The Modification of a Function by a Function and the Iteration of the Composition of a Function

Czesław Byliński¹ Warsaw University Białystok

Summary. In the article we introduce some operation on functions. We define the natural ordering relation on functions. The fact that a function f is less than a function g we denote by $f \leq g$ and we define by graph $f \subseteq \text{graph } f$. In the sequel we define the modifications of a function f by a function g denoted g = g + g and the g = g + g and the g = g + g and the g = g + g are the provenum of the composition of a function g = g + g. We prove some propositions related to the introduced notions.

MML Identifier: FUNCT_4.

The papers [7], [1], [2], [3], [4], [5], and [6] provide the terminology and notation for this paper. For simplicity we adopt the following rules: a, b, x, x', y, y', z will be arbitrary, X, X', Y, Y', Z, Z' will be sets, D, D' will be non-empty sets, and f, g, h will be functions. We now state several propositions:

- (1) If for every z such that $z \in Z$ there exist x, y such that $z = \langle x, y \rangle$, then there exist X, Y such that $Z \subseteq [X, Y]$.
- (2) If rng $f \cap \text{dom } g = \emptyset$, then $g \cdot f = \square$.
- (3) $g \cdot f = g \upharpoonright \operatorname{rng} f \cdot f$.
- $(4) \qquad \Box = \emptyset \longmapsto a.$
- (5) $\operatorname{graph}(\operatorname{id}_X) \subseteq \operatorname{graph}(\operatorname{id}_Y)$ if and only if $X \subseteq Y$.
- (6) If $X \subseteq Y$, then $graph(X \longmapsto a) \subseteq graph(Y \longmapsto a)$.
- (7) If $graph(X \longmapsto a) \subseteq graph(Y \longmapsto b)$, then $X \subseteq Y$.
- (8) If $X \neq \emptyset$ and graph $(X \longmapsto a) \subseteq \operatorname{graph}(Y \longmapsto b)$, then a = b.

¹Supported by RPBP.III-24.C1.

- (9) If $x \in \text{dom } f$, then $\text{graph}(\{x\} \longmapsto f(x)) \subseteq \text{graph } f$.
- Let us consider f, g. The predicate $f \leq g$ is defined as follows: graph $f \subseteq \operatorname{graph} g$.

We now state a number of propositions:

- (10) For all f, g holds $f \leq g$ if and only if graph $f \subseteq \operatorname{graph} g$.
- (11) $f \leq g$ if and only if dom $f \subseteq \text{dom } g$ and for every x such that $x \in \text{dom } f$ holds f(x) = g(x).
- (12) If $f \leq g$, then $f \approx g$.
- (13) If $f \leq g$, then dom $f \subseteq \text{dom } g$ and rng $f \subseteq \text{rng } g$.
- (14) If $f \leq g$ and dom f = dom g, then f = g.
- $(15) \qquad \Box \leq f.$
- (16) $f \leq f$.
- (17) If $f \leq g$ and $g \leq h$, then $f \leq h$.
- (18) $f \leq g$ and $g \leq f$ if and only if f = g.
- (19) $\operatorname{id}_X \leq \operatorname{id}_Y \text{ if and only if } X \subseteq Y.$
- (20) If $X \subseteq Y$, then $X \longmapsto a \leq Y \longmapsto a$.
- (21) If $X \longmapsto a \leq Y \longmapsto b$, then $X \subseteq Y$.
- (22) If $X \neq \emptyset$ and $X \longmapsto a \leq Y \longmapsto b$, then a = b.
- (23) If $x \in \text{dom } f$, then $\{x\} \longmapsto f(x) \le f$.
- (24) If $f \leq g$ and g is one-to-one, then f is one-to-one.
- (25) If $f \leq g$, then $g \upharpoonright \text{dom } f = f$.
- (26) If $f \leq g$ and g is one-to-one, then rng $f \upharpoonright g = f$.
- (27) $f \upharpoonright X \leq f$.
- (28) If $X \subseteq Y$, then $f \upharpoonright X \leq f \upharpoonright Y$.
- (29) If $X \subseteq Y$, then $X \upharpoonright f \leq Y \upharpoonright f$.
- (30) $Y \upharpoonright f \leq f$.
- $(31) \quad (Y \upharpoonright f) \upharpoonright X \le f.$
- $(32) f_{\uparrow X \to Y} \le f.$
- (33) If $f \leq g$, then $f \cdot h \leq g \cdot h$.
- (34) If $f \leq g$, then $h \cdot f \leq h \cdot g$.
- (35) For all functions f_1 , f_2 , g_1 , g_2 such that $f_1 \leq g_1$ and $f_2 \leq g_2$ holds $f_1 \cdot f_2 \leq g_1 \cdot g_2$.
- (36) If $f \leq g$, then $f \upharpoonright X \leq g \upharpoonright X$.
- (37) If $f \leq g$, then $Y \upharpoonright f \leq Y \upharpoonright g$.
- (38) If $f \leq g$, then $(Y \upharpoonright f) \upharpoonright X \leq (Y \upharpoonright g) \upharpoonright X$.
- (39) If $f \leq g$, then $f_{\uparrow X \to Y} \leq g_{\uparrow X \to Y}$.
- (40) If $f \leq h$ and $g \leq h$, then $f \approx g$.

