Midpoint algebras

Michał Muzalewski¹ Warsaw University, Białystok

Summary. In this article basic properties of midpoint algebras are proved. We define a congruence relation \equiv on bound vectors and free vectors as the equivalence classes of \equiv .

MML Identifier: MIDSP_1.

The notation and terminology used in this paper are introduced in the following articles: [5], [1], [2], [3], [4], and [6]. We consider midpoint algebra structures which are systems

 \langle points, a midpoint operation \rangle

where the points is a non-empty set and the midpoint operation is a binary operation on the points. In the sequel MS is a midpoint algebra structure and a, b are elements of the points of MS. Let us consider MS, a, b. The functor $a \oplus b$ yielding an element of the points of MS, is defined by:

 $a \oplus b = (\text{the midpoint operation of } MS)(a, b).$

We now state a proposition

(1) $a \oplus b = (\text{the midpoint operation of } MS)(a, b).$

Let x be arbitrary. Then $\{x\}$ is a non-empty set.

zo is a binary operation on $\{0\}$.

One can prove the following propositions:

(2) zo is a function from $[\{0\}, \{0\}\}]$ into $\{0\}$.

- (3) For all elements x, y of $\{0\}$ holds zo(x, y) = 0.
- The midpoint algebra structure EX is defined by: EX = $\langle \{0\}, zo \rangle$.

The following propositions are true:

(4)
$$\mathrm{EX} = \langle \{0\}, zo \rangle.$$

(5) The points of $EX = \{0\}$.

¹Supported by RPBP.III-24.C6.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (6) The midpoint operation of EX = zo.
- (7) For every element a of the points of EX holds a = 0.
- (8) For all elements a, b of the points of EX holds $a \oplus b = zo(a, b)$.
- (9) For all elements a, b of the points of EX holds $a \oplus b = 0$.
- (10) For all elements a, b, c, d of the points of EX holds $a \oplus a = a$ and $a \oplus b = b \oplus a$ and $(a \oplus b) \oplus (c \oplus d) = (a \oplus c) \oplus (b \oplus d)$ and there exists an element x of the points of EX such that $x \oplus a = b$.

A midpoint algebra structure is called a midpoint algebra if:

for all elements a, b, c, d of the points of it holds $a \oplus a = a$ and $a \oplus b = b \oplus a$ and $(a \oplus b) \oplus (c \oplus d) = (a \oplus c) \oplus (b \oplus d)$ and there exists an element x of the points of it such that $x \oplus a = b$.

We follow the rules: M denotes a midpoint algebra and a, b, c, d, a', b', c', d', x, y, x' denote elements of the points of M. Next we state several propositions:

- (11) $a \oplus a = a$.
- (12) $a \oplus b = b \oplus a$.
- (13) $(a \oplus b) \oplus (c \oplus d) = (a \oplus c) \oplus (b \oplus d).$
- (14) There exists x such that $x \oplus a = b$.
- (15) $(a \oplus b) \oplus c = (a \oplus c) \oplus (b \oplus c).$
- (16) $a \oplus (b \oplus c) = (a \oplus b) \oplus (a \oplus c).$
- (17) If $a \oplus b = a$, then a = b.
- (18) If $x \oplus a = x' \oplus a$, then x = x'.
- (19) If $a \oplus x = a \oplus x'$, then x = x'.

Let us consider M, a, b, c, d. The predicate $a, b \equiv c, d$ is defined by: $a \oplus d = b \oplus c$.

The following propositions are true:

- (20) $a, b \equiv c, d$ if and only if $a \oplus d = b \oplus c$.
- $(21) \quad a, a \equiv b, b.$
- (22) If $a, b \equiv c, d$, then $c, d \equiv a, b$.
- (23) If $a, a \equiv b, c$, then b = c.
- (24) If $a, b \equiv c, c$, then a = b.
- $(25) \quad a,b \equiv a,b.$
- (26) There exists d such that $a, b \equiv c, d$.
- (27) If $a, b \equiv c, d$ and $a, b \equiv c, d'$, then d = d'.
- (28) If $x, y \equiv a, b$ and $x, y \equiv c, d$, then $a, b \equiv c, d$.
- (29) If $a, b \equiv a', b'$ and $b, c \equiv b', c'$, then $a, c \equiv a', c'$.

