Integers

Michał J. Trybulec
Białystok

Abstract

Summary. In the article the following concepts were introduced: the set of integers (\mathbb{Z}) and its elements (integers), congruences ($i_{1} \equiv$ $\left.i_{2}\left(\bmod i_{3}\right)\right)$, the ceiling and floor functors $(\lceil x\rceil$ and $\lfloor x\rfloor)$, also the fraction part of a real number (frac), the integer division (\div) and remainder of integer division (mod). The following schemes were also included: the separation scheme (SepInt), the schemes of integer induction (Int_Ind_Down, Int_Ind_Up, Int_Ind_Full), the minimum (Int_Min) and maximum (Int_Max) schemes (the existence of minimum and maximum integers enjoying a given property).

MML Identifier: INT_1.

The papers [2], and [1] provide the notation and terminology for this paper. For simplicity we follow a convention: x is arbitrary, k, n_{1}, n_{2} denote natural numbers, r, r_{1}, r_{2} denote real numbers, and D denotes a non-empty set. The following propositions are true:

$$
\begin{align*}
& \text { (1) }\left(r+r_{1}\right)-r_{2}=\left(r-r_{2}\right)+r_{1} . \tag{1}\\
& \text { (2) }\left(-r_{1}\right)+r_{2}=r_{2}-r_{1} . \tag{2}\\
& \text { (3) } r_{1}=\left(\left(-r_{2}\right)+r_{1}\right)+r_{2} \text { and } r_{1}=r_{2}+\left(\left(-r_{2}\right)+r_{1}\right) \text { and } r_{1}=r_{2}+\left(r_{1}-r_{2}\right) \tag{3}\\
& \text { and } r_{1}=\left(r_{2}+r_{1}\right)-r_{2} . \\
& \text { (4) }\left(r_{1}-r_{2}\right)+r_{2}=r_{1} \text { and }\left(r_{1}+r_{2}\right)-r_{2}=r_{1} . \\
& \text { (5) } r_{1} \leq r_{2} \text { if and only if } r_{1}<r_{2} \text { or } r_{1}=r_{2} .
\end{align*}
$$

The non-empty set \mathbb{Z} is defined by:
$x \in \mathbb{Z}$ if and only if there exists k such that $x=k$ or $x=-k$.
One can prove the following proposition
(6) For every x holds $x \in D$ if and only if there exists k such that $x=k$ or $x=-k$ if and only if $D=\mathbb{Z}$.
A real number is called an integer if: it is an element of \mathbb{Z}.
The following propositions are true:
(7) $\quad r$ is an integer if and only if r is an element of \mathbb{Z}.
(8) r is an integer if and only if there exists k such that $r=k$ or $r=-k$.
(9) If x is a natural number, then x is an integer.
(10) 0 is an integer and 1 is an integer.
(11) If $x \in \mathbb{Z}$, then $x \in \mathbb{R}$.
(12) $\quad x$ is an integer if and only if $x \in \mathbb{Z}$.
(13) x is an integer if and only if x is an element of \mathbb{Z}.
(14) $\mathbb{N} \subseteq \mathbb{Z}$.
(15) $\quad \mathbb{Z} \subseteq \mathbb{R}$.

In the sequel $i_{0}, i_{1}, i_{2}, i_{3}, i_{4}, i_{5}$ are integers. Let i_{1}, i_{2} be integers. Then $i_{1}+i_{2}$ is an integer. Then $i_{1} \cdot i_{2}$ is an integer.

Let i_{0} be an integer. Then $-i_{0}$ is an integer.
Let i_{1}, i_{2} be integers. Then $i_{1}-i_{2}$ is an integer.
Let n be a natural number. Then $-n$ is an integer. Let i_{1} be an integer. Then $n+i_{1}$ is an integer. Then $n \cdot i_{1}$ is an integer. Then $n-i_{1}$ is an integer.

Let i_{1} be an integer, and let n be a natural number. Then $i_{1}+n$ is an integer. Then $i_{1} \cdot n$ is an integer. Then $i_{1}-n$ is an integer.

