Fano-Desargues Parallelity Spaces¹

Eugeniusz Kusak Warsaw University Białystok Wojciech Leończuk Warsaw University Białystok

Summary. This article is the second part of Parallelity Space. It contain definition of a Fano-Desargues space, axioms of a Fano-Desargues parallelity space, definition of the relations: collinearity, parallelogram and directed congruence and some basic facts concerned with them.

MML Identifier: PARSP_2.

The papers [2], and [1] provide the notation and terminology for this paper. In the sequel F will denote a field. We now state a proposition

(1) Aff_{F^3} is a parallelity space.

We follow the rules: a, b, c, d, p, q, r will denote elements of the universum of Aff_{F³}, e, f, g, h will denote elements of [the carrier of F, the carrier of F, the carrier of F], and K, L will denote elements of the carrier of F. One can prove the following propositions:

- (2) $a, b \parallel c, d$ if and only if there exist e, f, g, h such that $\langle a, b, c, d \rangle = \langle e, f, g, h \rangle$ but there exists K such that $K \cdot (e_1 f_1) = g_1 h_1$ and $K \cdot (e_2 f_2) = g_2 h_2$ and $K \cdot (e_3 f_3) = g_3 h_3$ or $e_1 f_1 = 0_F$ and $e_2 f_2 = 0_F$ and $e_3 f_3 = 0_F$.
- (3) If $a, b \not\parallel a, c$ and $\langle a, b, a, c \rangle = \langle e, f, e, g \rangle$, then $e \neq f$ and $e \neq g$ and $f \neq g$.
- (4) Suppose that
 - (i) $a, b \not\parallel a, c,$
- (ii) $\langle a, b, a, c \rangle = \langle e, f, e, g \rangle,$
- (iii) $K \cdot (e_1 f_1) = L \cdot (e_1 g_1),$
- (iv) $K \cdot (e_2 f_2) = L \cdot (e_2 g_2),$
- (v) $K \cdot (e_3 f_3) = L \cdot (e_3 g_3).$

Then $K = 0_F$ and $L = 0_F$.

¹Supported by RPBP III.24

549

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (5) Suppose $a, b \not\parallel a, c$ and $a, b \mid\parallel c, d$ and $a, c \mid\parallel b, d$ and $\langle a, b, c, d \rangle = \langle e, f, g, h \rangle$. Then $h_1 = (f_1 + g_1) e_1$ and $h_2 = (f_2 + g_2) e_2$ and $h_3 = (f_3 + g_3) e_3$.
- (6) There exist a, b, c such that $a, b \not|a, c$.
- (7) If $1_F + 1_F \neq 0_F$ and $b, c \parallel a, d$ and $a, b \parallel c, d$ and $a, c \parallel b, d$, then $a, b \parallel a, c$.
- (8) If $a, p \not\parallel a, b$ and $a, p \not\parallel a, c$ and $a, p \parallel b, q$ and $a, p \parallel c, r$ and $a, b \parallel p, q$ and $a, c \parallel p, r$, then $b, c \parallel q, r$.

A parallelity space is called a Fano-Desarques space if:

- (i) there exist elements a, b, c of the universum of it such that $a, b \not\parallel a, c$,
- (ii) for all elements a, b, c, d of the universum of it such that $b, c \parallel a, d$ and $a, b \parallel c, d$ and $a, c \parallel b, d$ holds $a, b \parallel a, c$,

(iii) for all elements a, b, c, p, q, r of the universum of it such that $a, p \not| a, b$ and $a, p \not| a, c$ and $a, p \parallel b, q$ and $a, p \parallel c, r$ and $a, b \parallel p, q$ and $a, c \parallel p, r$ holds $b, c \parallel q, r$.

