Curried and Uncurried Functions

Grzegorz Bancerek
Warsaw University
Białystok

Abstract

Summary. In the article following functors are introduced: the projections of subsets of the Cartesian product, the functor which for every function $f: X \times Y \rightarrow Z$ gives some curried function $(X \rightarrow(Y \rightarrow Z)$), and the functor which from curried functions makes uncurried functions. Some of their properties and some properties of the set of all functions from a set into a set are also shown.

MML Identifier: FUNCT_5.

The papers [8], [3], [2], [4], [9], [1], [6], [7], and [5] provide the terminology and notation for this paper. We follow a convention: $X, Y, Z, X_{1}, X_{2}, Y_{1}, Y_{2}$ are sets, f, g, f_{1}, f_{2} are functions, and x, y, z, t are arbitrary. The scheme LambdaFS deals with a set \mathcal{A} and a unary functor \mathcal{F} and states that:
there exists f such that $\operatorname{dom} f=\mathcal{A}$ and for every g such that $g \in \mathcal{A}$ holds $f(g)=\mathcal{F}(g)$
for all values of the parameters.
We now state a proposition
(1)

We now define two new functors. Let us consider X. The functor $\pi_{1}(X)$ yields a set and is defined as follows:
$x \in \pi_{1}(X)$ if and only if there exists y such that $\langle x, y\rangle \in X$.
The functor $\pi_{2}(X)$ yields a set and is defined as follows:
$y \in \pi_{2}(X)$ if and only if there exists x such that $\langle x, y\rangle \in X$.
The following propositions are true:
(2) $\quad Z=\pi_{1}(X)$ if and only if for every x holds $x \in Z$ if and only if there exists y such that $\langle x, y\rangle \in X$.
(3) $\quad Z=\pi_{2}(X)$ if and only if for every y holds $y \in Z$ if and only if there exists x such that $\langle x, y\rangle \in X$.
(4) If $\langle x, y\rangle \in X$, then $x \in \pi_{1}(X)$ and $y \in \pi_{2}(X)$.
(5) If $X \subseteq Y$, then $\pi_{1}(X) \subseteq \pi_{1}(Y)$ and $\pi_{2}(X) \subseteq \pi_{2}(Y)$.

$$
\begin{equation*}
\text { If } Y \neq \emptyset \text { or }: X, Y: \neq \emptyset \text { or }\left[: Y, X: \neq \emptyset, \text { then } \pi_{1}([: X, Y:])=X\right. \text { and } \tag{11}
\end{equation*}
$$

$$
\pi_{2}([: Y, X:])=X
$$

$$
\begin{equation*}
\left.\pi_{1}(: X, Y:]\right) \subseteq X \text { and } \pi_{2}([: X, Y:]) \subseteq Y \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } Z \subseteq[: X, Y:], \text { then } \pi_{1}(Z) \subseteq X \text { and } \pi_{2}(Z) \subseteq Y \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{1}([: X,\{x\}:])=X \text { and } \pi_{2}([:\{x\}, X:])=X \text { and } \pi_{1}([: X,\{x, y\}:])=X \tag{14}
\end{equation*}
$$

$$
\text { and } \pi_{2}(:\{x, y\}, X:)=X
$$

$$
\begin{equation*}
\pi_{1}(\{\langle x, y\rangle\})=\{x\} \text { and } \pi_{2}(\{\langle x, y\rangle\})=\{y\} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{1}(\{\langle x, y\rangle,\langle z, t\rangle\})=\{x, z\} \text { and } \pi_{2}(\{\langle x, y\rangle,\langle z, t\rangle\})=\{y, t\} \tag{16}
\end{equation*}
$$

$$
\begin{align*}
& \pi_{1}(X \cup Y)=\pi_{1}(X) \cup \pi_{1}(Y) \text { and } \pi_{2}(X \cup Y)=\pi_{2}(X) \cup \pi_{2}(Y) \tag{6}\\
& \pi_{1}(X \cap Y) \subseteq \pi_{1}(X) \cap \pi_{1}(Y) \text { and } \pi_{2}(X \cap Y) \subseteq \pi_{2}(X) \cap \pi_{2}(Y) \tag{7}\\
& \pi_{1}(X) \backslash \pi_{1}(Y) \subseteq \pi_{1}(X \backslash Y) \text { and } \pi_{2}(X) \backslash \pi_{2}(Y) \subseteq \pi_{2}(X \backslash Y) \tag{8}\\
& \pi_{1}(X) \dot{-} \pi_{1}(Y) \subseteq \pi_{1}(X \dot{\perp}) \text { and } \pi_{2}(X) \dot{-} \pi_{2}(Y) \subseteq \pi_{2}(X \dot{\perp}) \tag{9}\\
& \pi_{1}(\emptyset)=\emptyset \text { and } \pi_{2}(\emptyset)=\emptyset \tag{10}
\end{align*}
$$