Let us consider n_{1}, n_{2}. Then $n_{1}-n_{2}$ is an integer.
We now state a number of propositions:
(16) If $0 \leq i_{0}$, then i_{0} is a natural number.
(17) If r is an integer, then $r+1$ is an integer and $r-1$ is an integer.
(18) If $i_{2} \leq i_{1}$, then $i_{1}-i_{2}$ is a natural number.
(19) If $i_{1}+k=i_{2}$ or $k+i_{1}=i_{2}$, then $i_{1} \leq i_{2}$.
(20) If $i_{0}<i_{1}$, then $i_{0}+1 \leq i_{1}$ and $1+i_{0} \leq i_{1}$.
(21) If $i_{1}<0$, then $i_{1} \leq-1$.
(22) $\quad i_{1} \cdot i_{2}=1$ if and only if $i_{1}=1$ and $i_{2}=1$ or $i_{1}=-1$ and $i_{2}=-1$.
(23) $i_{1} \cdot i_{2}=-1$ if and only if $i_{1}=-1$ and $i_{2}=1$ or $i_{1}=1$ and $i_{2}=-1$.
(24) If $i_{0} \neq 0$, then $i_{1} \neq i_{1}+i_{0}$.
(25) $i_{1}<i_{1}+1$.
(26) $i_{1}-1<i_{1}$.
(27) For no i_{0} holds for every i_{1} holds $i_{0}<i_{1}$.
(28) For no i_{0} holds for every i_{1} holds $i_{1}<i_{0}$.

In the article we present several logical schemes. The scheme SepInt deals with a unary predicate \mathcal{P}, and states that:
there exists a subset X of \mathbb{Z} such that for every integer x holds $x \in X$ if and only if $\mathcal{P}[x]$
for all values of the parameter.
The scheme Int_Ind_Up concerns an integer \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
for every i_{0} such that $\mathcal{A} \leq i_{0}$ holds $\mathcal{P}\left[i_{0}\right]$
provided the following conditions are fulfilled:

- $\mathcal{P}[\mathcal{A}]$,
- for every i_{2} such that $\mathcal{A} \leq i_{2}$ holds if $\mathcal{P}\left[i_{2}\right]$, then $\mathcal{P}\left[i_{2}+1\right]$.

The scheme Int_Ind_Down deals with an integer \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
for every i_{0} such that $i_{0} \leq \mathcal{A}$ holds $\mathcal{P}\left[i_{0}\right]$
provided the parameters fulfill the following conditions:

- $\mathcal{P}[\mathcal{A}]$,
- for every i_{2} such that $i_{2} \leq \mathcal{A}$ holds if $\mathcal{P}\left[i_{2}\right]$, then $\mathcal{P}\left[i_{2}-1\right]$.

The scheme Int_Ind_Full deals with an integer \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
for every i_{0} holds $\mathcal{P}\left[i_{0}\right]$
provided the following requirements are fulfilled:

- $\mathcal{P}[\mathcal{A}]$,
- for every i_{2} such that $\mathcal{P}\left[i_{2}\right]$ holds $\mathcal{P}\left[i_{2}-1\right]$ and $\mathcal{P}\left[i_{2}+1\right]$.

The scheme Int_Min concerns an integer \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
there exists i_{0} such that $\mathcal{P}\left[i_{0}\right]$ and for every i_{1} such that $\mathcal{P}\left[i_{1}\right]$ holds $i_{0} \leq i_{1}$ provided the following conditions are satisfied:

- for every i_{1} such that $\mathcal{P}\left[i_{1}\right]$ holds $\mathcal{A} \leq i_{1}$,
- there exists i_{1} such that $\mathcal{P}\left[i_{1}\right]$.

The scheme Int_Max deals with an integer \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
there exists i_{0} such that $\mathcal{P}\left[i_{0}\right]$ and for every i_{1} such that $\mathcal{P}\left[i_{1}\right]$ holds $i_{1} \leq i_{0}$ provided the parameters satisfy the following conditions:

- for every i_{1} such that $\mathcal{P}\left[i_{1}\right]$ holds $i_{1} \leq \mathcal{A}$,
- there exists i_{1} such that $\mathcal{P}\left[i_{1}\right]$.