We now state a proposition

- (9) Let Fd be a parallelity space. Then the following conditions are equivalent:
 - (i) there exist elements a, b, c of the universum of Fd such that a, b ∦ a, c and for all elements a, b, c, d of the universum of Fd such that b, c || a, d and a, b || c, d and a, c || b, d holds a, b || a, c and for all elements a, b, c, p, q, r of the universum of Fd such that a, p ∦ a, b and a, p ∦ a, c and a, p || b, q and a, p || c, r and a, b || p, q and a, c || p, r holds b, c || q, r,
- (ii) Fd is a Fano-Desarques space.

We adopt the following convention: FdSp is a Fano-Desarques space and a, b, c, d, p, q, r, s, o, x, y are elements of the universum of FdSp. The following propositions are true:

- (10) There exist a, b, c such that $a, b \not| a, c$.
- (11) If $b, c \parallel a, d$ and $a, b \parallel c, d$ and $a, c \parallel b, d$, then $a, b \parallel a, c$.
- (12) If $a, p \not\parallel a, b$ and $a, p \not\parallel a, c$ and $a, p \parallel b, q$ and $a, p \parallel c, r$ and $a, b \parallel p, q$ and $a, c \parallel p, r$, then $b, c \parallel q, r$.
- (13) If $p \neq q$, then there exists r such that $p, q \not\parallel p, r$.
 - Let us consider FdSp, a, b, c. The predicate $\mathbf{L}(a, b, c)$ is defined as follows: $a, b \parallel a, c$.

The following propositions are true:

- (14) $\mathbf{L}(a, b, c)$ if and only if $a, b \parallel a, c$.
- (15) If $\mathbf{L}(a, b, c)$, then $\mathbf{L}(a, c, b)$ and $\mathbf{L}(c, b, a)$ and $\mathbf{L}(b, a, c)$ and $\mathbf{L}(b, c, a)$ and $\mathbf{L}(c, a, b)$.
- (16) If not $\mathbf{L}(a, b, c)$, then not $\mathbf{L}(a, c, b)$ and not $\mathbf{L}(c, b, a)$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}(b, c, a)$ and not $\mathbf{L}(c, a, b)$.
- (17) If not $\mathbf{L}(a, b, c)$ and $a, b \parallel p, q$ and $a, c \parallel p, r$ and $p \neq q$ and $p \neq r$, then not $\mathbf{L}(p, q, r)$.

- (18) If a = b or b = c or c = a, then $\mathbf{L}(a, b, c)$.
- (19) If $a \neq b$ and $\mathbf{L}(a, b, p)$ and $\mathbf{L}(a, b, q)$ and $\mathbf{L}(a, b, r)$, then $\mathbf{L}(p, q, r)$.
- (20) If $p \neq q$, then there exists r such that not $\mathbf{L}(p,q,r)$.
- (21) If $\mathbf{L}(a, b, c)$ and $\mathbf{L}(a, b, d)$, then $a, b \parallel c, d$.
- (22) If not $\mathbf{L}(a, b, c)$ and $a, b \parallel c, d$, then not $\mathbf{L}(a, b, d)$.
- (23) If not $\mathbf{L}(a, b, c)$ and $a, b \parallel c, d$ and $c \neq d$, then not $\mathbf{L}(a, b, x)$ or not $\mathbf{L}(c, d, x)$.
- (24) If not $\mathbf{L}(o, a, b)$, then not $\mathbf{L}(o, a, x)$ or not $\mathbf{L}(o, b, x)$ or o = x.
- (25) If $o \neq a$ and $o \neq b$ and $\mathbf{L}(o, a, b)$ and $\mathbf{L}(o, a, p)$ and $\mathbf{L}(o, b, q)$, then $a, b \parallel p, q$.
- (26) If $a, b \not\parallel c, d$ and $\mathbf{L}(a, b, p)$ and $\mathbf{L}(a, b, q)$ and $\mathbf{L}(c, d, p)$ and $\mathbf{L}(c, d, q)$, then p = q.
- (27) If $a \neq b$ and $\mathbf{L}(a, b, c)$ and $a, b \parallel c, d$, then $a, c \parallel b, d$.
- (28) If $a \neq b$ and $\mathbf{L}(a, b, c)$ and $a, b \parallel c, d$, then $c, b \parallel c, d$.
- (29) If not $\mathbf{L}(o, a, c)$ and $\mathbf{L}(o, a, b)$ and $\mathbf{L}(o, c, p)$ and $\mathbf{L}(o, c, q)$ and $a, c \parallel b, p$ and $a, c \parallel b, q$, then p = q.
- (30) If $a \neq b$ and $\mathbf{L}(a, b, c)$ and $\mathbf{L}(a, b, d)$, then $\mathbf{L}(a, c, d)$.
- (31) If $\mathbf{L}(a, b, c)$ and $\mathbf{L}(a, c, d)$ and $a \neq c$, then $\mathbf{L}(b, c, d)$.
- (32) $\mathbf{L}(a, b, c)$ if and only if $a, b \parallel a, c$. Let us consider FdSp, a, b, c, d. The predicate $\mathbf{P}(a, b, c, d)$ is defined by: not $\mathbf{L}(a, b, c)$ and $a, b \parallel c, d$ and $a, c \parallel b, d$.

