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Summary. This abstract contains a construction of the domain
of functions defined in an arbitrary nonempty set, with values being real
numbers. In every such set of functions we introduce several algebraic
operations, which yield in this set the structures of a real linear space,
of a ring, and of a real algebra. Formal definitions of such concepts are
given.

MML Identifier: FUNCSDOM.

The notation and terminology used in this paper are introduced in the following
papers: [3], [9], [11], [2], [7], [12], [6], [1], [10], [4], [5], and [8]. We adopt the
following convention: x1, x2, z are arbitrary and A, B denote non-empty sets.
Let us consider A, B, and let F be a binary operation on BA, and let f , g be
elements of BA. Then F (f, g) is an element of BA.

Let A, B, C, D be non-empty sets, and let F be a function from [: C, D :]
into BA, and let cd be an element of [: C, D :]. Then F (cd) is an element of BA.

Let A, B be non-empty sets, and let f be a function from A into B. The
functor @f yields an element of BA and is defined by:

@f = f .

We now state a proposition

(1) For all functions f , g from A into B holds @f = g if and only if f = g.

In the sequel f , g, h denote elements of � A . Let A, B be non-empty sets,
and let x be an element of BA. The functor � x yields an element of BA qua a
non-empty set and is defined as follows:

� x = x.

We now state a proposition

(2) For all elements f , g of BA holds � f = g if and only if f = g.
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Let us consider A, B, and let f be an element of BA qua a non-empty set.
The functor f � yielding an element of BA, is defined by:

f � = f .

We now state two propositions:

(3) For all elements f , g of BA qua non-empty sets holds f � = g if and
only if f = g.

(4) f = ( � f) � .
Let X, Z be non-empty sets, and let F be a binary operation on X, and let

f , g be functions from Z into X. Then F ◦(f, g) is an element of XZ .

Let X, Z be non-empty sets, and let F be a binary operation on X, and let
a be an element of X, and let f be a function from Z into X. Then F ◦(a, f) is
an element of XZ .

Let us consider A. The functor + � A yields a binary operation on � A and is
defined by:

for all elements f , g of � A holds + � A(f, g) = + � ◦(f, g).

We now state a proposition

(5) For every binary operation F on � A holds F = + � A if and only if for
all elements f , g of � A holds F (f, g) = + � ◦(f, g).

Let us consider A. The functor · � A yields a binary operation on � A and is
defined as follows:

for all elements f , g of � A holds · � A(f, g) = · � ◦(f, g).

Next we state a proposition

(6) For every binary operation F on � A holds F = · � A if and only if for all
elements f , g of � A holds F (f, g) = · � ◦(f, g).

Let us consider A, and let a be a real number, and let f be an element of
� A . Then 〈〈a, f〉〉 is an element of [: � , � A :].

Let us consider A. The functor ·
�� A yielding a function from [: � , � A :] into

� A , is defined as follows:
for every real number a and for every element f of � A and for every element

x of A holds (·
�� A(〈〈a, f〉〉))(x) = a · f(x).

The following proposition is true

(7) For every function F from [: � , � A :] into � A holds F = ·
�� A if and only

if for every real number a and for every element f of � A and for every
element x of A holds (F (〈〈a, f〉〉))(x) = a · f(x).

Let us consider A. The functor 0 � A yields an element of � A and is defined
by:

0 � A = A 7−→ 0.

The following proposition is true

(8) For every element f of � A holds f = 0 � A if and only if f = A 7−→ 0.

Let us consider A. The functor 1 � A yields an element of � A and is defined
by:

1 � A = A 7−→ 1.
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We now state several propositions:

(9) For every element f of � A holds f = 1 � A if and only if f = A 7−→ 1.

(10) h = + � A(f, g) if and only if for every element x of A holds h(x) =
f(x) + g(x).

(11) h = · � A(f, g) if and only if for every element x of A holds h(x) =
f(x) · g(x).

(12) For every element x of A holds 1 � A(x) = 1.

(13) For every element x of A holds 0 � A(x) = 0.

(14) 0 � A 6= 1 � A .

In the sequel a, b are real numbers. The following proposition is true

(15) h = ·
�� A(〈〈a, f〉〉) if and only if for every element x of A holds h(x) =

a · f(x).

One can prove the following propositions:

(16) + � A(f, g) = + � A(g, f).

(17) + � A(f, + � A(g, h)) = + � A(+ � A(f, g), h).

(18) · � A(f, g) = · � A(g, f).

(19) · � A(f, · � A(g, h)) = · � A(· � A(f, g), h).

(20) · � A(1 � A , f) = f .

(21) + � A(0 � A , f) = f .

(22) + � A(f, ·
�� A(〈〈 − 1, f〉〉)) = 0 � A .

(23) ·
�
� A(〈〈1, f〉〉) = f .