Let us consider f, g. The functor f + g yields a function and is defined by:

 $\operatorname{dom}(f+\cdot g)=\operatorname{dom} f\cup\operatorname{dom} g$ and for every x such that $x\in\operatorname{dom} f\cup\operatorname{dom} g$ holds if $x\in\operatorname{dom} g$, then $(f+\cdot g)(x)=g(x)$ but if $x\notin\operatorname{dom} g$, then $(f+\cdot g)(x)=f(x)$.

We now state a number of propositions:

- (41) Let f, g, h be functions. Then h = f + g if and only if the following conditions are satisfied:
 - (i) $\operatorname{dom} h = \operatorname{dom} f \cup \operatorname{dom} g$,
 - (ii) for every x such that $x \in \text{dom } f \cup \text{dom } g$ holds if $x \in \text{dom } g$, then h(x) = g(x) but if $x \notin \text{dom } g$, then h(x) = f(x).
- (42) If $x \in \text{dom}(f + g)$ and $x \notin \text{dom } g$, then (f + g)(x) = f(x).
- (43) $x \in \text{dom}(f + g)$ if and only if $x \in \text{dom } f$ or $x \in \text{dom } g$.
- (44) If $x \in \text{dom } g$, then (f + g)(x) = g(x).
- (45) If $x \in \text{dom } f \setminus \text{dom } g$, then (f + g)(x) = f(x).
- (46) If $f \approx g$ and $x \in \text{dom } f$, then (f + g)(x) = f(x).
- (47) If dom $f \cap \text{dom } g = \emptyset$ and $x \in \text{dom } f$, then (f + g)(x) = f(x).
- (48) $\operatorname{rng}(f + g) \subseteq \operatorname{rng} f \cup \operatorname{rng} g$.
- (49) $\operatorname{rng} g \subseteq \operatorname{rng}(f + g).$
- (50) If dom $f \subseteq \text{dom } g$, then f + g = g.
- (51) If dom f = dom g, then f + g = g.
- (52) f + f = f.
- $(53) \qquad \Box + \cdot f = f.$
- $(54) f + \square = f.$
- (55) $\operatorname{id}_X + \operatorname{id}_Y = \operatorname{id}_{X \cup Y}.$
- $(56) (f + g) \upharpoonright dom g = g.$
- (57) $\operatorname{graph}((f + g) \upharpoonright (\operatorname{dom} f \setminus \operatorname{dom} g)) \subseteq \operatorname{graph} f.$
- (58) $(f + g) \upharpoonright (\operatorname{dom} f \setminus \operatorname{dom} g) \leq f.$
- (59) $\operatorname{graph} g \subseteq \operatorname{graph}(f + \cdot g).$
- $(60) g \le f + g.$
- (61) If $f \approx g + h$, then $f \upharpoonright (\operatorname{dom} f \setminus \operatorname{dom} h) \approx g$.
- (62) If $f \approx g + h$, then $f \approx h$.
- (63) $f \approx g$ if and only if graph $f \subseteq \operatorname{graph}(f + g)$.
- (64) $f \approx g$ if and only if $f \leq f + g$.
- (65) $\operatorname{graph}(f + g) \subseteq \operatorname{graph} f \cup \operatorname{graph} g$.
- (66) $f \approx g$ if and only if graph $f \cup \operatorname{graph} g = \operatorname{graph}(f + g)$.
- (67) If dom $f \cap \text{dom } g = \emptyset$, then graph $f \cup \text{graph } g = \text{graph}(f + g)$.
- (68) If dom $f \cap \text{dom } g = \emptyset$, then graph $f \subseteq \text{graph}(f + g)$.
- (69) If dom $f \cap \text{dom } g = \emptyset$, then $f \leq f + g$.
- (70) If dom $f \cap \text{dom } g = \emptyset$, then $(f + g) \upharpoonright \text{dom } f = f$.
- (71) $f \approx g$ if and only if f + g = g + f.
- (72) If dom $f \cap \text{dom } g = \emptyset$, then f + g = g + f.