Next we state a number of propositions:

- (33) $\mathbf{P}(a, b, c, d)$ if and only if not $\mathbf{L}(a, b, c)$ and $a, b \parallel c, d$ and $a, c \parallel b, d$.
- (34) If $\mathbf{P}(a, b, c, d)$, then $a \neq b$ and $b \neq c$ and $c \neq a$ and $a \neq d$ and $b \neq d$ and $c \neq d$.
- (35) If $\mathbf{P}(a, b, c, d)$, then not $\mathbf{L}(a, b, c)$ and not $\mathbf{L}(b, a, d)$ and not $\mathbf{L}(c, d, a)$ and not $\mathbf{L}(d, c, b)$.
- (36) Suppose $\mathbf{P}(a, b, c, d)$. Then not $\mathbf{L}(a, b, c)$ and not $\mathbf{L}(b, a, d)$ and not $\mathbf{L}(c, d, a)$ and not $\mathbf{L}(d, c, b)$ and not $\mathbf{L}(a, c, b)$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}(b, c, a)$ and not $\mathbf{L}(c, a, b)$ and not $\mathbf{L}(c, b, a)$ and not $\mathbf{L}(b, d, a)$ and not $\mathbf{L}(a, b, d)$ and not $\mathbf{L}(a, d, b)$ and not $\mathbf{L}(d, a, b)$ and not $\mathbf{L}(d, b, a)$ and not $\mathbf{L}(c, a, d)$ and not $\mathbf{L}(a, c, d)$ and not $\mathbf{L}(a, d, c)$ and not $\mathbf{L}(d, a, c)$ and not $\mathbf{L}(d, c, a)$ and not $\mathbf{L}(d, b, c)$ and not $\mathbf{L}(b, c, d)$ and not $\mathbf{L}(b, d, c)$ and not $\mathbf{L}(c, b, d)$ and not $\mathbf{L}(c, d, b)$.
- (37) If $\mathbf{P}(a, b, c, d)$, then not $\mathbf{L}(a, b, x)$ or not $\mathbf{L}(c, d, x)$.
- (38) If $\mathbf{P}(a, b, c, d)$, then $\mathbf{P}(a, c, b, d)$.
- (39) If P(a, b, c, d), then P(c, d, a, b).
- (40) If P(a, b, c, d), then P(b, a, d, c).
- (41) If $\mathbf{P}(a, b, c, d)$, then $\mathbf{P}(a, c, b, d)$ and $\mathbf{P}(c, d, a, b)$ and $\mathbf{P}(b, a, d, c)$ and $\mathbf{P}(c, a, d, b)$ and $\mathbf{P}(d, b, c, a)$ and $\mathbf{P}(b, d, a, c)$ and $\mathbf{P}(d, c, b, a)$.