(24) ·
�� A(〈〈a, ·

�� A(〈〈b, f〉〉)〉〉) = ·
�� A(〈〈a · b, f〉〉).

(25) + � A(·
�� A(〈〈a, f〉〉), ·

�� A(〈〈b, f〉〉)) = ·
�� A(〈〈a + b, f〉〉).

(26) · � A(f, + � A(g, h)) = + � A(· � A(f, g), · � A(f, h)).

(27) · � A(·
�� A(〈〈a, f〉〉), g) = ·

�� A(〈〈a, · � A(f, g)〉〉).

(28) Suppose x1 ∈ A and x2 ∈ A and x1 6= x2. Then there exist f , g such
that for every z such that z ∈ A holds if z = x1, then f(z) = 1 but if
z 6= x1, then f(z) = 0 and for every z such that z ∈ A holds if z = x1,
then g(z) = 0 but if z 6= x1, then g(z) = 1.

(29) Suppose that
(i) x1 ∈ A,
(ii) x2 ∈ A,

(iii) x1 6= x2,
(iv) for every z such that z ∈ A holds if z = x1, then f(z) = 1 but if z 6= x1,

then f(z) = 0,
(v) for every z such that z ∈ A holds if z = x1, then g(z) = 0 but if z 6= x1,

then g(z) = 1.
Then for all a, b such that + � A(·

�� A(〈〈a, f〉〉), ·
�� A(〈〈b, g〉〉)) = 0 � A holds a = 0

and b = 0.

(30) If x1 ∈ A and x2 ∈ A and x1 6= x2, then there exist f , g such that for all
a, b such that + � A(·

�� A(〈〈a, f〉〉), ·
�� A(〈〈b, g〉〉)) = 0 � A holds a = 0 and b = 0.
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(31) Suppose that
(i) A = {x1, x2},

(ii) x1 6= x2,
(iii) for every z such that z ∈ A holds if z = x1, then f(z) = 1 but if z 6= x1,

then f(z) = 0,
(iv) for every z such that z ∈ A holds if z = x1, then g(z) = 0 but if z 6= x1,

then g(z) = 1.
Then for every h there exist a, b such that
h = + � A(·

�� A(〈〈a, f〉〉), ·
�� A(〈〈b, g〉〉)) .

(32) If A = {x1, x2} and x1 6= x2, then there exist f , g such that for every h

there exist a, b such that h = + � A(·
�� A(〈〈a, f〉〉), ·

�� A(〈〈b, g〉〉)).

(33) Suppose A = {x1, x2} and x1 6= x2. Then there exist f , g such that for
all a, b such that + � A(·

�
� A(〈〈a, f〉〉), ·

�
� A(〈〈b, g〉〉)) = 0 � A holds a = 0 and b = 0

and for every h there exist a, b such that h = + � A(·
�� A(〈〈a, f〉〉), ·

�� A(〈〈b, g〉〉)).

(34) 〈 � A , � 0 � A , + � A, ·
�� A〉 is a real linear space.

Let us consider A. The functor � A� yields a real linear space and is defined
by:

� A� = 〈 � A , � 0 � A, + � A , ·
�� A〉.

We now state two propositions:

(35) � A� = 〈 � A , � 0 � A , + � A, ·
�� A〉.

(36) � A� is a real linear space.

In the sequel V will denote a real linear space and u, v, w will denote vectors
of V . The following proposition is true

(37) There exists V and there exist u, v such that for all a, b such that
a · u + b · v = 0V holds a = 0 and b = 0 and for every w there exist a, b

such that w = a · u + b · v.

We consider ring structures which are systems
〈 a carrier, a multiplication, an addition, a unity, a zero 〉
where the carrier is a non-empty set, the multiplication, the addition are

binary operations on the carrier, and the unity, the zero are elements of the
carrier. In the sequel RS will be a ring structure. We now define four new
functors. Let us consider RS. The functor 1RS yields an element of the carrier
of RS and is defined as follows:

1RS = the unity of RS.
The functor 0RS yields an element of the carrier of RS and is defined as follows:

0RS = the zero of RS.
Let x, y be elements of the carrier of RS. The functor x · y yielding an element
of the carrier of RS, is defined by:

x · y = (the multiplication of RS)(x, y).
The functor x + y yielding an element of the carrier of RS, is defined by:

x + y = (the addition of RS)(x, y).

In the sequel x, y denote elements of the carrier of RS. One can prove the
following four propositions:
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(38) (the multiplication of RS)(x, y) = x · y.

(39) (the addition of RS)(x, y) = x + y.

(40) 1RS = the unity of RS.

(41) 0RS = the zero of RS.

Let us consider A. The functor RRing A yielding a ring structure, is defined
by:

RRing A = 〈 � A , · � A , + � A, � 1 � A , � 0 � A〉.

