Curried and Uncurried Functions

Grzegorz Bancerek Warsaw University Białystok

Summary. In the article following functors are introduced: the projections of subsets of the Cartesian product, the functor which for every function $f: X \times Y \to Z$ gives some curried function $(X \to (Y \to Z))$, and the functor which from curried functions makes uncurried functions. Some of their properties and some properties of the set of all functions from a set into a set are also shown.

MML Identifier: FUNCT_5.

The papers [8], [3], [2], [4], [9], [1], [6], [7], and [5] provide the terminology and notation for this paper. We follow a convention: $X, Y, Z, X_1, X_2, Y_1, Y_2$ are sets, f, g, f_1, f_2 are functions, and x, y, z, t are arbitrary. The scheme LambdaFS deals with a set \mathcal{A} and a unary functor \mathcal{F} and states that:

there exists f such that dom $f = \mathcal{A}$ and for every g such that $g \in \mathcal{A}$ holds $f(g) = \mathcal{F}(g)$

for all values of the parameters.

We now state a proposition

(1) $\wedge \Box = \Box$.

We now define two new functors. Let us consider X. The functor $\pi_1(X)$ yields a set and is defined as follows:

 $x \in \pi_1(X)$ if and only if there exists y such that $\langle x, y \rangle \in X$.

The functor $\pi_2(X)$ yields a set and is defined as follows:

 $y \in \pi_2(X)$ if and only if there exists x such that $\langle x, y \rangle \in X$.

The following propositions are true:

- (2) $Z = \pi_1(X)$ if and only if for every x holds $x \in Z$ if and only if there exists y such that $\langle x, y \rangle \in X$.
- (3) $Z = \pi_2(X)$ if and only if for every y holds $y \in Z$ if and only if there exists x such that $\langle x, y \rangle \in X$.

537

(4) If $\langle x, y \rangle \in X$, then $x \in \pi_1(X)$ and $y \in \pi_2(X)$.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (5) If $X \subseteq Y$, then $\pi_1(X) \subseteq \pi_1(Y)$ and $\pi_2(X) \subseteq \pi_2(Y)$.
- (6) $\pi_1(X \cup Y) = \pi_1(X) \cup \pi_1(Y) \text{ and } \pi_2(X \cup Y) = \pi_2(X) \cup \pi_2(Y).$
- (7) $\pi_1(X \cap Y) \subseteq \pi_1(X) \cap \pi_1(Y) \text{ and } \pi_2(X \cap Y) \subseteq \pi_2(X) \cap \pi_2(Y).$
- (8) $\pi_1(X) \setminus \pi_1(Y) \subseteq \pi_1(X \setminus Y) \text{ and } \pi_2(X) \setminus \pi_2(Y) \subseteq \pi_2(X \setminus Y).$
- (9) $\pi_1(X) \doteq \pi_1(Y) \subseteq \pi_1(X \doteq Y) \text{ and } \pi_2(X) \doteq \pi_2(Y) \subseteq \pi_2(X \doteq Y).$
- (10) $\pi_1(\emptyset) = \emptyset$ and $\pi_2(\emptyset) = \emptyset$.
- (11) If $Y \neq \emptyset$ or $[X, Y] \neq \emptyset$ or $[Y, X] \neq \emptyset$, then $\pi_1([X, Y]) = X$ and $\pi_2([Y, X]) = X$.
- (12) $\pi_1([X, Y]) \subseteq X \text{ and } \pi_2([X, Y]) \subseteq Y.$
- (13) If $Z \subseteq [X, Y]$, then $\pi_1(Z) \subseteq X$ and $\pi_2(Z) \subseteq Y$.
- (14) $\pi_1([X, \{x\}]) = X$ and $\pi_2([\{x\}, X]) = X$ and $\pi_1([X, \{x, y\}]) = X$ and $\pi_2([\{x, y\}, X]) = X$.
- (15) $\pi_1(\{\langle x, y \rangle\}) = \{x\} \text{ and } \pi_2(\{\langle x, y \rangle\}) = \{y\}.$
- (16) $\pi_1(\{\langle x, y \rangle, \langle z, t \rangle\}) = \{x, z\} \text{ and } \pi_2(\{\langle x, y \rangle, \langle z, t \rangle\}) = \{y, t\}.$
- (17) If for no x, y holds $\langle x, y \rangle \in X$, then $\pi_1(X) = \emptyset$ and $\pi_2(X) = \emptyset$.
- (18) If $\pi_1(X) = \emptyset$ or $\pi_2(X) = \emptyset$, then for no x, y holds $\langle x, y \rangle \in X$.
- (19) $\pi_1(X) = \emptyset$ if and only if $\pi_2(X) = \emptyset$.
- (20) $\pi_1(\operatorname{dom} f) = \pi_2(\operatorname{dom}(\frown f)) \text{ and } \pi_2(\operatorname{dom} f) = \pi_1(\operatorname{dom}(\frown f)).$
- (21) $\pi_1(\operatorname{graph} f) = \operatorname{dom} f \text{ and } \pi_2(\operatorname{graph} f) = \operatorname{rng} f.$