In the sequel p, q, r will denote elements of [: the points of M, the points of M]. Let us consider M, p. Then p_1 is an element of the points of M.

Let us consider M, p. Then p_2 is an element of the points of M. Let us consider M, p, q. The predicate $p \equiv q$ is defined as follows: $p_1, p_2 \equiv q_1, q_2$. One can prove the following proposition

(30) $p \equiv q$ if and only if $p_1, p_2 \equiv q_1, q_2$.

Let us consider M, a, b. Then $\langle a, b \rangle$ is an element of [: the points of M, the points of M].

One can prove the following propositions:

- (31) If $a, b \equiv c, d$, then $\langle a, b \rangle \equiv \langle c, d \rangle$.
- (32) If $\langle a, b \rangle \equiv \langle c, d \rangle$, then $a, b \equiv c, d$.
- $(33) \quad p \equiv p.$
- (34) If $p \equiv q$, then $q \equiv p$.
- (35) If $p \equiv q$ and $p \equiv r$, then $q \equiv r$.
- (36) If $p \equiv r$ and $q \equiv r$, then $p \equiv q$.
- (37) If $p \equiv q$ and $q \equiv r$, then $p \equiv r$.
- (38) If $p \equiv q$, then $r \equiv p$ if and only if $r \equiv q$.
- (39) For every p holds $\{q : q \equiv p\}$ is a non-empty subset of [: the points of M, the points of M].

Let us consider M, p. The functor $p \\ightarrow$ yields a non-empty subset of [: the points of M, the points of M] and is defined as follows:

 $p \ = \{q : q \equiv p\}.$

The following propositions are true:

- (40) For every p holds $p^{\checkmark} = \{q : q \equiv p\}$ and p^{\checkmark} is a non-empty subset of [: the points of M, the points of M].
- (41) For every p holds $r \in p^{\smile}$ if and only if $r \equiv p$.
- (42) If $p \equiv q$, then p = q.
- (43) If p = q, then $p \equiv q$.
- (44) If $\langle a, b \rangle^{\smile} = \langle c, d \rangle^{\smile}$, then $a \oplus d = b \oplus c$.
- $(45) \quad p \in p \check{\ }.$

Let us consider M. A non-empty subset of [: the points of M, the points of M] is said to be a vector of M if:

there exists p such that it = p.

The following proposition is true

(46) For every non-empty subset X of [: the points of M, the points of M :] holds X is a vector of M if and only if there exists p such that $X = p^{\checkmark}$.

In the sequel u, v, w, w' denote vectors of M. The following proposition is true

(47) $p \simeq$ is a vector of M.

Let us consider M, p. Then p^{\sim} is a vector of M.

We now state a proposition

(48) There exists u such that for every p holds $p \in u$ if and only if $p_1 = p_2$. Let us consider M. The functor I_M yielding a vector of M, is defined by: $I_M = \{p : p_1 = p_2\}.$ Next we state four propositions:

- (49) $I_M = \{p : p_1 = p_2\}.$
- (50) $I_M = \langle b, b \rangle^{\smile}.$
- (51) There exist w, p, q such that u = p and v = q and $p_2 = q_1$ and $w = \langle p_1, q_2 \rangle$.
- (52) Suppose that
 - (i) there exist p, q such that $u = p^{\checkmark}$ and $v = q^{\checkmark}$ and $p_2 = q_1$ and $w = \langle p_1, q_2 \rangle^{\checkmark}$,
 - (ii) there exist p, q such that $u = p^{\checkmark}$ and $v = q^{\checkmark}$ and $p_2 = q_1$ and $w' = \langle p_1, q_2 \rangle^{\checkmark}$. Then w = w'.

Let us consider M, u, v. The functor u+v yields a vector of M and is defined by:

there exist p, q such that $u = p^{\checkmark}$ and $v = q^{\checkmark}$ and $p_2 = q_1$ and $u + v = \langle p_1, q_2 \rangle^{\checkmark}$.

We now state a proposition

(53) There exists b such that $u = \langle a, b \rangle^{\smile}$.

