Midpoint algebras

Michał Muzalewski ${ }^{1}$
Warsaw University, Białystok

Abstract

Summary. In this article basic properties of midpoint algebras are proved. We define a congruence relation \equiv on bound vectors and free vectors as the equivalence classes of \equiv.

MML Identifier: MIDSP_1.

The notation and terminology used in this paper are introduced in the following articles: [5], [1], [2], [3], [4], and [6]. We consider midpoint algebra structures which are systems

〈 points, a midpoint operation〉
where the points is a non-empty set and the midpoint operation is a binary operation on the points. In the sequel $M S$ is a midpoint algebra structure and a, b are elements of the points of $M S$. Let us consider $M S, a, b$. The functor $a \oplus b$ yielding an element of the points of $M S$, is defined by:
$a \oplus b=$ (the midpoint operation of $M S)(a, b)$.
We now state a proposition
(1) $\quad a \oplus b=($ the midpoint operation of $M S)(a, b)$.

Let x be arbitrary. Then $\{x\}$ is a non-empty set.
$z o$ is a binary operation on $\{0\}$.
One can prove the following propositions:
(2) $z o$ is a function from : $\{0\},\{0\}$: into $\{0\}$.
(3) For all elements x, y of $\{0\}$ holds $z o(x, y)=0$.

The midpoint algebra structure EX is defined by:
$\mathrm{EX}=\langle\{0\}, z o\rangle$.
The following propositions are true:
(4) $\mathrm{EX}=\langle\{0\}, z o\rangle$.
(5) The points of $\mathrm{EX}=\{0\}$.

[^0](6) The midpoint operation of $\mathrm{EX}=z o$.
(7) For every element a of the points of EX holds $a=0$.
(8) For all elements a, b of the points of EX holds $a \oplus b=z o(a, b)$.
(9) For all elements a, b of the points of EX holds $a \oplus b=0$.
(10) For all elements a, b, c, d of the points of EX holds $a \oplus a=a$ and $a \oplus b=b \oplus a$ and $(a \oplus b) \oplus(c \oplus d)=(a \oplus c) \oplus(b \oplus d)$ and there exists an element x of the points of EX such that $x \oplus a=b$.
A midpoint algebra structure is called a midpoint algebra if:
for all elements a, b, c, d of the points of it holds $a \oplus a=a$ and $a \oplus b=b \oplus a$ and $(a \oplus b) \oplus(c \oplus d)=(a \oplus c) \oplus(b \oplus d)$ and there exists an element x of the points of it such that $x \oplus a=b$.

We follow the rules: M denotes a midpoint algebra and $a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$, x, y, x^{\prime} denote elements of the points of M. Next we state several propositions:
(11) $a \oplus a=a$.
(12) $a \oplus b=b \oplus a$.
(13) $(a \oplus b) \oplus(c \oplus d)=(a \oplus c) \oplus(b \oplus d)$.
(14) There exists x such that $x \oplus a=b$.
(15) $(a \oplus b) \oplus c=(a \oplus c) \oplus(b \oplus c)$.
(16) $a \oplus(b \oplus c)=(a \oplus b) \oplus(a \oplus c)$.
(17) If $a \oplus b=a$, then $a=b$.
(18) If $x \oplus a=x^{\prime} \oplus a$, then $x=x^{\prime}$.
(19) If $a \oplus x=a \oplus x^{\prime}$, then $x=x^{\prime}$.

Let us consider M, a, b, c, d. The predicate $a, b \equiv c, d$ is defined by:
$a \oplus d=b \oplus c$.
The following propositions are true:
(20) $a, b \equiv c, d$ if and only if $a \oplus d=b \oplus c$.
(22) If $a, b \equiv c, d$, then $c, d \equiv a, b$.
(23) If $a, a \equiv b, c$, then $b=c$.
(24) If $a, b \equiv c, c$, then $a=b$.
(25) $a, b \equiv a, b$.
(26) There exists d such that $a, b \equiv c, d$.
(27) If $a, b \equiv c, d$ and $a, b \equiv c, d^{\prime}$, then $d=d^{\prime}$.
(28) If $x, y \equiv a, b$ and $x, y \equiv c, d$, then $a, b \equiv c, d$.
(29) If $a, b \equiv a^{\prime}, b^{\prime}$ and $b, c \equiv b^{\prime}, c^{\prime}$, then $a, c \equiv a^{\prime}, c^{\prime}$.

In the sequel p, q, r will denote elements of : the points of M, the points of M :. Let us consider M, p. Then p_{1} is an element of the points of M.

Let us consider M, p. Then p_{2} is an element of the points of M.
Let us consider M, p, q. The predicate $p \equiv q$ is defined as follows:
$p_{1}, p_{2} \equiv q_{1}, q_{2}$.

