Ordinal Arithmetics

Grzegorz Bancerek
Warsaw University
Białystok

Abstract

Summary. At the beginning the article contains some auxiliary theorems concerning the constructors defined in papers [1] and [2]. Next simple properties of addition and multiplication of ordinals are shown, e.g. associativity of addition. Addition and multiplication of a transfinite sequence of ordinals and a ordinal are also introduced here. The goal of the article is the proof that the distributivity of multiplication wrt addition and the associativity of multiplication hold. Additionally new binary functors of ordinals are introduced: subtraction, exact division, and remainder and some of their basic properties are presented.

MML Identifier: ORDINAL3.

The notation and terminology used here are introduced in the following papers: [5], [3], [1], [4], and [2]. For simplicity we adopt the following convention: fi, $p s i$ denote sequences of ordinal numbers, A, B, C, D denote ordinal numbers, X, Y denote sets, and x is arbitrary. We now state a number of propositions:
(1) $X \subseteq \operatorname{succ} X$.
(2) If succ $X \subseteq Y$, then $X \subseteq Y$.
(3) If $\operatorname{succ} A \subseteq B$, then $A \in B$.
(4) $A \subseteq B$ if and only if succ $A \subseteq \operatorname{succ} B$.
(5) $A \in B$ if and only if $\operatorname{succ} A \in \operatorname{succ} B$.
(6) If $X \subseteq A$, then $\bigcup X$ is an ordinal number.
(7) $\cup(\operatorname{On} X)$ is an ordinal number.
(8) If $X \subseteq A$, then On $X=X$.
(9) $\operatorname{On}\{A\}=\{A\}$.
(10) If $A \neq \mathbf{0}$, then $\mathbf{0} \in A$.
(11) $\inf A=\mathbf{0}$.
(12) $\inf \{A\}=A$.
(13) If $X \subseteq A$, then $\bigcap X$ is an ordinal number.

Let us consider x. Let us assume that x is an ordinal number. The functor x (as an ordinal) yielding an ordinal number, is defined as follows:
$x($ as an ordinal $)=x$.
The following proposition is true
(14) If x is an ordinal number, then x (as an ordinal) $=x$.

Let us consider A, B. Then $A \cup B$ is an ordinal number. Then $A \cap B$ is an ordinal number.

