Integers

Michał J. Trybulec Białystok

Summary. In the article the following concepts were introduced: the set of integers (\mathbb{Z}) and its elements (integers), congruences ($i_1 \equiv i_2 \pmod{i_3}$), the ceiling and floor functors ($\lceil x \rceil$ and $\lfloor x \rfloor$), also the fraction part of a real number (frac), the integer division (\div) and remainder of integer division (mod). The following schemes were also included: the separation scheme (*SepInt*), the schemes of integer induction (*Int_Ind_Down*, *Int_Ind_Up*, *Int_Ind_Full*), the minimum (*Int_Min*) and maximum (*Int_Max*) schemes (the existence of minimum and maximum integers enjoying a given property).

MML Identifier: INT_1.

The papers [2], and [1] provide the notation and terminology for this paper. For simplicity we follow a convention: x is arbitrary, k, n_1 , n_2 denote natural numbers, r, r_1 , r_2 denote real numbers, and D denotes a non-empty set. The following propositions are true:

- (1) $(r+r_1) r_2 = (r-r_2) + r_1.$
- $(2) \quad (-r_1) + r_2 = r_2 r_1.$
- (3) $r_1 = ((-r_2) + r_1) + r_2$ and $r_1 = r_2 + ((-r_2) + r_1)$ and $r_1 = r_2 + (r_1 r_2)$ and $r_1 = (r_2 + r_1) - r_2$.
- (4) $(r_1 r_2) + r_2 = r_1$ and $(r_1 + r_2) r_2 = r_1$.
- (5) $r_1 \le r_2$ if and only if $r_1 < r_2$ or $r_1 = r_2$.

The non-empty set \mathbb{Z} is defined by:

 $x \in \mathbb{Z}$ if and only if there exists k such that x = k or x = -k.

One can prove the following proposition

- (6) For every x holds $x \in D$ if and only if there exists k such that x = k or x = -k if and only if $D = \mathbb{Z}$.
- A real number is called an integer if:

it is an element of \mathbb{Z} .

The following propositions are true:

501

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (7) r is an integer if and only if r is an element of \mathbb{Z} .
- (8) r is an integer if and only if there exists k such that r = k or r = -k.
- (9) If x is a natural number, then x is an integer.
- (10) 0 is an integer and 1 is an integer.
- (11) If $x \in \mathbb{Z}$, then $x \in \mathbb{R}$.
- (12) x is an integer if and only if $x \in \mathbb{Z}$.
- (13) x is an integer if and only if x is an element of \mathbb{Z} .
- (14) $\mathbb{N} \subseteq \mathbb{Z}$.
- (15) $\mathbb{Z} \subseteq \mathbb{R}$.

In the sequel i_0 , i_1 , i_2 , i_3 , i_4 , i_5 are integers. Let i_1 , i_2 be integers. Then $i_1 + i_2$ is an integer. Then $i_1 \cdot i_2$ is an integer.

Let i_0 be an integer. Then $-i_0$ is an integer.

Let i_1, i_2 be integers. Then $i_1 - i_2$ is an integer.

Let n be a natural number. Then -n is an integer. Let i_1 be an integer. Then $n + i_1$ is an integer. Then $n \cdot i_1$ is an integer. Then $n - i_1$ is an integer.

Let i_1 be an integer, and let n be a natural number. Then $i_1 + n$ is an integer. Then $i_1 \cdot n$ is an integer. Then $i_1 - n$ is an integer.

Let us consider n_1 , n_2 . Then $n_1 - n_2$ is an integer.

We now state a number of propositions:

- (16) If $0 \le i_0$, then i_0 is a natural number.
- (17) If r is an integer, then r + 1 is an integer and r 1 is an integer.
- (18) If $i_2 \leq i_1$, then $i_1 i_2$ is a natural number.
- (19) If $i_1 + k = i_2$ or $k + i_1 = i_2$, then $i_1 \le i_2$.
- (20) If $i_0 < i_1$, then $i_0 + 1 \le i_1$ and $1 + i_0 \le i_1$.
- (21) If $i_1 < 0$, then $i_1 \le -1$.
- (22) $i_1 \cdot i_2 = 1$ if and only if $i_1 = 1$ and $i_2 = 1$ or $i_1 = -1$ and $i_2 = -1$.
- (23) $i_1 \cdot i_2 = -1$ if and only if $i_1 = -1$ and $i_2 = 1$ or $i_1 = 1$ and $i_2 = -1$.
- (24) If $i_0 \neq 0$, then $i_1 \neq i_1 + i_0$.
- (25) $i_1 < i_1 + 1$.
- (26) $i_1 1 < i_1$.
- (27) For no i_0 holds for every i_1 holds $i_0 < i_1$.
- (28) For no i_0 holds for every i_1 holds $i_1 < i_0$.