One can prove the following proposition
(30) $\quad p \equiv q$ if and only if $p_{\mathbf{1}}, p_{\mathbf{2}} \equiv q_{1}, q_{2}$.

Let us consider M, a, b. Then $\langle a, b\rangle$ is an element of : the points of M, the points of M :.

One can prove the following propositions:
(31) If $a, b \equiv c, d$, then $\langle a, b\rangle \equiv\langle c, d\rangle$.
(32) If $\langle a, b\rangle \equiv\langle c, d\rangle$, then $a, b \equiv c, d$.
(33) $p \equiv p$.
(34) If $p \equiv q$, then $q \equiv p$.
(35) If $p \equiv q$ and $p \equiv r$, then $q \equiv r$.
(36) If $p \equiv r$ and $q \equiv r$, then $p \equiv q$.
(37) If $p \equiv q$ and $q \equiv r$, then $p \equiv r$.
(38) If $p \equiv q$, then $r \equiv p$ if and only if $r \equiv q$.
(39) For every p holds $\{q: q \equiv p\}$ is a non-empty subset of : the points of M, the points of M.
Let us consider M, p. The functor p^{\smile} yields a non-empty subset of : the points of M, the points of M : and is defined as follows:
$p^{\breve{ }}=\{q: q \equiv p\}$.
The following propositions are true:
(40) For every p holds $p^{\hookrightarrow}=\{q: q \equiv p\}$ and p^{\complement} is a non-empty subset of : the points of M, the points of $M:$.
(41) For every p holds $r \in p^{\smile}$ if and only if $r \equiv p$.
(42) If $p \equiv q$, then $p^{\breve{ }}=q^{\breve{ }}$.
(43) If $p^{\llcorner }=q^{\breve{ }}$, then $p \equiv q$.
(44) If $\langle a, b\rangle^{\smile}=\langle c, d\rangle^{\smile}$, then $a \oplus d=b \oplus c$.
(45) $p \in p^{\breve{ }}$.

Let us consider M. A non-empty subset of : the points of M, the points of M : is said to be a vector of M if:
there exists p such that it $=p^{\complement}$.
The following proposition is true
(46) For every non-empty subset X of : the points of M, the points of M :] holds X is a vector of M if and only if there exists p such that $X=p^{\hookrightarrow}$.
In the sequel u, v, w, w^{\prime} denote vectors of M. The following proposition is true
(47) $\quad p^{\smile}$ is a vector of M.

Let us consider M, p. Then p^{\smile} is a vector of M.
We now state a proposition
(48) There exists u such that for every p holds $p \in u$ if and only if $p_{\mathbf{1}}=p_{\mathbf{2}}$.

Let us consider M. The functor I_{M} yielding a vector of M, is defined by:
$\mathrm{I}_{M}=\left\{p: p_{\mathbf{1}}=p_{\mathbf{2}}\right\}$.

Next we state four propositions:
(49) $\mathrm{I}_{M}=\left\{p: p_{\mathbf{1}}=p_{\mathbf{2}}\right\}$.
(50) $\quad \mathrm{I}_{M}=\langle b, b\rangle^{\leftrightharpoons}$.
(51) There exist w, p, q such that $u=p^{\hookrightarrow}$ and $v=q^{\hookrightarrow}$ and $p_{\mathbf{2}}=q_{1}$ and $w=\left\langle p_{1}, q_{2}\right\rangle^{\smile}$.
(52) Suppose that
(i) there exist p, q such that $u=p^{\hookrightarrow}$ and $v=q^{\hookrightarrow}$ and $p_{2}=q_{1}$ and $w=\left\langle p_{1}, q_{2}\right\rangle^{\wedge}$,
(ii) there exist p, q such that $u=p^{\complement}$ and $v=q^{\complement}$ and $p_{2}=q_{1}$ and $w^{\prime}=\left\langle p_{1}, q_{2}\right\rangle^{\nearrow}$.
Then $w=w^{\prime}$.
Let us consider M, u, v. The functor $u+v$ yields a vector of M and is defined by:
there exist p, q such that $u=p^{\smile}$ and $v=q^{\smile}$ and $p_{2}=q_{1}$ and $u+v=$ $\left\langle p_{1}, q_{2}\right\rangle^{\smile}$.

We now state a proposition
(53) There exists b such that $u=\langle a, b\rangle^{\smile}$.