We now state a number of propositions:
(15) $A \cup B=A$ or $A \cup B=B$.
(16) $A \cap B=A$ or $A \cap B=B$.
(17) If $A \in \mathbf{1}$, then $A=\mathbf{0}$.
(18) $\mathbf{1}=\{\mathbf{0}\}$.
(19) If $A \subseteq \mathbf{1}$, then $A=\mathbf{0}$ or $A=\mathbf{1}$.
(20) If $A \subseteq B$ or $A \in B$ but $C \in D$, then $A+C \in B+D$.
(21) If $A \subseteq B$ and $C \subseteq D$, then $A+C \subseteq B+D$.
(22) If $A \in B$ but $C \subseteq D$ and $D \neq \mathbf{0}$ or $C \in D$, then $A \cdot C \in B \cdot D$.
(23) If $A \subseteq B$ and $C \subseteq D$, then $A \cdot C \subseteq B \cdot D$.
(24) If $B+C=B+D$, then $C=D$.
(25) If $B+C \in B+D$, then $C \in D$.
(26) If $B+C \subseteq B+D$, then $C \subseteq D$.
(27) $A \subseteq A+B$ and $B \subseteq A+B$.
(28) If $A \in B$, then $A \in B+C$ and $A \in C+B$.
(29) If $A+B=\mathbf{0}$, then $A=\mathbf{0}$ and $B=\mathbf{0}$.
(30) If $A \subseteq B$, then there exists C such that $B=A+C$.
(31) If $A \in B$, then there exists C such that $B=A+C$ and $C \neq \mathbf{0}$.
(32) If $A \neq \mathbf{0}$ and A is a limit ordinal number, then $B+A$ is a limit ordinal number.
(33) $(A+B)+C=A+(B+C)$.
(34) If $A \cdot B=\mathbf{0}$, then $A=\mathbf{0}$ or $B=\mathbf{0}$.
(35) If $A \in B$ and $C \neq \mathbf{0}$, then $A \in B \cdot C$ and $A \in C \cdot B$.
(36) If $B \cdot A=C \cdot A$ and $A \neq \mathbf{0}$, then $B=C$.
(37) If $B \cdot A \in C \cdot A$, then $B \in C$.
(38) If $B \cdot A \subseteq C \cdot A$ and $A \neq \mathbf{0}$, then $B \subseteq C$.
(39) If $B \neq \mathbf{0}$, then $A \subseteq A \cdot B$ and $A \subseteq B \cdot A$.
(40) If $A \in B$ and $C \neq \mathbf{0}$, then $A \in B \cdot C$ and $A \in C \cdot B$.
(41) If $A \cdot B=\mathbf{1}$, then $A=\mathbf{1}$ and $B=\mathbf{1}$.
(42) If $A \in B+C$, then $A \in B$ or there exists D such that $D \in C$ and $A=B+D$.
We now define four new functors. Let us consider C, $f i$. The functor $C+f i$ yields a sequence of ordinal numbers and is defined by:
$\operatorname{dom}(C+f i)=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $(C+$ $f i)(A)=C+(f i(A))($ as an ordinal).
The functor $f i+C$ yields a sequence of ordinal numbers and is defined by:
$\operatorname{dom}(f i+C)=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $(f i+$ $C)(A)=(f i(A))($ as an ordinal $)+C$.
The functor $C \cdot f i$ yields a sequence of ordinal numbers and is defined as follows: $\operatorname{dom}(C \cdot f i)=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $(C$. $f i)(A)=C \cdot(f i(A))($ as an ordinal $)$.
The functor $f i \cdot C$ yields a sequence of ordinal numbers and is defined by:
$\operatorname{dom}(f i \cdot C)=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds ($f i$.
$C)(A)=(f i(A))($ as an ordinal $) \cdot C$.
The following propositions are true:
(43) $p s i=C+f i$ if and only if $\operatorname{dom} p s i=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $p s i(A)=C+(f i(A))$ (as an ordinal).
(44) $\quad p s i=f i+C$ if and only if dompsi= $\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $p s i(A)=(f i(A))($ as an ordinal $)+C$.
(45) $p s i=C \cdot f i$ if and only if $\operatorname{dom} p s i=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $p s i(A)=C \cdot(f i(A))$ (as an ordinal).
(46) $\quad p s i=f i \cdot C$ if and only if $\operatorname{dom} p s i=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $p s i(A)=(f i(A))$ (as an ordinal) $\cdot C$.
(47) If $\mathbf{0} \neq \operatorname{dom} f i$ and $\operatorname{dom} f i=\operatorname{dom} p s i$ and for all A, B such that $A \in$ $\operatorname{dom} f i$ and $B=f i(A)$ holds $p s i(A)=C+B$, then $\sup p s i=C+\sup f i$.
(48) If A is a limit ordinal number, then $A \cdot B$ is a limit ordinal number.
(49) If $A \in B \cdot C$ and B is a limit ordinal number, then there exists D such that $D \in B$ and $A \in D \cdot C$.
(50) If $\mathbf{0} \neq \operatorname{dom} f i$ and $\operatorname{dom} f i=\operatorname{dom} p s i$ and $C \neq \mathbf{0}$ and $\sup f i$ is a limit ordinal number and for all A, B such that $A \in \operatorname{dom} f i$ and $B=f i(A)$ holds $p s i(A)=B \cdot C$, then $\sup p s i=\sup f i \cdot C$.
(51) If $\mathbf{0} \neq \operatorname{dom} f i$, then $\sup (C+f i)=C+\sup f i$.
(52) If $\mathbf{0} \neq \operatorname{dom} f i$ and $C \neq \mathbf{0}$ and $\sup f i$ is a limit ordinal number, then $\sup (f i \cdot C)=\sup f i \cdot C$.
(53) If $B \neq \mathbf{0}$, then $\bigcup(A+B)=A+\bigcup B$.
(54) $(A+B) \cdot C=A \cdot C+B \cdot C$.
(55) If $A \neq \mathbf{0}$, then there exist C, D such that $B=C \cdot A+D$ and $D \in A$.
(56) For all ordinal numbers $C_{1}, D_{1}, C_{2}, D_{2}$ such that $C_{1} \cdot A+D_{1}=C_{2} \cdot A+D_{2}$ and $D_{1} \in A$ and $D_{2} \in A$ holds $C_{1}=C_{2}$ and $D_{1}=D_{2}$.
(57) If $\mathbf{1} \in B$ and $A \neq \mathbf{0}$ and A is a limit ordinal number, then for every $f i$ such that $\operatorname{dom} f i=A$ and for every C such that $C \in A$ holds $f i(C)=C \cdot B$ holds $A \cdot B=\sup f i$.
(58) $\quad(A \cdot B) \cdot C=A \cdot(B \cdot C)$.