Let us consider r. Then $\operatorname{sgn} r$ is an integer.
We now state two propositions:

$$
\begin{align*}
& \operatorname{sgn} r=1 \text { or } \operatorname{sgn} r=-1 \text { or } \operatorname{sgn} r=0 . \tag{29}\\
& |r|=r \text { or }|r|=-r . \tag{30}
\end{align*}
$$

Let us consider i_{0}. Then $\left|i_{0}\right|$ is an integer.
Let i_{1}, i_{2}, i_{3} be integers. The predicate $i_{1} \equiv i_{2}\left(\bmod i_{3}\right)$ is defined by:
there exists i_{4} such that $i_{3} \cdot i_{4}=i_{1}-i_{2}$.
We now state a number of propositions:
(31) $\quad i_{1} \equiv i_{2}\left(\bmod i_{3}\right)$ if and only if there exists an integer i_{4} such that $i_{3} \cdot i_{4}=$ $i_{1}-i_{2}$.
(32) $\quad i_{1} \equiv i_{1}\left(\bmod i_{2}\right)$.
(33) If $i_{2}=0$, then $i_{1} \equiv i_{2}\left(\bmod i_{1}\right)$ and $i_{2} \equiv i_{1}\left(\bmod i_{1}\right)$.
(34) If $i_{3}=1$, then $i_{1} \equiv i_{2}\left(\bmod i_{3}\right)$.
(35) If $i_{1} \equiv i_{2}\left(\bmod i_{3}\right)$, then $i_{2} \equiv i_{1}\left(\bmod i_{3}\right)$.
(36) If $i_{1} \equiv i_{2}\left(\bmod i_{5}\right)$ and $i_{2} \equiv i_{3}\left(\bmod i_{5}\right)$, then $i_{1} \equiv i_{3}\left(\bmod i_{5}\right)$.

$$
\begin{equation*}
\text { If } i_{1} \equiv i_{2}\left(\bmod i_{5}\right) \text { and } i_{3} \equiv i_{4}\left(\bmod i_{5}\right) \text {, then } i_{1}+i_{3} \equiv i_{2}+i_{4}\left(\bmod i_{5}\right) . \tag{37}
\end{equation*}
$$

(38) If $i_{1} \equiv i_{2}\left(\bmod i_{5}\right)$ and $i_{3} \equiv i_{4}\left(\bmod i_{5}\right)$, then $i_{1}-i_{3} \equiv i_{2}-i_{4}\left(\bmod i_{5}\right)$.
(39) If $i_{1} \equiv i_{2}\left(\bmod i_{5}\right)$ and $i_{3} \equiv i_{4}\left(\bmod i_{5}\right)$, then $i_{1} \cdot i_{3} \equiv i_{2} \cdot i_{4}\left(\bmod i_{5}\right)$.
(40) $i_{1}+i_{2} \equiv i_{3}\left(\bmod i_{5}\right)$ if and only if $i_{1} \equiv i_{3}-i_{2}\left(\bmod i_{5}\right)$.
(41) If $i_{4} \cdot i_{5}=i_{3}$, then if $i_{1} \equiv i_{2}\left(\bmod i_{3}\right)$, then $i_{1} \equiv i_{2}\left(\bmod i_{4}\right)$.
(42) $\quad i_{1} \equiv i_{2}\left(\bmod i_{5}\right)$ if and only if $i_{1}+i_{5} \equiv i_{2}\left(\bmod i_{5}\right)$.
(43) $\quad i_{1} \equiv i_{2}\left(\bmod i_{5}\right)$ if and only if $i_{1}-i_{5} \equiv i_{2}\left(\bmod i_{5}\right)$.
(44) If $i_{1} \leq r$ and $r-1<i_{1}$ and $i_{2} \leq r$ and $r-1<i_{2}$, then $i_{1}=i_{2}$.
(45) If $r \leq i_{1}$ and $i_{1}<r+1$ and $r \leq i_{2}$ and $i_{2}<r+1$, then $i_{1}=i_{2}$.