If for no x, y holds $\langle x, y\rangle \in X$, then $\pi_{1}(X)=\emptyset$ and $\pi_{2}(X)=\emptyset$.
If $\pi_{1}(X)=\emptyset$ or $\pi_{2}(X)=\emptyset$, then for no x, y holds $\langle x, y\rangle \in X$. $\pi_{1}(X)=\emptyset$ if and only if $\pi_{2}(X)=\emptyset$.
$\pi_{1}(\operatorname{dom} f)=\pi_{2}(\operatorname{dom}(\curvearrowleft f))$ and $\pi_{2}(\operatorname{dom} f)=\pi_{1}(\operatorname{dom}(\curvearrowleft f))$.
$\pi_{1}(\operatorname{graph} f)=\operatorname{dom} f$ and $\pi_{2}(\operatorname{graph} f)=\operatorname{rng} f$.
We now define two new functors. Let us consider f. The functor curry f yielding a function, is defined by:
(i) $\operatorname{dom}($ curry $f)=\pi_{1}(\operatorname{dom} f)$,
(ii) for every x such that $x \in \pi_{1}(\operatorname{dom} f)$ there exists g such that (curry $\left.f\right)(x)=$ g and $\operatorname{dom} g=\pi_{2}\left(\operatorname{dom} f \cap\left[:\{x\}, \pi_{2}(\operatorname{dom} f):\right]\right)$ and for every y such that $y \in$ dom g holds $g(y)=f(\langle x, y\rangle)$.
The functor uncurry f yields a function and is defined as follows:
(i) for every t holds $t \in \operatorname{dom}($ uncurry f) if and only if there exist x, g, y such that $t=\langle x, y\rangle$ and $x \in \operatorname{dom} f$ and $g=f(x)$ and $y \in \operatorname{dom} g$,
(ii) for all x, g such that $x \in \operatorname{dom}\left(\right.$ uncurry f) and $g=f\left(x_{\mathbf{1}}\right)$ holds (uncurry f) $(x)=g\left(x_{\mathbf{2}}\right)$.
We now define two new functors. Let us consider f. The functor curry' f yields a function and is defined as follows:
curry $^{\prime} f=\operatorname{curry}(\curvearrowleft f)$.
The functor uncurry ${ }^{\prime} f$ yielding a function, is defined by:
$u^{\prime} u^{\prime} f=\curvearrowleft($ uncurry $f)$.
The following propositions are true:
(22) Let F be a function. Then $F=$ curry f if and only if the following conditions are satisfied:
(i) $\quad \operatorname{dom} F=\pi_{1}(\operatorname{dom} f)$,
(ii) for every x such that $x \in \pi_{1}(\operatorname{dom} f)$ there exists g such that $F(x)=g$ and $\operatorname{dom} g=\pi_{2}\left(\operatorname{dom} f \cap\left[:\{x\}, \pi_{2}(\operatorname{dom} f):\right]\right)$ and for every y such that $y \in \operatorname{dom} g$ holds $g(y)=f(\langle x, y\rangle)$.
(24) Let F be a function. Then $F=$ uncurry f if and only if the following conditions are satisfied:
(i) for every t holds $t \in \operatorname{dom} F$ if and only if there exist x, g, y such that $t=\langle x, y\rangle$ and $x \in \operatorname{dom} f$ and $g=f(x)$ and $y \in \operatorname{dom} g$,
(ii) for all x, g such that $x \in \operatorname{dom} F$ and $g=f\left(x_{\mathbf{1}}\right)$ holds $F(x)=g\left(x_{\mathbf{2}}\right)$.
(25) uncurry' $f=\curvearrowleft$ (uncurry f).
(26) If $\langle x, y\rangle \in \operatorname{dom} f$, then $x \in \operatorname{dom}(c u r r y f)$ and curry $f(x)$ is a function.
(27) If $\langle x, y\rangle \in \operatorname{dom} f$ and $g=$ curry $f(x)$, then $y \in \operatorname{dom} g$ and $g(y)=$ $f(\langle x, y\rangle)$.
(28) If $\langle x, y\rangle \in \operatorname{dom} f$, then $y \in \operatorname{dom}\left(\right.$ curry $\left.^{\prime} f\right)$ and curry ${ }^{\prime} f(y)$ is a function.
(29) If $\langle x, y\rangle \in \operatorname{dom} f$ and $g=$ curry $^{\prime} f(y)$, then $x \in \operatorname{dom} g$ and $g(x)=$ $f(\langle x, y\rangle)$.
(30) $\operatorname{dom}\left(\right.$ curry $\left.^{\prime} f\right)=\pi_{2}(\operatorname{dom} f)$.
(31) If $: X, Y: \neq \emptyset$ and $\operatorname{dom} f=[: X, Y:]$, then $\operatorname{dom}($ curry $f)=X$ and $\operatorname{dom}\left(\right.$ curry $\left.^{\prime} f\right)=Y$.
(32) If dom $f \subseteq[: X, Y:]$, then $\operatorname{dom}($ curry $f) \subseteq X$ and $\operatorname{dom}\left(\right.$ curry $\left.^{\prime} f\right) \subseteq Y$.
(33) If $\operatorname{rng} f \subseteq Y^{X}$, then $\operatorname{dom}($ uncurry $f)=[\operatorname{dom} f, X:$ and $\operatorname{dom}\left(\right.$ uncurry $\left.^{\prime} f\right)=\{: X, \operatorname{dom} f:$.
(34) If for no x, y holds $\langle x, y\rangle \in \operatorname{dom} f$, then curry $f=\square$ and curry ${ }^{\prime} f=\square$.
(35) If for no x holds $x \in \operatorname{dom} f$ and $f(x)$ is a function, then uncurry $f=$ and uncurry' $f=\square$.