Let us consider M, a, b. The functor $\overrightarrow{[a,b]}$ yields a vector of M and is defined by:

$$[a,b] = \langle a,b \rangle^{\smile}.$$

Next we state a number of propositions:

- (54) $\overline{[a,b]} = \langle a,b \rangle^{\smile}.$
- (55) There exists b such that u = [a, b].
- (56) If $\langle a, b \rangle \equiv \langle c, d \rangle$, then $\overline{[a, b]} = \overline{[c, d]}$.
- (57) If $\overline{[a,b]} = \overline{[c,d]}$, then $a \oplus d = b \oplus c$.
- (58) $I_M = [\overline{b, b}].$
- (59) If $\overline{[a,b]} = \overline{[a,c]}$, then b = c.
- (60) $\overline{[a,b]} + \overline{[b,c]} = \overline{[a,c]}.$
- (61) $\langle a, a \oplus b \rangle \equiv \langle a \oplus b, b \rangle.$
- (62) $\overline{[a, a \oplus b]} + \overline{[a, a \oplus b]} = \overline{[a, b]}.$
- (63) (u+v) + w = u + (v+w).
- $(64) \quad u + \mathbf{I}_M = u.$
- (65) There exists v such that $u + v = I_M$.
- $(66) \quad u+v=v+u.$
- (67) If u + v = u + w, then v = w.

Let us consider M, u. The functor -u yields a vector of M and is defined by:

 $u + (-u) = \mathbf{I}_M.$

We now state a proposition

 $(68) \quad u + (-u) = \mathbf{I}_M.$

In the sequel X denotes an element of $2^{[\text{the points of } M, \text{the points of } M]}$. Let us consider M. The functor setvect M yields a set and is defined as follows:

setvect $M = \{X : X \text{ is a vector of } M\}.$

Next we state a proposition

(69) setvect $M = \{X : X \text{ is a vector of } M\}.$

In the sequel x is arbitrary. One can prove the following two propositions:

(70) u is an element of $2^{[\text{the points of } M, \text{the points of } M]}$.

(71) x is a vector of M if and only if $x \in \text{setvect } M$.

Let us consider M. Then setvect M is a non-empty set.

The following proposition is true

(72) x is a vector of M if and only if x is an element of setvect M.

In the sequel u_1 , v_1 , w_1 , W, W_1 , W_2 , T will denote elements of setvect M. Let us consider M, u_1 , v_1 . The functor $u_1 + v_1$ yields an element of setvect M and is defined as follows:

for all u, v such that $u_1 = u$ and $v_1 = v$ holds $u_1 + v_1 = u + v$.

One can prove the following propositions:

- (73) If $u_1 = u$ and $v_1 = v$, then $u_1 + v_1 = u + v$.
- $(74) \quad u_1 + v_1 = v_1 + u_1.$
- (75) $(u_1 + v_1) + w_1 = u_1 + (v_1 + w_1).$

Let us consider M. The functor addvect M yields a binary operation on setvect M and is defined as follows:

for all u_1 , v_1 holds $(\operatorname{addvect} M)(u_1, v_1) = u_1 + v_1$.

The following three propositions are true:

- (76) (addvect M) $(u_1, v_1) = u_1 + v_1$.
- (77) For every W there exists T such that $W + T = I_M$.
- (78) For all W, W_1 , W_2 such that $W + W_1 = I_M$ and $W + W_2 = I_M$ holds $W_1 = W_2$.

Let us consider M. The functor compluent M yielding a unary operation on setvect M, is defined by:

for every W holds $W + (\text{complvect } M)(W) = I_M$.

One can prove the following proposition

(79) $W + (\operatorname{complvect} M)(W) = I_M.$

Let us consider M. The functor zerovect M yields an element of setvect M and is defined as follows:

zerovect $M = I_M$.

The following proposition is true

(80) zerovect $M = I_M$.

Let us consider M. The functor vector M yielding a group structure, is defined by:

vectgroup $M = \langle \text{setvect } M, \text{addvect } M, \text{complyect } M, \text{zerovect } M \rangle$.

Next we state several propositions:

- (81) vectgroup $M = \langle \text{setvect } M, \text{addvect } M, \text{complyect } M, \text{zerovect } M \rangle$.
- (82) The carrier of vector M =setvect M.
- (83) The addition of vector M =addvect M.
- (84) The reverse-map of vector M = compluent M.
- (85) The zero of vector M =zerovect M.
- (86) vectgroup M is an Abelian group.

References

- Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175– 180, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [6] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.

Received November 26, 1989