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Summary. In this article basic properties of midpoint algebras
are proved. We define a congruence relation ≡ on bound vectors and free
vectors as the equivalence classes of ≡.

MML Identifier: MIDSP 1.

The notation and terminology used in this paper are introduced in the following
articles: [5], [1], [2], [3], [4], and [6]. We consider midpoint algebra structures
which are systems

〈 points, a midpoint operation 〉
where the points is a non-empty set and the midpoint operation is a binary

operation on the points. In the sequel MS is a midpoint algebra structure and
a, b are elements of the points of MS. Let us consider MS, a, b. The functor
a ⊕ b yielding an element of the points of MS, is defined by:

a ⊕ b = (the midpoint operation of MS)(a, b).

We now state a proposition

(1) a ⊕ b = (the midpoint operation of MS)(a, b).

Let x be arbitrary. Then {x} is a non-empty set.

zo is a binary operation on {0}.

One can prove the following propositions:

(2) zo is a function from [: {0}, {0} :] into {0}.

(3) For all elements x, y of {0} holds zo(x, y) = 0.

The midpoint algebra structure EX is defined by:
EX = 〈{0}, zo〉.

The following propositions are true:

(4) EX = 〈{0}, zo〉.

(5) The points of EX = {0}.
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(6) The midpoint operation of EX = zo.

(7) For every element a of the points of EX holds a = 0.

(8) For all elements a, b of the points of EX holds a ⊕ b = zo(a, b).

(9) For all elements a, b of the points of EX holds a ⊕ b = 0.

(10) For all elements a, b, c, d of the points of EX holds a ⊕ a = a and
a⊕ b = b⊕ a and (a⊕ b) ⊕ (c⊕ d) = (a⊕ c) ⊕ (b⊕ d) and there exists an
element x of the points of EX such that x ⊕ a = b.

A midpoint algebra structure is called a midpoint algebra if:
for all elements a, b, c, d of the points of it holds a⊕ a = a and a⊕ b = b⊕ a

and (a ⊕ b) ⊕ (c ⊕ d) = (a ⊕ c) ⊕ (b ⊕ d) and there exists an element x of the
points of it such that x ⊕ a = b.

We follow the rules: M denotes a midpoint algebra and a, b, c, d, a′, b′, c′, d′,
x, y, x′ denote elements of the points of M . Next we state several propositions:

(11) a ⊕ a = a.

(12) a ⊕ b = b ⊕ a.

(13) (a ⊕ b) ⊕ (c ⊕ d) = (a ⊕ c) ⊕ (b ⊕ d).

(14) There exists x such that x ⊕ a = b.

(15) (a ⊕ b) ⊕ c = (a ⊕ c) ⊕ (b ⊕ c).

(16) a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ (a ⊕ c).

(17) If a ⊕ b = a, then a = b.

(18) If x ⊕ a = x′ ⊕ a, then x = x′.

(19) If a ⊕ x = a ⊕ x′, then x = x′.

Let us consider M , a, b, c, d. The predicate a, b ≡ c, d is defined by:
a ⊕ d = b ⊕ c.

The following propositions are true:

(20) a, b ≡ c, d if and only if a ⊕ d = b ⊕ c.

(21) a, a ≡ b, b.

(22) If a, b ≡ c, d, then c, d ≡ a, b.

(23) If a, a ≡ b, c, then b = c.

(24) If a, b ≡ c, c, then a = b.

(25) a, b ≡ a, b.

(26) There exists d such that a, b ≡ c, d.

(27) If a, b ≡ c, d and a, b ≡ c, d′, then d = d′.

(28) If x, y ≡ a, b and x, y ≡ c, d, then a, b ≡ c, d.

(29) If a, b ≡ a′, b′ and b, c ≡ b′, c′, then a, c ≡ a′, c′.

In the sequel p, q, r will denote elements of [: the points of M, the points of
M :]. Let us consider M , p. Then p1 is an element of the points of M .

Let us consider M , p. Then p2 is an element of the points of M .

Let us consider M , p, q. The predicate p ≡ q is defined as follows:
p1, p2 ≡ q1, q2.
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One can prove the following proposition

(30) p ≡ q if and only if p1, p2 ≡ q1, q2.

Let us consider M , a, b. Then 〈〈a, b〉〉 is an element of [: the points of M, the
points of M :].

One can prove the following propositions:

(31) If a, b ≡ c, d, then 〈〈a, b〉〉 ≡ 〈〈c, d〉〉.

(32) If 〈〈a, b〉〉 ≡ 〈〈c, d〉〉, then a, b ≡ c, d.

(33) p ≡ p.

(34) If p ≡ q, then q ≡ p.

(35) If p ≡ q and p ≡ r, then q ≡ r.

(36) If p ≡ r and q ≡ r, then p ≡ q.

(37) If p ≡ q and q ≡ r, then p ≡ r.

(38) If p ≡ q, then r ≡ p if and only if r ≡ q.

(39) For every p holds {q : q ≡ p}is a non-empty subset of [: the points of
M, the points of M :].

Let us consider M , p. The functor p
�

yields a non-empty subset of [: the
points of M, the points of M :] and is defined as follows:

p
�

= {q : q ≡ p}.

The following propositions are true:

(40) For every p holds p
�

= {q : q ≡ p} and p
�

is a non-empty subset of [:
the points of M, the points of M :].

(41) For every p holds r ∈ p
�

if and only if r ≡ p.

(42) If p ≡ q, then p
�

= q
�

.

(43) If p
�

= q
�

, then p ≡ q.