(36) Suppose $: X, Y: \neq \emptyset$ and $\operatorname{dom} f=[: X, Y:$ and $x \in X$. Then there exists g such that curry $f(x)=g$ and $\operatorname{dom} g=Y$ and $\operatorname{rng} g \subseteq \operatorname{rng} f$ and for every y such that $y \in Y$ holds $g(y)=f(\langle x, y\rangle)$.
(37) If $x \in \operatorname{dom}($ curry f), then curry $f(x)$ is a function.
(38) Suppose $x \in \operatorname{dom}($ curry f) and $g=\operatorname{curry} f(x)$. Then
(i) $\quad \operatorname{dom} g=\pi_{2}\left(\operatorname{dom} f \cap\left[:\{x\}, \pi_{2}(\operatorname{dom} f):\right)\right.$,
(ii) $\operatorname{dom} g \subseteq \pi_{2}(\operatorname{dom} f)$,
(iii) $\quad \operatorname{rng} g \subseteq \operatorname{rng} f$,
(iv) for every y such that $y \in \operatorname{dom} g$ holds $g(y)=f(\langle x, y\rangle)$ and $\langle x, y\rangle \in$ $\operatorname{dom} f$.
(39) Suppose $[: X, Y: \neq \emptyset$ and $\operatorname{dom} f=[X, Y:]$ and $y \in Y$. Then there exists g such that curry' $f(y)=g$ and $\operatorname{dom} g=X$ and $\operatorname{rng} g \subseteq \operatorname{rng} f$ and for every x such that $x \in X$ holds $g(x)=f(\langle x, y\rangle)$.
(40) If $x \in \operatorname{dom}\left(\right.$ curry $\left.^{\prime} f\right)$, then curry ${ }^{\prime} f(x)$ is a function.
(41) Suppose $x \in \operatorname{dom}\left(\right.$ curry $\left.^{\prime} f\right)$ and $g=$ curry $^{\prime} f(x)$. Then
(i) $\quad \operatorname{dom} g=\pi_{1}\left(\operatorname{dom} f \cap\left[: \pi_{1}(\operatorname{dom} f),\{x\}: ;\right)\right.$,
(ii) $\operatorname{dom} g \subseteq \pi_{1}(\operatorname{dom} f)$,
(iii) $\operatorname{rng} g \subseteq \operatorname{rng} f$,
(iv) for every y such that $y \in \operatorname{dom} g$ holds $g(y)=f(\langle y, x\rangle)$ and $\langle y, x\rangle \in$ $\operatorname{dom} f$.
(45) If $x \in \operatorname{dom} f$ and $g=f(x)$ and $y \in \operatorname{dom} g$, then $\langle x, y\rangle \in \operatorname{dom}($ uncurry f) and uncurry $f(\langle x, y\rangle)=g(y)$ and $g(y) \in \operatorname{rng}$ (uncurry f).
(46) If $x \in \operatorname{dom} f$ and $g=f(x)$ and $y \in \operatorname{dom} g$, then $\langle y, x\rangle \in \operatorname{dom}\left(\right.$ uncurry' $^{\prime} f$) and uncurry' $f(\langle y, x\rangle)=g(y)$ and $g(y) \in \operatorname{rng}\left(\right.$ uncurry $\left.^{\prime} f\right)$.
(51) If $\operatorname{dom} f_{1}=\left[: X, Y\right.$: and $\operatorname{dom} f_{2}=\left[X, Y\right.$: and curry $f_{1}=$ curry f_{2}, then $f_{1}=f_{2}$.
(52) If dom $f_{1}=[X, Y:]$ and $\operatorname{dom} f_{2}=[: X, Y:]$ and curry' $f_{1}=$ curry' $^{\prime} f_{2}$, then $f_{1}=f_{2}$.
(53) If rng $f_{1} \subseteq Y^{X}$ and $\operatorname{rng} f_{2} \subseteq Y^{X}$ and $X \neq \emptyset$ and uncurry $f_{1}=$ uncurry f_{2}, then $f_{1}=f_{2}$.
(54) If $\operatorname{rng} f_{1} \subseteq Y^{X}$ and $\operatorname{rng} f_{2} \subseteq Y^{X}$ and $X \neq \emptyset$ and uncurry' $f_{1}=$ uncurry' f_{2}, then $f_{1}=f_{2}$.
(55) If rng $f \subseteq Y^{X}$ and $X \neq \emptyset$, then curry(uncurry f) $=f$ and curry $^{\prime}\left(\right.$ uncurry' $\left.^{\prime} f\right)=f$.
If $\operatorname{dom} f=[: X, Y:$, then uncurry $($ curry $f)=f$ and uncurry' $\left(\right.$ curry' $\left.^{\prime} f\right)=f$.
If $\operatorname{dom} f \subseteq: X, Y:$, then uncurry $($ curry $f)=f$ and uncurry ${ }^{\prime}\left(\right.$ curry' $\left.^{\prime} f\right)=f$.
If $\operatorname{rng} f \subseteq X \dot{\rightarrow} Y$ and $\square \notin \operatorname{rng} f$, then curry(uncurry $f)=f$ and $\operatorname{curry}^{\prime}\left(\right.$ uncurry $\left.^{\prime} f\right)=f$.
If $\operatorname{dom} f_{1} \subseteq[: X, Y:]$ and $\operatorname{dom} f_{2} \subseteq\left[X, Y:\right.$ and curry $f_{1}=$ curry f_{2}, then $f_{1}=f_{2}$.
(60) If $\left.\operatorname{dom} f_{1} \subseteq: X X, Y:\right]$ and $\operatorname{dom} f_{2} \subseteq: X, Y:$ and curry' $f_{1}=$ curry' $^{\prime} f_{2}$, then $f_{1}=f_{2}$.
(61) If rng $f_{1} \subseteq X \dot{\rightarrow} Y$ and $\operatorname{rng} f_{2} \subseteq X \dot{\rightarrow} Y$ and $\square \notin \operatorname{rng} f_{1}$ and $\square \notin \operatorname{rng} f_{2}$ and uncurry $f_{1}=$ uncurry f_{2}, then $f_{1}=f_{2}$.
If $\operatorname{rng} f_{1} \subseteq X \dot{\rightarrow} Y$ and $\operatorname{rng} f_{2} \subseteq X \dot{\rightarrow} Y$ and $\square \notin \operatorname{rng} f_{1}$ and $\square \notin \operatorname{rng} f_{2}$ and uncurry' $f_{1}=$ uncurry' f_{2}, then $f_{1}=f_{2}$.
If $X \subseteq Y$, then $X^{Z} \subseteq Y^{Z}$.
$X^{\emptyset}=\{\square\}$.