Let us consider r. The functor $\lfloor r\rfloor$ yielding an integer, is defined as follows:
$\lfloor r\rfloor \leq r$ and $r-1<\lfloor r\rfloor$.
The following propositions are true:
(46) $\quad i_{0} \leq r$ and $r-1<i_{0}$ if and only if $\lfloor r\rfloor=i_{0}$.
(47) $\lfloor r\rfloor=r$ if and only if r is an integer.
(48) $\lfloor r\rfloor<r$ if and only if r is not an integer.
(49) $\lfloor r\rfloor \leq r$.
(50) $\lfloor r\rfloor-1<r$ and $\lfloor r\rfloor<r+1$.
(51) $\lfloor r\rfloor+i_{0}=\left\lfloor r+i_{0}\right\rfloor$.
(52) $r \leq\lfloor r\rfloor+1$.

Let us consider r. The functor $\lceil r\rceil$ yields an integer and is defined as follows: $r \leq\lceil r\rceil$ and $\lceil r\rceil<r+1$.
We now state a number of propositions:
(53) $\quad r \leq i_{0}$ and $i_{0}<r+1$ if and only if $\lceil r\rceil=i_{0}$.
(54) $\quad\lceil r\rceil=r$ if and only if r is an integer.
(55) $r<\lceil r\rceil$ if and only if r is not an integer.
(56) $\quad r \leq\lceil r\rceil$.
(57) $r-1<\lceil r\rceil$ and $r<\lceil r\rceil+1$.
(58) $\quad\lceil r\rceil+i_{0}=\left\lceil r+i_{0}\right\rceil$.
(59) $\lfloor r\rfloor=\lceil r\rceil$ if and only if r is an integer.
(60) $\lfloor r\rfloor<\lceil r\rceil$ if and only if r is not an integer.
(61) $\lfloor r\rfloor \leq\lceil r\rceil$.
(62) $\lfloor\lceil r\rceil\rfloor=\lceil r\rceil$.
(63) $\lfloor\lfloor r\rfloor\rfloor=\lfloor r\rfloor$.
(64) $\lceil\lceil r\rceil\rceil=\lceil r\rceil$.
(65) $\lceil\lfloor r\rfloor\rceil=\lfloor r\rfloor$.
(66) $\lfloor r\rfloor=\lceil r\rceil$ if and only if $\lfloor r\rfloor+1 \neq\lceil r\rceil$.

Let us consider r. The functor frac r yielding a real number, is defined by: $\operatorname{frac} r=r-\lfloor r\rfloor$.
One can prove the following propositions:

$$
\begin{equation*}
\text { frac } r=r-\lfloor r\rfloor . \tag{67}
\end{equation*}
$$

(68) $r=\lfloor r\rfloor+\operatorname{frac} r$.
(69) $\operatorname{frac} r<1$ and $0 \leq \operatorname{frac} r$.
(70) $\lfloor\operatorname{frac} r\rfloor=0$.
(71) $\operatorname{frac} r=0$ if and only if r is an integer.
(72) $0<$ frac r if and only if r is not an integer.

Let i_{1}, i_{2} be integers. The functor $i_{1} \div i_{2}$ yields an integer and is defined by: $i_{1} \div i_{2}=\left\lfloor\frac{i_{1}}{i_{2}}\right\rfloor$.
One can prove the following proposition
(73) $i_{1} \div i_{2}=\left\lfloor\frac{i_{1}}{i_{2}}\right\rfloor$.

Let i_{1}, i_{2} be integers. The functor $i_{1} \bmod i_{2}$ yielding an integer, is defined as follows:
$i_{1} \bmod i_{2}=i_{1}-\left(i_{1} \div i_{2}\right) \cdot i_{2}$.
Next we state a proposition
(74) $\quad i_{1} \bmod i_{2}=i_{1}-\left(i_{1} \div i_{2}\right) \cdot i_{2}$.

Let i_{1}, i_{2} be integers. The predicate $i_{1} \mid i_{2}$ is defined as follows:
there exists i_{3} such that $i_{2}=i_{1} \cdot i_{3}$.
The following proposition is true
(75) $\quad i_{1} \mid i_{2}$ if and only if there exists i_{3} such that $i_{1} \cdot i_{3}=i_{2}$.

References

[1] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received February 7, 1990