We now define two new functors. Let us consider f. The functor curry f yielding a function, is defined by:

(i) $\operatorname{dom}(\operatorname{curry} f) = \pi_1(\operatorname{dom} f),$

(ii) for every x such that $x \in \pi_1(\operatorname{dom} f)$ there exists g such that $(\operatorname{curry} f)(x) = g$ and dom $g = \pi_2(\operatorname{dom} f \cap [\{x\}, \pi_2(\operatorname{dom} f)\})$ and for every y such that $y \in \operatorname{dom} g$ holds $g(y) = f(\langle x, y \rangle)$.

The functor uncurry f yields a function and is defined as follows:

(i) for every t holds $t \in \text{dom}(\text{uncurry } f)$ if and only if there exist x, g, y such that $t = \langle x, y \rangle$ and $x \in \text{dom } f$ and g = f(x) and $y \in \text{dom } g$,

(ii) for all x, g such that $x \in \text{dom}(\text{uncurry } f)$ and $g = f(x_1)$ holds $(\text{uncurry } f)(x) = g(x_2)$.

We now define two new functors. Let us consider f. The functor curry' f yields a function and is defined as follows:

 $\operatorname{curry}' f = \operatorname{curry}(\frown f).$

The functor uncurry' f yielding a function, is defined by:

uncurry' $f = \mathcal{A}(\text{uncurry } f).$

The following propositions are true:

- (22) Let F be a function. Then $F = \operatorname{curry} f$ if and only if the following conditions are satisfied:
 - (i) dom $F = \pi_1(\operatorname{dom} f)$,
 - (ii) for every x such that $x \in \pi_1(\text{dom } f)$ there exists g such that F(x) = gand dom $g = \pi_2(\text{dom } f \cap [: \{x\}, \pi_2(\text{dom } f)])$ and for every y such that $y \in \text{dom } g$ holds $g(y) = f(\langle x, y \rangle)$.