(44) If 〈〈a, b〉〉
�

= 〈〈c, d〉〉
�

, then a ⊕ d = b ⊕ c.

(45) p ∈ p
�

.

Let us consider M . A non-empty subset of [: the points of M, the points of
M :] is said to be a vector of M if:

there exists p such that it = p
�

.

The following proposition is true

(46) For every non-empty subset X of [: the points of M, the points of M :]
holds X is a vector of M if and only if there exists p such that X = p

�

.

In the sequel u, v, w, w′ denote vectors of M . The following proposition is
true

(47) p
�

is a vector of M .

Let us consider M , p. Then p
�

is a vector of M .

We now state a proposition

(48) There exists u such that for every p holds p ∈ u if and only if p1 = p2.

Let us consider M . The functor IM yielding a vector of M , is defined by:
IM = {p : p1 = p2}.
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Next we state four propositions:

(49) IM = {p : p1 = p2}.

(50) IM = 〈〈b, b〉〉
�

.

(51) There exist w, p, q such that u = p
�

and v = q
�

and p2 = q1 and
w = 〈〈p1, q2〉〉

�

.

(52) Suppose that
(i) there exist p, q such that u = p

�

and v = q
�

and p2 = q1 and
w = 〈〈p1, q2〉〉

�

,
(ii) there exist p, q such that u = p

�

and v = q
�

and p2 = q1 and
w′ = 〈〈p1, q2〉〉

�

.
Then w = w′.

Let us consider M , u, v. The functor u+v yields a vector of M and is defined
by:

there exist p, q such that u = p
�

and v = q
�

and p2 = q1 and u + v =
〈〈p1, q2〉〉

�

.

We now state a proposition

(53) There exists b such that u = 〈〈a, b〉〉
�

.

Let us consider M , a, b. The functor
−−→
[a, b] yields a vector of M and is defined

by:
−−→
[a, b] = 〈〈a, b〉〉

�

.

Next we state a number of propositions:

(54)
−−→
[a, b] = 〈〈a, b〉〉

�

.

(55) There exists b such that u =
−−→
[a, b].

(56) If 〈〈a, b〉〉 ≡ 〈〈c, d〉〉, then
−−→
[a, b] =

−−→
[c, d].

(57) If
−−→
[a, b] =

−−→
[c, d], then a ⊕ d = b ⊕ c.

(58) IM =
−−→
[b, b].

(59) If
−−→
[a, b] =

−−→
[a, c], then b = c.

(60)
−−→
[a, b] +

−−→
[b, c] =

−−→
[a, c].

(61) 〈〈a, a ⊕ b〉〉 ≡ 〈〈a ⊕ b, b〉〉.

(62)
−−−−−→
[a, a ⊕ b] +

−−−−−→
[a, a ⊕ b] =

−−→
[a, b].

(63) (u + v) + w = u + (v + w).

(64) u + IM = u.

(65) There exists v such that u + v = IM .

(66) u + v = v + u.

(67) If u + v = u + w, then v = w.

Let us consider M , u. The functor −u yields a vector of M and is defined
by:
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u + (−u) = IM .

We now state a proposition

(68) u + (−u) = IM .

In the sequel X denotes an element of 2[: the points of M, the points of M :]. Let us
consider M . The functor setvect M yields a set and is defined as follows:

setvect M = {X : X is a vector of M}.

Next we state a proposition

(69) setvect M = {X : X is a vector of M}.

In the sequel x is arbitrary. One can prove the following two propositions:

(70) u is an element of 2[: the points of M, the points of M :].

(71) x is a vector of M if and only if x ∈ setvect M .

Let us consider M . Then setvect M is a non-empty set.

The following proposition is true

(72) x is a vector of M if and only if x is an element of setvect M .

In the sequel u1, v1, w1, W , W1, W2, T will denote elements of setvect M .
Let us consider M , u1, v1. The functor u1 + v1 yields an element of setvect M

and is defined as follows:
for all u, v such that u1 = u and v1 = v holds u1 + v1 = u + v.

One can prove the following propositions:

(73) If u1 = u and v1 = v, then u1 + v1 = u + v.

(74) u1 + v1 = v1 + u1.

(75) (u1 + v1) + w1 = u1 + (v1 + w1).

Let us consider M . The functor addvect M yields a binary operation on
setvect M and is defined as follows:

for all u1, v1 holds (addvect M)(u1, v1) = u1 + v1.

The following three propositions are true:

(76) (addvect M)(u1, v1) = u1 + v1.

(77) For every W there exists T such that W + T = IM .

(78) For all W , W1, W2 such that W + W1 = IM and W + W2 = IM holds
W1 = W2.

Let us consider M . The functor complvect M yielding a unary operation on
setvect M , is defined by:

for every W holds W + (complvect M)(W ) = IM .

One can prove the following proposition

(79) W + (complvect M)(W ) = IM .

Let us consider M . The functor zerovect M yields an element of setvect M

and is defined as follows:
zerovect M = IM .

The following proposition is true

(80) zerovect M = IM .
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Let us consider M . The functor vectgroup M yielding a group structure, is
defined by:

vectgroup M = 〈setvect M, addvect M, complvect M, zerovect M〉.

Next we state several propositions:

(81) vectgroup M = 〈setvect M, addvect M, complvect M, zerovect M〉.

(82) The carrier of vectgroup M = setvect M .

(83) The addition of vectgroup M = addvect M .

(84) The reverse-map of vectgroup M = complvect M .

(85) The zero of vectgroup M = zerovect M .

(86) vectgroup M is an Abelian group.
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