In the article we present several logical schemes. The scheme SepInt deals with a unary predicate \mathcal{P} , and states that:

there exists a subset X of \mathbb{Z} such that for every integer x holds $x \in X$ if and only if $\mathcal{P}[x]$

for all values of the parameter.

The scheme Int_Ind_Up concerns an integer \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

for every i_0 such that $\mathcal{A} \leq i_0$ holds $\mathcal{P}[i_0]$

provided the following conditions are fulfilled:

• $\mathcal{P}[\mathcal{A}],$

• for every i_2 such that $\mathcal{A} \leq i_2$ holds if $\mathcal{P}[i_2]$, then $\mathcal{P}[i_2+1]$.

The scheme *Int_Ind_Down* deals with an integer \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

for every i_0 such that $i_0 \leq \mathcal{A}$ holds $\mathcal{P}[i_0]$

provided the parameters fulfill the following conditions:

• $\mathcal{P}[\mathcal{A}],$

• for every i_2 such that $i_2 \leq \mathcal{A}$ holds if $\mathcal{P}[i_2]$, then $\mathcal{P}[i_2-1]$.

The scheme *Int_Ind_Full* deals with an integer \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

for every i_0 holds $\mathcal{P}[i_0]$

provided the following requirements are fulfilled:

• $\mathcal{P}[\mathcal{A}],$

• for every i_2 such that $\mathcal{P}[i_2]$ holds $\mathcal{P}[i_2-1]$ and $\mathcal{P}[i_2+1]$.

The scheme *Int_Min* concerns an integer \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

there exists i_0 such that $\mathcal{P}[i_0]$ and for every i_1 such that $\mathcal{P}[i_1]$ holds $i_0 \leq i_1$ provided the following conditions are satisfied:

• for every i_1 such that $\mathcal{P}[i_1]$ holds $\mathcal{A} \leq i_1$,

• there exists i_1 such that $\mathcal{P}[i_1]$.

The scheme Int_Max deals with an integer \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

there exists i_0 such that $\mathcal{P}[i_0]$ and for every i_1 such that $\mathcal{P}[i_1]$ holds $i_1 \leq i_0$ provided the parameters satisfy the following conditions:

- for every i_1 such that $\mathcal{P}[i_1]$ holds $i_1 \leq \mathcal{A}$,
- there exists i_1 such that $\mathcal{P}[i_1]$.

Let us consider r. Then $\operatorname{sgn} r$ is an integer.

We now state two propositions:

(29) $\operatorname{sgn} r = 1 \text{ or } \operatorname{sgn} r = -1 \text{ or } \operatorname{sgn} r = 0.$

(30)
$$|r| = r \text{ or } |r| = -r.$$

Let us consider i_0 . Then $|i_0|$ is an integer.

Let i_1, i_2, i_3 be integers. The predicate $i_1 \equiv i_2 \pmod{i_3}$ is defined by: there exists i_4 such that $i_3 \cdot i_4 = i_1 - i_2$.

We now state a number of propositions:

- (31) $i_1 \equiv i_2 \pmod{i_3}$ if and only if there exists an integer i_4 such that $i_3 \cdot i_4 = i_1 i_2$.
- $(32) \quad i_1 \equiv i_1 \pmod{i_2}.$
- (33) If $i_2 = 0$, then $i_1 \equiv i_2 \pmod{i_1}$ and $i_2 \equiv i_1 \pmod{i_1}$.
- (34) If $i_3 = 1$, then $i_1 \equiv i_2 \pmod{i_3}$.
- (35) If $i_1 \equiv i_2 \pmod{i_3}$, then $i_2 \equiv i_1 \pmod{i_3}$.

(36) If $i_1 \equiv i_2 \pmod{i_5}$ and $i_2 \equiv i_3 \pmod{i_5}$, then $i_1 \equiv i_3 \pmod{i_5}$.

(37) If $i_1 \equiv i_2 \pmod{i_5}$ and $i_3 \equiv i_4 \pmod{i_5}$, then $i_1 + i_3 \equiv i_2 + i_4 \pmod{i_5}$.