Next we state a proposition

(42) Let x, y, z be elements of the carrier of RRing A. Then
(i) x + y = y + x,
(ii) (x + y) + z = x + (y + z),

(iii) x + 0RRing A = x,
(iv) there exists an element t of the carrier of RRing A such that x + t =

0RRing A,
(v) x · y = y · x,
(vi) (x · y) · z = x · (y · z),
(vii) x · (1RRing A) = x,

(viii) x · (y + z) = x · y + x · z.

A ring structure is said to be a ring if:
Let x, y, z be elements of the carrier of it . Then

(i) x + y = y + x,
(ii) (x + y) + z = x + (y + z),
(iii) x + 0it = x,
(iv) there exists an element t of the carrier of it such that x + t = 0it,
(v) x · y = y · x,

(vi) (x · y) · z = x · (y · z),
(vii) x · (1it) = x,
(viii) x · (y + z) = x · y + x · z.

One can prove the following proposition

(43) RRing A is a ring.

We consider algebra structures which are systems
〈 a carrier, a multiplication, an addition, a multiplication1, a unity, a zero 〉
where the carrier is a non-empty set, the multiplication, the addition are

binary operations on the carrier, the multiplication1 is a function from [: � , the
carrier :] into the carrier, and the unity, the zero are elements of the carrier. In
the sequel AlS denotes an algebra structure. We now define four new functors.
Let us consider AlS. The functor 1AlS yielding an element of the carrier of AlS,
is defined as follows:

1AlS = the unity of AlS.
The functor 0AlS yielding an element of the carrier of AlS, is defined by:

0AlS = the zero of AlS.
Let x, y be elements of the carrier of AlS. The functor x · y yields an element
of the carrier of AlS and is defined by:
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x · y = (the multiplication of AlS)(x, y).
The functor x+y yielding an element of the carrier of AlS, is defined as follows:

x + y = (the addition of AlS)(x, y).

Let us consider AlS, and let x be an element of the carrier of AlS, and let a

be a real number. The functor a · x yields an element of the carrier of AlS and
is defined as follows:

a · x = (the multiplication1 of AlS)(〈〈a, x〉〉).

In the sequel x, y are elements of the carrier of AlS. Next we state several
propositions:

(44) (the multiplication of AlS)(x, y) = x · y.

(45) (the addition of AlS)(x, y) = x + y.

(46) (the multiplication1 of AlS)(〈〈a, x〉〉) = a · x.

(47) 0AlS = the zero of AlS.

(48) 1AlS = the unity of AlS.

Let us consider A. The functor RAlgebra A yielding an algebra structure, is
defined as follows:

RAlgebra A = 〈 � A , · � A , + � A, ·
�� A , � 1 � A , � 0 � A〉.

The following proposition is true

(49) Let x, y, z be elements of the carrier of RAlgebra A. Given a, b. Then
(i) x + y = y + x,

(ii) (x + y) + z = x + (y + z),
(iii) x + 0RAlgebra A = x,
(iv) there exists an element t of the carrier of RAlgebra A such that x+ t =

0RAlgebra A,
(v) x · y = y · x,
(vi) (x · y) · z = x · (y · z),

(vii) x · (1RAlgebra A) = x,
(viii) x · (y + z) = x · y + x · z,

(ix) a · (x · y) = (a · x) · y,
(x) a · (x + y) = a · x + a · y,
(xi) (a + b) · x = a · x + b · x,

(xii) (a · b) · x = a · (b · x).

An algebra structure is said to be an algebra if:
Let x, y, z be elements of the carrier of it . Given a, b. Then

(i) x + y = y + x,
(ii) (x + y) + z = x + (y + z),
(iii) x + 0it = x,
(iv) there exists an element t of the carrier of it such that x + t = 0it,
(v) x · y = y · x,
(vi) (x · y) · z = x · (y · z),
(vii) x · (1it) = x,
(viii) x · (y + z) = x · y + x · z,
(ix) a · (x · y) = (a · x) · y,
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(x) a · (x + y) = a · x + a · y,
(xi) (a + b) · x = a · x + b · x,
(xii) (a · b) · x = a · (b · x).

The following proposition is true

(50) RAlgebra A is an algebra.
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[5] Eugeniusz Kusak, Wojciech Leończuk, and Micha l Muzalewski. Abelian
groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342,
1990.

[6] Andrzej Trybulec. Binary operations applied to functions. Formalized

Mathematics, 1(2):329–334, 1990.

[7] Andrzej Trybulec. Domains and their Cartesian products. Formalized

Mathematics, 1(1):115–122, 1990.

[8] Andrzej Trybulec. Function domains and frænkel operator. Formalized

Mathematics, 1(3):495–500, 1990.

[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathemat-

ics, 1(1):9–11, 1990.

[10] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathemat-

ics, 1(2):291–296, 1990.

[11] Zinaida Trybulec and Halina Świe
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