- (73) For all partial functions f, g from X to Y such that g is total holds f + g = g.
- (74) For all functions f, g from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds f + g = g.
- (75) For all functions f, g from X into X holds f + g = g.
- (76) For all functions f, g from X into D holds f + g = g.
- (77) For all partial functions f, g from X to Y holds f + g is a partial function from X to Y.

Let us consider f. The functor f yields a function and is defined by:

for every x holds $x \in \text{dom}(f)$ if and only if there exist y, z such that $x = \langle z, y \rangle$ and $\langle y, z \rangle \in \text{dom } f$ and for all y, z such that $\langle y, z \rangle \in \text{dom } f$ holds $(f)(\langle z, y \rangle) = f(\langle y, z \rangle)$.

We now state a number of propositions:

- (78) Let f, h be functions. Then h = f if and only if for every z holds $z \in \text{dom } h$ if and only if there exist x, y such that $z = \langle y, x \rangle$ and $\langle x, y \rangle \in \text{dom } f$ and for all x, y such that $\langle x, y \rangle \in \text{dom } f$ holds $h(\langle y, x \rangle) = f(\langle x, y \rangle)$.
- (79) $\operatorname{rng}(f) \subseteq \operatorname{rng} f$.
- (80) $\langle x, y \rangle \in \text{dom } f \text{ if and only if } \langle y, x \rangle \in \text{dom}(\neg f).$
- (81) If $\langle y, x \rangle \in \text{dom}(f)$, then $f(\langle y, x \rangle) = f(\langle x, y \rangle)$.
- (82) There exist X, Y such that $dom(f) \subseteq [X, Y]$.
- (83) If dom $f \subseteq [X, Y]$, then dom($f \subseteq [Y, X]$).
- (84) If dom f = [X, Y], then dom(f = [Y, X]).
- (85) If dom $f \subseteq [X, Y]$, then rng(f) = rng f.
- (86) If dom f = [X, Y], then rng(f) = rng f.
- (87) For every partial function f from [X, Y] to Z holds f is a partial function from [Y, X] to Z.
- (88) For every function f from [X, Y] into Z such that $Z \neq \emptyset$ holds f is a function from [Y, X] into Z.
- (89) For every function f from [X, Y] into D holds f is a function from [Y, X] into D.
- (90) $\operatorname{graph}(\curvearrowleft(\curvearrowright f)) \subseteq \operatorname{graph} f.$
- (91) If dom $f \subseteq [X, Y]$, then $\curvearrowleft(\curvearrowright f) = f$.
- (92) If dom f = [X, Y], then $\curvearrowleft(\curvearrowright f) = f$.
- (93) For every partial function f from [X, Y] to Z holds $\land(\land f) = f$.
- (94) For every function f from [X, Y] into Z such that $Z \neq \emptyset$ holds (f) = f.
- (95) For every function f from [X, Y] into D holds $\curvearrowright (
 \curvearrowright f) = f$.

Let us consider f, g. The functor |:f,g:| yielding a function, is defined as follows:

(i) for every z holds $z \in \text{dom}[:f, g:]$ if and only if there exist x, y, x', y' such that $z = \langle \langle x, x' \rangle, \langle y, y' \rangle \rangle$ and $\langle x, y \rangle \in \text{dom } f$ and $\langle x', y' \rangle \in \text{dom } g$,

(ii) for all x, y, x', y' such that $\langle x, y \rangle \in \text{dom } f$ and $\langle x', y' \rangle \in \text{dom } g$ holds $|:f, g:|(\langle \langle x, x' \rangle, \langle y, y' \rangle)) = \langle f(\langle x, y \rangle), g(\langle x', y' \rangle) \rangle$.

The following propositions are true:

- (96) Given f, g, h. Then h = |:f, g:| if and only if the following conditions are satisfied:
 - (i) for every z holds $z \in \text{dom } h$ if and only if there exist x, y, x', y' such that $z = \langle \langle x, x' \rangle, \langle y, y' \rangle \rangle$ and $\langle x, y \rangle \in \text{dom } f$ and $\langle x', y' \rangle \in \text{dom } g$,
 - (ii) for all x, y, x', y' such that $\langle x, y \rangle \in \text{dom } f$ and $\langle x', y' \rangle \in \text{dom } g$ holds $h(\langle \langle x, x' \rangle, \langle y, y' \rangle)) = \langle f(\langle x, y \rangle), g(\langle x', y' \rangle) \rangle$.
- (97) $\langle \langle x, x' \rangle, \langle y, y' \rangle \rangle \in \text{dom} | f, g | \text{if and only if } \langle x, y \rangle \in \text{dom } f \text{ and } \langle x', y' \rangle \in \text{dom } g.$
- (98) If $\langle \langle x, x' \rangle, \langle y, y' \rangle \rangle \in \text{dom}|:f, g:|, then } |:f, g:|(\langle \langle x, x' \rangle, \langle y, y' \rangle \rangle) = \langle f(\langle x, y \rangle), g(\langle x', y' \rangle) \rangle$.
- (99) $\operatorname{rng}[:f, g:] \subseteq [:\operatorname{rng} f, \operatorname{rng} g:].$
- (100) If dom $f \subseteq [X, Y]$ and dom $g \subseteq [X', Y']$, then dom $|:f, g:| \subseteq [[X, X'], [Y, Y']]$.
- (101) If dom f = [X, Y] and dom g = [X', Y'], then dom|f, g| = [X, Y'], |Y, Y'|.
- (102) For every partial function f from [X, Y] to Z and for every partial function g from [X', Y'] to Z' holds |:f, g:| is a partial function from [:[X, X'], [Y, Y']] to [:Z, Z'].
- (103) For every function f from [X, Y] into Z and for every function g from [X', Y'] into Z' such that $Z \neq \emptyset$ and $Z' \neq \emptyset$ holds |:f, g:| is a function from [X, X'], [X, Y'] into [X, Z'].
- (104) For every function f from [X, Y] into D and for every function g from [X', Y'] into D' holds [f, g] is a function from [[X, X'], [Y, Y']] into [D, D'].