- (42) If not $\mathbf{L}(a, b, c)$, then there exists d such that $\mathbf{P}(a, b, c, d)$.
- (43) If $\mathbf{P}(a, b, c, p)$ and $\mathbf{P}(a, b, c, q)$, then p = q.
- (44) If $\mathbf{P}(a, b, c, d)$, then $a, d \not\parallel b, c$.
- (45) If $\mathbf{P}(a, b, c, d)$, then not $\mathbf{P}(a, b, d, c)$.
- (46) If $a \neq b$, then there exists c such that $\mathbf{L}(a, b, c)$ and $c \neq a$ and $c \neq b$.
- (47) If $\mathbf{P}(a, p, b, q)$ and $\mathbf{P}(a, p, c, r)$, then $b, c \parallel q, r$.
- (48) If not $\mathbf{L}(b,q,c)$ and $\mathbf{P}(a,p,b,q)$ and $\mathbf{P}(a,p,c,r)$, then $\mathbf{P}(b,q,c,r)$.
- (49) If $\mathbf{L}(a, b, c)$ and $b \neq c$ and $\mathbf{P}(a, p, b, q)$ and $\mathbf{P}(a, p, c, r)$, then $\mathbf{P}(b, q, c, r)$.
- (50) If $\mathbf{P}(a, p, b, q)$ and $\mathbf{P}(a, p, c, r)$ and $\mathbf{P}(b, q, d, s)$, then $c, d \parallel r, s$.
- (51) If $a \neq b$, then there exist c, d such that $\mathbf{P}(a, b, c, d)$.
- (52) If $a \neq d$, then there exist b, c such that $\mathbf{P}(a, b, c, d)$.
- (53) $\mathbf{P}(a, b, c, d)$ if and only if not $\mathbf{L}(a, b, c)$ and $a, b \parallel c, d$ and $a, c \parallel b, d$.

Let us consider FdSp, a, b, r, s. The predicate $a, b \Rightarrow r, s$ is defined as follows:

a = b and r = s or there exist p, q such that $\mathbf{P}(p, q, a, b)$ and $\mathbf{P}(p, q, r, s)$.

One can prove the following propositions:

- (54) $a, b \Rightarrow r, s$ if and only if a = b and r = s or there exist p, q such that $\mathbf{P}(p,q,a,b)$ and $\mathbf{P}(p,q,r,s)$.
- (55) If $a, a \Rightarrow b, c$, then b = c.
- (56) If $a, b \Rightarrow c, c$, then a = b.
- (57) If $a, b \Rightarrow b, a$, then a = b.
- (58) If $a, b \Rightarrow c, d$, then $a, b \parallel c, d$.
- (59) If $a, b \Rightarrow c, d$, then $a, c \parallel b, d$.
- (60) If $a, b \Rightarrow c, d$ and not $\mathbf{L}(a, b, c)$, then $\mathbf{P}(a, b, c, d)$.
- (61) If $\mathbf{P}(a, b, c, d)$, then $a, b \Rightarrow c, d$.
- (62) If $a, b \Rightarrow c, d$ and $\mathbf{L}(a, b, c)$ and $\mathbf{P}(r, s, a, b)$, then $\mathbf{P}(r, s, c, d)$.
- (63) If $a, b \Rightarrow c, x$ and $a, b \Rightarrow c, y$, then x = y.
- (64) There exists d such that $a, b \Rightarrow c, d$.
- (65) $a, a \Rightarrow b, b.$
- $(66) \quad a,b \Rrightarrow a,b.$
- (67) If $r, s \Rightarrow a, b$ and $r, s \Rightarrow c, d$, then $a, b \Rightarrow c, d$.
- (68) If $a, b \Rightarrow c, d$, then $c, d \Rightarrow a, b$.
- (69) If $a, b \Rightarrow c, d$, then $b, a \Rightarrow d, c$.

References

 Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Parallelity spaces. Formalized Mathematics, 1(2):343–348, 1990. [2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.

Received March 23, 1990