c)$ and $a, b \| c, d$ and $a, c \| b, d$.
Next we state a number of propositions:
(33) $\quad \mathbf{P}(a, b, c, d)$ if and only if not $\mathbf{L}(a, b, c)$ and $a, b \| c, d$ and $a, c \| b, d$.
(34) If $\mathbf{P}(a, b, c, d)$, then $a \neq b$ and $b \neq c$ and $c \neq a$ and $a \neq d$ and $b \neq d$ and $c \neq d$.
(35) If $\mathbf{P}(a, b, c, d)$, then not $\mathbf{L}(a, b, c)$ and not $\mathbf{L}(b, a, d)$ and not $\mathbf{L}(c, d, a)$ and not $\mathbf{L}(d, c, b)$.
(36) Suppose $\mathbf{P}(a, b, c, d)$. Then not $\mathbf{L}(a, b, c)$ and not $\mathbf{L}(b, a, d)$ and not $\mathbf{L}(c, d, a)$
and not $\mathbf{L}(d, c, b)$ and $\operatorname{not} \mathbf{L}(a, c, b)$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}(b, c, a)$ and not $\mathbf{L}(c, a, b)$ and not $\mathbf{L}(c, b, a)$ and not $\mathbf{L}(b, d, a)$ and not $\mathbf{L}(a, b, d)$ and not $\mathbf{L}(a, d, b)$ and not $\mathbf{L}(d, a, b)$ and not $\mathbf{L}(d, b, a)$ and not $\mathbf{L}(c, a, d)$ and not $\mathbf{L}(a, c, d)$ and not $\mathbf{L}(a, d, c)$ and not $\mathbf{L}(d, a, c)$ and not $\mathbf{L}(d, c, a)$ and not $\mathbf{L}(d, b, c)$ and not $\mathbf{L}(b, c, d)$ and not $\mathbf{L}(b, d, c)$ and not $\mathbf{L}(c, b, d)$ and not $\mathbf{L}(c, d, b)$.
(37) If $\mathbf{P}(a, b, c, d)$, then not $\mathbf{L}(a, b, x)$ or not $\mathbf{L}(c, d, x)$.
(38) If $\mathbf{P}(a, b, c, d)$, then $\mathbf{P}(a, c, b, d)$.
(39) If $\mathbf{P}(a, b, c, d)$, then $\mathbf{P}(c, d, a, b)$.
(40) If $\mathbf{P}(a, b, c, d)$, then $\mathbf{P}(b, a, d, c)$.
(41) If $\mathbf{P}(a, b, c, d)$, then $\mathbf{P}(a, c, b, d)$ and $\mathbf{P}(c, d, a, b)$ and $\mathbf{P}(b, a, d, c)$ and $\mathbf{P}(c, a, d, b)$ and $\mathbf{P}(d, b, c, a)$ and $\mathbf{P}(b, d, a, c)$ and $\mathbf{P}(d, c, b, a)$.
(42) If not $\mathbf{L}(a, b, c)$, then there exists d such that $\mathbf{P}(a, b, c, d)$.
(43) If $\mathbf{P}(a, b, c, p)$ and $\mathbf{P}(a, b, c, q)$, then $p=q$.
(44) If $\mathbf{P}(a, b, c, d)$, then $a, d \nmid b, c$.
(45) If $\mathbf{P}(a, b, c, d)$, then not $\mathbf{P}(a, b, d, c)$.
(46) If $a \neq b$, then there exists c such that $\mathbf{L}(a, b, c)$ and $c \neq a$ and $c \neq b$.
(47) If $\mathbf{P}(a, p, b, q)$ and $\mathbf{P}(a, p, c, r)$, then $b, c \| q, r$.
(48) If not $\mathbf{L}(b, q, c)$ and $\mathbf{P}(a, p, b, q)$ and $\mathbf{P}(a, p, c, r)$, then $\mathbf{P}(b, q, c, r)$.
(49) If $\mathbf{L}(a, b, c)$ and $b \neq c$ and $\mathbf{P}(a, p, b, q)$ and $\mathbf{P}(a, p, c, r)$, then $\mathbf{P}(b, q, c, r)$.
(50) If $\mathbf{P}(a, p, b, q)$ and $\mathbf{P}(a, p, c, r)$ and $\mathbf{P}(b, q, d, s)$, then $c, d \| r, s$.
(51) If $a \neq b$, then there exist c, d such that $\mathbf{P}(a, b, c, d)$.
(52) If $a \neq d$, then there exist b, c such that $\mathbf{P}(a, b, c, d)$.
(53) $\quad \mathbf{P}(a, b, c, d)$ if and only if not $\mathbf{L}(a, b, c)$ and $a, b \| c, d$ and $a, c \| b, d$.

Let us consider $F d S p, a, b, r, s$. The predicate $a, b \Rightarrow r, s$ is defined as follows:
$a=b$ and $r=s$ or there exist p, q such that $\mathbf{P}(p, q, a, b)$ and $\mathbf{P}(p, q, r, s)$.
One can prove the following propositions:
(54) $a, b \Rightarrow r, s$ if and only if $a=b$ and $r=s$ or there exist p, q such that $\mathbf{P}(p, q, a, b)$ and $\mathbf{P}(p, q, r, s)$.
(55) If $a, a \Rightarrow b, c$, then $b=c$.
(59) If $a, b \Rightarrow c, d$, then $a, c \| b, d$.
(60) If $a, b \Rightarrow c, d$ and not $\mathbf{L}(a, b, c)$, then $\mathbf{P}(a, b, c, d)$.
(61) If $\mathbf{P}(a, b, c, d)$, then $a, b \Rightarrow c, d$.
(62) If $a, b \Rightarrow c, d$ and $\mathbf{L}(a, b, c)$ and $\mathbf{P}(r, s, a, b)$, then $\mathbf{P}(r, s, c, d)$.
(63) If $a, b \Rightarrow c, x$ and $a, b \Rightarrow c, y$, then $x=y$.
(64) There exists d such that $a, b \Rightarrow c, d$.
(65) $a, a \Rightarrow b, b$.
(66) $a, b \Rightarrow a, b$.
(67) If $r, s \Rightarrow a, b$ and $r, s \Rightarrow c, d$, then $a, b \Rightarrow c, d$.
(68) If $a, b \Rightarrow c, d$, then $c, d \Rightarrow a, b$.
(69) If $a, b \Rightarrow c, d$, then $b, a \Rightarrow d, c$.

References

[1] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Parallelity spaces. Formalized Mathematics, 1(2):343-348, 1990.
[2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

Received March 23, 1990

[^0]: ${ }^{1}$ Supported by RPBP III. 24