Let f be a function, and let n be an element of \mathbb{N} . The functor f^n yields a function and is defined as follows:

there exists a function p from \mathbb{N} into $(\operatorname{dom} f \cup \operatorname{rng} f) \rightarrow (\operatorname{dom} f \cup \operatorname{rng} f)$ such that $f^n = p(n)$ and $p(0) = \operatorname{id}_{\operatorname{dom} f \cup \operatorname{rng} f}$ and for every element k of \mathbb{N} there exists a function g such that g = p(k) and $p(k+1) = g \cdot f$.

One can prove the following proposition

(105) Let f be a function. Let n be an element of \mathbb{N} . Suppose $\operatorname{rng} f \subseteq \operatorname{dom} f$. Let h be a function. Then $h = f^n$ if and only if there exists a function p from \mathbb{N} into $(\operatorname{dom} f \cup \operatorname{rng} f) \xrightarrow{\cdot} (\operatorname{dom} f \cup \operatorname{rng} f)$ such that h = p(n) and $p(0) = \operatorname{id}_{\operatorname{dom} f \cup \operatorname{rng} f}$ and for every element k of \mathbb{N} there exists a function g such that g = p(k) and $p(k+1) = g \cdot f$.

In the sequel m, n will be natural numbers. Next we state a number of propositions:

- $(106) f^0 = \mathrm{id}_{\mathrm{dom}\, f \cup \mathrm{rng}\, f}.$
- $(107) f^{n+1} = (f^n) \cdot f.$

- (108) $f^1 = f$.
- $(109) f^{n+1} = f \cdot (f^n).$
- (110) $\operatorname{dom}(f^n) \subseteq \operatorname{dom} f \cup \operatorname{rng} f \text{ and } \operatorname{rng}(f^n) \subseteq \operatorname{dom} f \cup \operatorname{rng} f.$
- (111) If $n \neq 0$, then $dom(f^n) \subseteq dom f$ and $rng(f^n) \subseteq rng f$.
- (112) If rng $f \subseteq \text{dom } f$, then $\text{dom}(f^n) = \text{dom } f$ and rng $(f^n) \subseteq \text{dom } f$.
- (113) $(f^n) \cdot \operatorname{id}_{\operatorname{dom} f \cup \operatorname{rng} f} = f^n.$
- (114) $\operatorname{id}_{\operatorname{dom} f \cup \operatorname{rng} f} \cdot (f^n) = f^n.$
- (115) $(f^n) \cdot (f^m) = f^{n+m}$.
- (116) If $n \neq 0$, then $(f^m)^n = f^{m \cdot n}$.
- (117) If rng $f \subseteq \text{dom } f$, then $(f^m)^n = f^{m \cdot n}$.
- $(118) \qquad \Box^n = \Box.$
- (119) $\operatorname{id}_X^n = \operatorname{id}_X$.
- (120) If rng $f \cap \text{dom } f = \emptyset$, then $f^2 = \square$.
- (121) For every function f from X into X holds f^n is a function from X into X.
- (122) For every function f from X into X holds $f^0 = id_X$.
- (123) For every function f from X into X holds $(f^m)^n = f^{m \cdot n}$.
- (124) For every partial function f from X to X holds f^n is a partial function from X to X.
- (125) If $n \neq 0$ and $a \in X$ and $f = X \mapsto a$, then $f^n = f$.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, $1(1):153-164,\ 1990.$
- [4] Czesław Byliński. Graphs of functions. Formalized Mathematics, 1(1):169–173, 1990.
- [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [6] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received March 1, 1990