Let us consider M, a, b. The functor $\overrightarrow{[a, b]}$ yields a vector of M and is defined by:

$$
\overrightarrow{[a, b]}=\langle a, b\rangle^{\smile} .
$$

Next we state a number of propositions:
(54) $\quad \overrightarrow{[a, b]}=\langle a, b\rangle^{\smile}$.
(55) There exists b such that $u=\overrightarrow{[a, b]}$.
(56) If $\langle a, b\rangle \equiv\langle c, d\rangle$, then $\overrightarrow{[a, b]}=\overrightarrow{[c, d]}$.
(57) If $\overrightarrow{[a, b]}=\overrightarrow{[c, d]}$, then $a \oplus d=b \oplus c$.
(58) $\mathrm{I}_{M}=\overrightarrow{[b, b]}$.
(59) If $\overrightarrow{[a, b]}=\overrightarrow{[a, c]}$, then $b=c$.
(60) $\overrightarrow{[a, b]}+\overrightarrow{[b, c]}=\overrightarrow{[a, c]}$.
(61) $\langle a, a \oplus b\rangle \equiv\langle a \oplus b, b\rangle$.
(62) $\overrightarrow{[a, a \oplus b]}+\overrightarrow{[a, a \oplus b]}=\overrightarrow{[a, b]}$.
(63) $(u+v)+w=u+(v+w)$.
(64) $u+\mathrm{I}_{M}=u$.
(65) There exists v such that $u+v=\mathrm{I}_{M}$.
(66) $u+v=v+u$.
(67) If $u+v=u+w$, then $v=w$.

Let us consider M, u. The functor $-u$ yields a vector of M and is defined by:
$u+(-u)=\mathrm{I}_{M}$.
We now state a proposition
(68) $u+(-u)=\mathrm{I}_{M}$.

In the sequel X denotes an element of $2^{[\text {the points of } M \text {, the points of } M \text {. Let us }}$ consider M. The functor setvect M yields a set and is defined as follows:
setvect $M=\{X: X$ is a vector of $M\}$.
Next we state a proposition
(69) setvect $M=\{X: X$ is a vector of $M\}$.

In the sequel x is arbitrary. One can prove the following two propositions:
(70) u is an element of $2^{\text {: the points of } M \text {, the points of } M: . ~}$
(71) $\quad x$ is a vector of M if and only if $x \in \operatorname{setvect} M$.

Let us consider M. Then setvect M is a non-empty set.
The following proposition is true
(72) $\quad x$ is a vector of M if and only if x is an element of setvect M.

In the sequel $u_{1}, v_{1}, w_{1}, W, W_{1}, W_{2}, T$ will denote elements of setvect M. Let us consider M, u_{1}, v_{1}. The functor $u_{1}+v_{1}$ yields an element of setvect M and is defined as follows:
for all u, v such that $u_{1}=u$ and $v_{1}=v$ holds $u_{1}+v_{1}=u+v$.
One can prove the following propositions:
(73) If $u_{1}=u$ and $v_{1}=v$, then $u_{1}+v_{1}=u+v$.
(74) $u_{1}+v_{1}=v_{1}+u_{1}$.
(75) $\quad\left(u_{1}+v_{1}\right)+w_{1}=u_{1}+\left(v_{1}+w_{1}\right)$.

Let us consider M. The functor addvect M yields a binary operation on setvect M and is defined as follows:
for all u_{1}, v_{1} holds (addvect $\left.M\right)\left(u_{1}, v_{1}\right)=u_{1}+v_{1}$.
The following three propositions are true:
(76) $\quad($ addvect $M)\left(u_{1}, v_{1}\right)=u_{1}+v_{1}$.
(77) For every W there exists T such that $W+T=\mathrm{I}_{M}$.
(78) For all W, W_{1}, W_{2} such that $W+W_{1}=\mathrm{I}_{M}$ and $W+W_{2}=\mathrm{I}_{M}$ holds $W_{1}=W_{2}$.
Let us consider M. The functor complvect M yielding a unary operation on setvect M, is defined by:
for every W holds $W+($ complvect $M)(W)=\mathrm{I}_{M}$.
One can prove the following proposition

$$
\begin{equation*}
W+(\operatorname{complvect} M)(W)=\mathrm{I}_{M} \tag{79}
\end{equation*}
$$

Let us consider M. The functor zerovect M yields an element of setvect M and is defined as follows:
zerovect $M=\mathrm{I}_{M}$.
The following proposition is true
(80) \quad zerovect $M=\mathrm{I}_{M}$.

Let us consider M. The functor vectgroup M yielding a group structure, is defined by:
vectgroup $M=\langle$ setvect M, addvect M, complvect M, zerovect $M\rangle$.
Next we state several propositions:
(81) $\quad \operatorname{vectgroup} M=\langle$ setvect M, addvect M, complvect M, zerovect $M\rangle$.
(82) The carrier of vectgroup $M=$ setvect M.
(83) The addition of vectgroup $M=$ addvect M.
(84) The reverse-map of vectgroup $M=$ complvect M.
(85) The zero of vectgroup $M=$ zerovect M.
(86) vectgroup M is an Abelian group.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[6] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

Received November 26, 1989

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6.