We now define two new functors. Let us consider A, B. The functor $A-B$ yields an ordinal number and is defined as follows:

$$
A=B+(A-B) \text { if } B \subseteq A, A-B=\mathbf{0}, \text { otherwise. }
$$

The functor $A \div B$ yielding an ordinal number, is defined by:
there exists C such that $A=(A \div B) \cdot B+C$ and $C \in B$ if $B \neq \mathbf{0}, A \div B=\mathbf{0}$, otherwise.

Let us consider A, B. The functor $A \bmod B$ yielding an ordinal number, is defined by:
$A \bmod B=A-(A \div B) \cdot B$.
The following propositions are true:
(59) If $A \subseteq B$, then $B=A+(B-A)$.
(60) If $A \in B$, then $B=A+(B-A)$.
(61) If $A \nsubseteq B$, then $B-A=\mathbf{0}$.
(62) If $B \neq \mathbf{0}$, then there exists C such that $A=(A \div B) \cdot B+C$ and $C \in B$.
(63) $A \div \mathbf{0}=\mathbf{0}$.
(64) $A \bmod B=A-(A \div B) \cdot B$.
(65) $(A+B)-A=B$.
(66) If $A \in B$ but $C \subseteq A$ or $C \in A$, then $A-C \in B-C$.
(67) $A-A=\mathbf{0}$.
(68) If $A \in B$, then $B-A \neq \mathbf{0}$ and $\mathbf{0} \in B-A$.
(69) $\quad A-\mathbf{0}=A$ and $\mathbf{0}-A=\mathbf{0}$.
(70) $A-(B+C)=(A-B)-C$.
(71) If $A \subseteq B$, then $C-B \subseteq C-A$.
(72) If $A \subseteq B$, then $A-C \subseteq B-C$.
(73) If $C \neq \mathbf{0}$ and $A \in B+C$, then $A-B \in C$.
(74) If $A+B \in C$, then $B \in C-A$.
(75) $A \subseteq B+(A-B)$.
(76) $A \cdot C-B \cdot C=(A-B) \cdot C$.
(77) $\quad(A \div B) \cdot B \subseteq A$.
(78) $A=(A \div B) \cdot B+(A \bmod B)$.
(79) If $A=B \cdot C+D$ and $D \in C$, then $B=A \div C$ and $D=A \bmod C$.
(80) If $A \in B \cdot C$, then $A \div C \in B$ and $A \bmod C \in C$.
(81) If $B \neq \mathbf{0}$, then $A \cdot B \div B=A$.
(82) $A \cdot B \bmod B=\mathbf{0}$.
(83) $\mathbf{0} \div A=\mathbf{0}$ and $\mathbf{0} \bmod A=\mathbf{0}$ and $A \bmod \mathbf{0}=A$.
(84) $A \div \mathbf{1}=A$ and $A \bmod \mathbf{1}=\mathbf{0}$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received March 1, 1990