- (38) If $i_1 \equiv i_2 \pmod{i_5}$ and $i_3 \equiv i_4 \pmod{i_5}$, then $i_1 i_3 \equiv i_2 i_4 \pmod{i_5}$.
- (39) If $i_1 \equiv i_2 \pmod{i_5}$ and $i_3 \equiv i_4 \pmod{i_5}$, then $i_1 \cdot i_3 \equiv i_2 \cdot i_4 \pmod{i_5}$.
- (40) $i_1 + i_2 \equiv i_3 \pmod{i_5}$ if and only if $i_1 \equiv i_3 i_2 \pmod{i_5}$.
- (41) If $i_4 \cdot i_5 = i_3$, then if $i_1 \equiv i_2 \pmod{i_3}$, then $i_1 \equiv i_2 \pmod{i_4}$.
- (42) $i_1 \equiv i_2 \pmod{i_5}$ if and only if $i_1 + i_5 \equiv i_2 \pmod{i_5}$.
- (43) $i_1 \equiv i_2 \pmod{i_5}$ if and only if $i_1 i_5 \equiv i_2 \pmod{i_5}$.
- (44) If $i_1 \le r$ and $r 1 < i_1$ and $i_2 \le r$ and $r 1 < i_2$, then $i_1 = i_2$.
- (45) If $r \le i_1$ and $i_1 < r+1$ and $r \le i_2$ and $i_2 < r+1$, then $i_1 = i_2$.

Let us consider r. The functor $\lfloor r \rfloor$ yielding an integer, is defined as follows: $\lfloor r \rfloor \leq r$ and $r - 1 < \lfloor r \rfloor$.

The following propositions are true:

- (46) $i_0 \le r$ and $r 1 < i_0$ if and only if $\lfloor r \rfloor = i_0$.
- (47) $\lfloor r \rfloor = r$ if and only if r is an integer.
- (48) $\lfloor r \rfloor < r$ if and only if r is not an integer.
- $(49) \quad \lfloor r \rfloor \le r.$
- (50) $\lfloor r \rfloor 1 < r$ and $\lfloor r \rfloor < r + 1$.
- (51) $\lfloor r \rfloor + i_0 = \lfloor r + i_0 \rfloor.$
- $(52) \quad r \le \lfloor r \rfloor + 1.$

Let us consider r. The functor $\lceil r \rceil$ yields an integer and is defined as follows: $r \leq \lceil r \rceil$ and $\lceil r \rceil < r + 1$.

We now state a number of propositions:

- (53) $r \leq i_0$ and $i_0 < r+1$ if and only if $\lceil r \rceil = i_0$.
- (54) $\lceil r \rceil = r$ if and only if r is an integer.
- (55) $r < \lceil r \rceil$ if and only if r is not an integer.
- $(56) \quad r \le \lceil r \rceil.$
- (57) $r-1 < \lceil r \rceil$ and $r < \lceil r \rceil + 1$.
- (58) $\lceil r \rceil + i_0 = \lceil r + i_0 \rceil.$
- (59) $\lfloor r \rfloor = \lceil r \rceil$ if and only if r is an integer.
- (60) $\lfloor r \rfloor < \lceil r \rceil$ if and only if r is not an integer.
- $(61) \quad \lfloor r \rfloor \le \lceil r \rceil.$
- $(62) \quad |\lceil r \rceil| = \lceil r \rceil.$
- (63) ||r|| = |r|.
- $(64) \quad \lceil \lceil r \rceil \rceil = \lceil r \rceil.$
- $(65) \quad \lceil |r| \rceil = |r|.$
- (66) $|r| = \lceil r \rceil$ if and only if $|r| + 1 \neq \lceil r \rceil$.

Let us consider r. The functor frac r yielding a real number, is defined by: frac $r = r - \lfloor r \rfloor$.

One can prove the following propositions:

(67)
$$\operatorname{frac} r = r - \lfloor r \rfloor.$$

INTEGERS

- (68) $r = \lfloor r \rfloor + \operatorname{frac} r.$
- (69) $\operatorname{frac} r < 1 \text{ and } 0 \leq \operatorname{frac} r.$
- (70) $\lfloor \operatorname{frac} r \rfloor = 0.$
- (71) frac r = 0 if and only if r is an integer.
- (72) $0 < \operatorname{frac} r$ if and only if r is not an integer.

Let i_1, i_2 be integers. The functor $i_1 \div i_2$ yields an integer and is defined by: $i_1 \div i_2 = \lfloor \frac{i_1}{i_2} \rfloor$.

One can prove the following proposition

(73) $i_1 \div i_2 = \lfloor \frac{i_1}{i_2} \rfloor.$

Let i_1, i_2 be integers. The functor $i_1 \mod i_2$ yielding an integer, is defined as follows:

 $i_1 \mod i_2 = i_1 - (i_1 \div i_2) \cdot i_2.$

Next we state a proposition

(74) $i_1 \mod i_2 = i_1 - (i_1 \div i_2) \cdot i_2$. Let i_1, i_2 be integers. The predicate $i_1 \mid i_2$ is defined as follows: there exists i_3 such that $i_2 = i_1 \cdot i_3$. The following proposition is true

(75) $i_1 \mid i_2$ if and only if there exists i_3 such that $i_1 \cdot i_3 = i_2$.

References

- Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received February 7, 1990