$$
X \approx X^{\{x\}} \text { and } \overline{\bar{X}}=\overline{\overline{X^{\{x\}}}}
$$

(67) If $X_{1} \approx Y_{1}$ and $X_{2} \approx Y_{2}$, then $X_{2}{ }^{X_{1}} \approx Y_{2}{ }^{Y_{1}}$ and $\overline{\overline{X_{2}{ }^{X_{1}}}}=\overline{\overline{{Y_{2}}^{Y_{1}}}}$.
(68) If $\overline{\overline{X_{1}}}=\overline{\overline{Y_{1}}}$ and $\overline{\overline{X_{2}}}=\overline{\overline{Y_{2}}}$, then $\overline{\overline{X_{2} X_{1}}}=\overline{\overline{Y_{2} Y_{1}}}$.
(69) $\left.\frac{\text { If } X_{1} \cap}{\overline{X_{1}^{X_{1} \cup X_{2}}}}=\emptyset \overline{X_{2}=\emptyset \text {, then } X^{X_{1} \cup X_{2}}, X^{X_{2}}} \approx: X^{X_{1}}, X^{X_{2}}:\right]$ and
$\overline{\overline{X^{X_{1} \cup X_{2}}}}=\overline{{\left.: X^{X_{1}}, X^{X_{2}}\right]}}$.
(72) If $x \neq y$, then $\{x, y\}^{X} \approx 2^{X}$ and $\overline{\overline{\{x, y\}^{X}}}=\overline{\overline{2^{X}}}$.
(73) If $x \neq y$, then $X^{\{x, y\}} \approx\left\{X, X:\right.$ and $\overline{\overline{X^{\{x, y\}}}}=\overline{\overline{: X, X:}}$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377382, 1990.
[2] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521527, 1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[7] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