- (23) $\operatorname{curry}' f = \operatorname{curry}(\frown f).$
- (24) Let F be a function. Then F = uncurry f if and only if the following conditions are satisfied:
 - (i) for every t holds $t \in \text{dom } F$ if and only if there exist x, g, y such that $t = \langle x, y \rangle$ and $x \in \text{dom } f$ and g = f(x) and $y \in \text{dom } g$,
 - (ii) for all x, g such that $x \in \text{dom } F$ and $g = f(x_1)$ holds $F(x) = g(x_2)$.
- (25) uncurry f = n(uncurry f).
- (26) If $\langle x, y \rangle \in \text{dom } f$, then $x \in \text{dom}(\text{curry } f)$ and curry f(x) is a function.
- (27) If $\langle x, y \rangle \in \text{dom } f$ and g = curry f(x), then $y \in \text{dom } g$ and $g(y) = f(\langle x, y \rangle)$.
- (28) If $\langle x, y \rangle \in \text{dom } f$, then $y \in \text{dom}(\text{curry}' f)$ and curry' f(y) is a function.
- (29) If $\langle x, y \rangle \in \text{dom } f$ and g = curry' f(y), then $x \in \text{dom } g$ and $g(x) = f(\langle x, y \rangle)$.
- (30) $\operatorname{dom}(\operatorname{curry}' f) = \pi_2(\operatorname{dom} f).$
- (31) If $[X, Y] \neq \emptyset$ and dom f = [X, Y], then dom(curry f) = X and dom(curry' f) = Y.
- (32) If dom $f \subseteq [X, Y]$, then dom(curry $f) \subseteq X$ and dom(curry' $f) \subseteq Y$.
- (33) If rng $f \subseteq Y^X$, then dom(uncurry f) = [dom f, X] and dom(uncurry' f) = [X, dom f].
- (34) If for no x, y holds $\langle x, y \rangle \in \text{dom } f$, then curry $f = \Box$ and curry $f = \Box$.
- (35) If for no x holds $x \in \text{dom } f$ and f(x) is a function, then uncurry $f = \Box$ and uncurry $f = \Box$.
- (36) Suppose $[X, Y] \neq \emptyset$ and dom f = [X, Y] and $x \in X$. Then there exists g such that curry f(x) = g and dom g = Y and rng $g \subseteq$ rng f and for every y such that $y \in Y$ holds $g(y) = f(\langle x, y \rangle)$.
- (37) If $x \in \text{dom}(\text{curry } f)$, then curry f(x) is a function.
- (38) Suppose $x \in \text{dom}(\text{curry } f)$ and g = curry f(x). Then
 - (i) dom $g = \pi_2(\text{dom } f \cap [: \{x\}, \pi_2(\text{dom } f)]),$
 - (ii) $\operatorname{dom} g \subseteq \pi_2(\operatorname{dom} f),$
 - (iii) $\operatorname{rng} g \subseteq \operatorname{rng} f$,
- (iv) for every y such that $y \in \text{dom } g$ holds $g(y) = f(\langle x, y \rangle)$ and $\langle x, y \rangle \in \text{dom } f$.
- (39) Suppose $[X, Y] \neq \emptyset$ and dom f = [X, Y] and $y \in Y$. Then there exists g such that curry' f(y) = g and dom g = X and rng $g \subseteq$ rng f and for every x such that $x \in X$ holds $g(x) = f(\langle x, y \rangle)$.
- (40) If $x \in \text{dom}(\text{curry}' f)$, then curry' f(x) is a function.
- (41) Suppose $x \in \text{dom}(\text{curry}' f)$ and g = curry' f(x). Then
 - (i) dom $g = \pi_1(\text{dom } f \cap [:\pi_1(\text{dom } f), \{x\}]),$
 - (ii) $\operatorname{dom} g \subseteq \pi_1(\operatorname{dom} f),$
 - (iii) $\operatorname{rng} g \subseteq \operatorname{rng} f$,
 - (iv) for every y such that $y \in \text{dom } g$ holds $g(y) = f(\langle y, x \rangle)$ and $\langle y, x \rangle \in \text{dom } f$.

- (42) If dom f = [X, Y], then rng(curry $f) \subseteq (\operatorname{rng} f)^Y$ and rng(curry' $f) \subseteq (\operatorname{rng} f)^X$.
- (43) $\operatorname{rng}(\operatorname{curry} f) \subseteq \pi_2(\operatorname{dom} f) \xrightarrow{\cdot}(\operatorname{rng} f)$ and $\operatorname{rng}(\operatorname{curry}' f) \subseteq \pi_1(\operatorname{dom} f) \xrightarrow{\cdot}(\operatorname{rng} f)$.
- (44) If rng $f \subseteq X \rightarrow Y$, then dom(uncurry $f) \subseteq [\text{dom} f, X]$ and dom(uncurry' $f) \subseteq [X, \text{dom} f]$.
- (45) If $x \in \text{dom } f$ and g = f(x) and $y \in \text{dom } g$, then $\langle x, y \rangle \in \text{dom}(\text{uncurry } f)$ and uncurry $f(\langle x, y \rangle) = g(y)$ and $g(y) \in \text{rng}(\text{uncurry } f)$.
- (46) If $x \in \text{dom } f$ and g = f(x) and $y \in \text{dom } g$, then $\langle y, x \rangle \in \text{dom}(\text{uncurry'} f)$ and uncurry' $f(\langle y, x \rangle) = g(y)$ and $g(y) \in \text{rng}(\text{uncurry'} f)$.
- (47) If $\operatorname{rng} f \subseteq X \xrightarrow{\cdot} Y$, then $\operatorname{rng}(\operatorname{uncurry} f) \subseteq Y$ and $\operatorname{rng}(\operatorname{uncurry}' f) \subseteq Y$.
- (48) If rng $f \subseteq Y^X$, then rng(uncurry $f) \subseteq Y$ and rng(uncurry' $f) \subseteq Y$.
- (49) $\operatorname{curry} \Box = \Box$ and $\operatorname{curry}' \Box = \Box$.
- (50) uncurry $\Box = \Box$ and uncurry $\Box = \Box$.
- (51) If dom $f_1 = [X, Y]$ and dom $f_2 = [X, Y]$ and curry $f_1 = \text{curry } f_2$, then $f_1 = f_2$.
- (52) If dom $f_1 = [X, Y]$ and dom $f_2 = [X, Y]$ and curry' $f_1 = \text{curry'} f_2$, then $f_1 = f_2$.
- (53) If rng $f_1 \subseteq Y^X$ and rng $f_2 \subseteq Y^X$ and $X \neq \emptyset$ and uncurry $f_1 =$ uncurry f_2 , then $f_1 = f_2$.
- (54) If $\operatorname{rng} f_1 \subseteq Y^X$ and $\operatorname{rng} f_2 \subseteq Y^X$ and $X \neq \emptyset$ and $\operatorname{uncurry}' f_1 = \operatorname{uncurry}' f_2$, then $f_1 = f_2$.
- (55) If rng $f \subseteq Y^X$ and $X \neq \emptyset$, then curry(uncurry f) = f and curry'(uncurry' f) = f.
- (56) If dom f = [X, Y], then uncurry(curry f) = f and uncurry'(curry' f) = f.
- (57) If dom $f \subseteq [X, Y]$, then uncurry(curry f) = f and uncurry'(curry' f) = f.
- (58) If rng $f \subseteq X \rightarrow Y$ and $\Box \notin rng f$, then curry(uncurry f) = f and curry'(uncurry' f) = f.
- (59) If dom $f_1 \subseteq [X, Y]$ and dom $f_2 \subseteq [X, Y]$ and curry $f_1 = \text{curry } f_2$, then $f_1 = f_2$.
- (60) If dom $f_1 \subseteq [X, Y]$ and dom $f_2 \subseteq [X, Y]$ and curry' $f_1 = \text{curry'} f_2$, then $f_1 = f_2$.
- (61) If $\operatorname{rng} f_1 \subseteq X \xrightarrow{\cdot} Y$ and $\operatorname{rng} f_2 \subseteq X \xrightarrow{\cdot} Y$ and $\Box \notin \operatorname{rng} f_1$ and $\Box \notin \operatorname{rng} f_2$ and uncurry $f_1 = \operatorname{uncurry} f_2$, then $f_1 = f_2$.
- (62) If rng $f_1 \subseteq X \rightarrow Y$ and rng $f_2 \subseteq X \rightarrow Y$ and $\Box \notin \text{rng } f_1$ and $\Box \notin \text{rng } f_2$ and uncurry' $f_1 = \text{uncurry'} f_2$, then $f_1 = f_2$.
- (63) If $X \subseteq Y$, then $X^Z \subseteq Y^Z$.
- $(64) \quad X^{\emptyset} = \{\Box\}.$
- (65) $X \approx X^{\{x\}}$ and $\overline{\overline{X}} = \overline{\overline{X^{\{x\}}}}$.

 $\begin{array}{ll} (66) \quad \{x\}^X = \{X \longmapsto x\}. \\ (67) \quad \text{If } X_1 \approx Y_1 \text{ and } X_2 \approx Y_2, \text{ then } X_2^{X_1} \approx Y_2^{Y_1} \text{ and } \overline{X_2^{X_1}} = \overline{Y_2^{Y_1}}. \\ (68) \quad \text{If } \overline{X_1} = \overline{Y_1} \text{ and } \overline{X_2} = \overline{Y_2}, \text{ then } \overline{X_2^{X_1}} = \overline{Y_2^{Y_1}}. \\ (69) \quad \text{If } X_1 \cap X_2 = \emptyset, \text{ then } X^{X_1 \cup X_2} \approx [X^{X_1}, X^{X_2}] \text{ and } \\ \overline{X^{X_1 \cup X_2}} = \overline{[X^{X_1}, X^{X_2}]}. \\ (70) \quad Z^{[X,Y]} \approx (Z^Y)^X \text{ and } \overline{Z^{[X,Y]}} = \overline{(Z^Y)^X}. \\ (71) \quad [X,Y]^Z \approx [X^Z, Y^Z] \text{ and } \overline{[X,Y]^Z} = \overline{[X^Z, Y^Z]}. \\ (72) \quad \text{If } x \neq y, \text{ then } \{x,y\}^X \approx 2^X \text{ and } \overline{\{x,y\}^X} = \overline{2^X}. \\ (73) \quad \text{If } x \neq y, \text{ then } X^{\{x,y\}} \approx [X, X] \text{ and } \overline{X^{\{x,y\}}} = \overline{[X, X]}. \end{array}$

References

- Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377– 382, 1990.
- [2] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521– 527, 1990.
- [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357– 367, 1990.
- [7] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [9] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.

Received March 6, 1990