Function Domains and Frænkel Operator

Andrzej Trybulec ${ }^{1}$
Warsaw University, Białystok

Abstract

Summary. We deal with a non-empty set of functions and a nonempty set of functions from a set A to a non-empty set B. In the case when B is a non-empty set, B^{A} is redefined. It yields a non-empty set of functions from A to B. An element of such a set is redefined as a function from A to B. Some theorems concerning these concepts are proved, as well as a number of schemes dealing with infinity and the Axiom of Choice. The article contains a number of schemes allowing for simple logical transformations related to terms constructed with the Frænkel Operator.

MML Identifier: FRAENKEL.

The articles [5], [4], [6], [1], [2], and [3] provide the notation and terminology for this paper. In the sequel A, B will be non-empty sets. We now state a proposition
(1) For arbitrary x holds $\{x\}$ is a non-empty set.

In the article we present several logical schemes. The scheme Fraenkel5' deals with a non-empty set \mathcal{A}, a unary functor \mathcal{F}, and two unary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\left\{\mathcal{F}\left(v^{\prime}\right): \mathcal{P}\left[v^{\prime}\right]\right\} \subseteq\left\{\mathcal{F}\left(u^{\prime}\right): \mathcal{Q}\left[u^{\prime}\right]\right\}$
provided the parameters enjoy the following property:

- for every element v of \mathcal{A} such that $\mathcal{P}[v]$ holds $\mathcal{Q}[v]$.

The scheme Fraenkel5" concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, and two binary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right): \mathcal{P}\left[u_{1}, v_{1}\right]\right\} \subseteq\left\{\mathcal{F}\left(u_{2}, v_{2}\right): \mathcal{Q}\left[u_{2}, v_{2}\right]\right\}$
provided the following condition is fulfilled:

- for every element u of \mathcal{A} and for every element v of \mathcal{B} such that $\mathcal{P}[u, v]$ holds $\mathcal{Q}[u, v]$.
The scheme Fraenkel6' deals with a non-empty set \mathcal{A}, a unary functor \mathcal{F}, and two unary predicates \mathcal{P} and \mathcal{Q}, and states that:

[^0]$$
\left\{\mathcal{F}\left(v_{1}\right): \mathcal{P}\left[v_{1}\right]\right\}=\left\{\mathcal{F}\left(v_{2}\right): \mathcal{Q}\left[v_{2}\right]\right\}
$$
provided the following requirement is fulfilled:

- for every element v of \mathcal{A} holds $\mathcal{P}[v]$ if and only if $\mathcal{Q}[v]$.

The scheme Fraenkel6" concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, and two binary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right): \mathcal{P}\left[u_{1}, v_{1}\right]\right\}=\left\{\mathcal{F}\left(u_{2}, v_{2}\right): \mathcal{Q}\left[u_{2}, v_{2}\right]\right\}$
provided the parameters fulfill the following requirement:

- for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{P}[u, v]$ if and only if $\mathcal{Q}[u, v]$.
The scheme FraenkelF' concerns a non-empty set \mathcal{A}, a unary functor \mathcal{F}, a unary functor \mathcal{G}, and a unary predicate \mathcal{P}, and states that:
$\left\{\mathcal{F}\left(v_{1}\right): \mathcal{P}\left[v_{1}\right]\right\}=\left\{\mathcal{G}\left(v_{2}\right): \mathcal{P}\left[v_{2}\right]\right\}$ provided the following requirement is met:
- for every element v of \mathcal{A} holds $\mathcal{F}(v)=\mathcal{G}(v)$.

The scheme FraenkelF' R concerns a non-empty set \mathcal{A}, a unary functor \mathcal{F}, a unary functor \mathcal{G}, and a unary predicate \mathcal{P}, and states that:
$\left\{\mathcal{F}\left(v_{1}\right): \mathcal{P}\left[v_{1}\right]\right\}=\left\{\mathcal{G}\left(v_{2}\right): \mathcal{P}\left[v_{2}\right]\right\}$
provided the parameters fulfill the following condition:

- for every element v of \mathcal{A} such that $\mathcal{P}[v]$ holds $\mathcal{F}(v)=\mathcal{G}(v)$.

The scheme FraenkelF" concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, a binary functor \mathcal{G}, and a binary predicate \mathcal{P}, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right): \mathcal{P}\left[u_{1}, v_{1}\right]\right\}=\left\{\mathcal{G}\left(u_{2}, v_{2}\right): \mathcal{P}\left[u_{2}, v_{2}\right]\right\}$
provided the parameters meet the following requirement:

- for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{F}(u, v)=$ $\mathcal{G}(u, v)$.
The scheme FraenkelF6" C deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, and a binary predicate \mathcal{P}, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right): \mathcal{P}\left[u_{1}, v_{1}\right]\right\}=\left\{\mathcal{F}\left(v_{2}, u_{2}\right): \mathcal{P}\left[u_{2}, v_{2}\right]\right\}$ provided the following requirement is met:
- for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{F}(u, v)=$ $\mathcal{F}(v, u)$.
The scheme FraenkelF6" deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, and two binary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right): \mathcal{P}\left[u_{1}, v_{1}\right]\right\}=\left\{\mathcal{F}\left(v_{2}, u_{2}\right): \mathcal{Q}\left[u_{2}, v_{2}\right]\right\}$
provided the parameters meet the following requirements:
- for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{P}[u, v]$ if and only if $\mathcal{Q}[u, v]$,
- for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{F}(u, v)=$ $\mathcal{F}(v, u)$.
The following propositions are true:
(2) For all non-empty sets A, B and for every function F from A into B and for every set X and for every element x of A such that $x \in X$ holds $(F \upharpoonright X)(x)=F(x)$.
(3) For all non-empty sets A, B and for all functions F, G from A into B and for every set X such that $F \upharpoonright X=G \upharpoonright X$ for every element x of A such that $x \in X$ holds $F(x)=G(x)$.
(4) For every function f from A into B holds $f \in B^{A}$.
(5) For all sets A, B holds $B^{A} \subseteq 2^{〔 A, B ः}$.
(6) For all sets X, Y such that $Y^{X} \neq \emptyset$ and $X \subseteq A$ and $Y \subseteq B$ for every element f of Y^{X} holds f is a partial function from A to B.
Now we present a number of schemes. The scheme RelevantArgs deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a set \mathcal{C}, a function \mathcal{D} from \mathcal{A} into \mathcal{B}, a function \mathcal{E} from \mathcal{A} into \mathcal{B}, and two unary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\left\{\mathcal{D}\left(u^{\prime}\right): \mathcal{P}\left[u^{\prime}\right] \wedge u^{\prime} \in \mathcal{C}\right\}=\left\{\mathcal{E}\left(v^{\prime}\right): \mathcal{Q}\left[v^{\prime}\right] \wedge v^{\prime} \in \mathcal{C}\right\}$
provided the following requirements are met:
- $\mathcal{D} \upharpoonright \mathcal{C}=\mathcal{E} \upharpoonright \mathcal{C}$,
- for every element u of \mathcal{A} such that $u \in \mathcal{C}$ holds $\mathcal{P}[u]$ if and only if $\mathcal{Q}[u]$.
The scheme $\mathcal{F r}$ _SetO deals with a non-empty set \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
$\{x x: \mathcal{P}[x x]\} \subseteq \mathcal{A}$
for all values of the parameters.
The scheme Gen 1 " concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, a unary predicate \mathcal{Q}, and a binary predicate \mathcal{P}, and states that:
for every element s of \mathcal{A} and for every element t of \mathcal{B} such that $\mathcal{P}[s, t]$ holds $\mathcal{Q}[\mathcal{F}(s, t)]$
provided the parameters meet the following requirement:
- for arbitrary s_{t} such that $s_{t} \in\left\{\mathcal{F}\left(s_{1}, t_{1}\right): \mathcal{P}\left[s_{1}, t_{1}\right]\right\}$ holds $\mathcal{Q}\left[s_{t}\right]$.

The scheme Gen1" A deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, a unary predicate \mathcal{Q}, and a binary predicate \mathcal{P}, and states that:
for arbitrary s_{t} such that $s_{t} \in\left\{\mathcal{F}\left(s_{1}, t_{1}\right): \mathcal{P}\left[s_{1}, t_{1}\right]\right\}$ holds $\mathcal{Q}\left[s_{t}\right]$ provided the following requirement is met:

- for every element s of \mathcal{A} and for every element t of \mathcal{B} such that $\mathcal{P}[s, t]$ holds $\mathcal{Q}[\mathcal{F}(s, t)]$.
The scheme Gen2" deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a nonempty set \mathcal{C}, a binary functor \mathcal{F} yielding an element of \mathcal{C}, a unary predicate \mathcal{Q}, and a binary predicate \mathcal{P}, and states that:
$\left\{s_{t}: s_{t} \in\left\{\mathcal{F}\left(s_{1}, t_{1}\right): \mathcal{P}\left[s_{1}, t_{1}\right]\right\} \wedge \mathcal{Q}\left[s_{t}\right]\right\}=\left\{\mathcal{F}\left(s_{2}, t_{2}\right): \mathcal{P}\left[s_{2}, t_{2}\right] \wedge \mathcal{Q}\left[\mathcal{F}\left(s_{2}, t_{2}\right)\right]\right\}$ for all values of the parameters.

The scheme Gen3' concerns a non-empty set \mathcal{A}, a unary functor \mathcal{F}, and two unary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\left\{\mathcal{F}(s): s \in\left\{s_{1}: \mathcal{Q}\left[s_{1}\right]\right\} \wedge \mathcal{P}[s]\right\}=\left\{\mathcal{F}\left(s_{2}\right): \mathcal{Q}\left[s_{2}\right] \wedge \mathcal{P}\left[s_{2}\right]\right\}$
for all values of the parameters.
The scheme Gen3" concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, a unary predicate \mathcal{Q}, and a binary predicate \mathcal{P}, and states that:
$\left\{\mathcal{F}(s, t): s \in\left\{s_{1}: \mathcal{Q}\left[s_{1}\right]\right\} \wedge \mathcal{P}[s, t]\right\}=\left\{\mathcal{F}\left(s_{2}, t_{2}\right): \mathcal{Q}\left[s_{2}\right] \wedge \mathcal{P}\left[s_{2}, t_{2}\right]\right\}$
for all values of the parameters.
The scheme Gen4" deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, and two binary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\{\mathcal{F}(s, t): \mathcal{P}[s, t]\} \subseteq\left\{\mathcal{F}\left(s_{1}, t_{1}\right): \mathcal{Q}\left[s_{1}, t_{1}\right]\right\}$
provided the following condition is satisfied:

- for every element s of \mathcal{A} and for every element t of \mathcal{B} such that $\mathcal{P}[s, t]$ there exists an element s^{\prime} of \mathcal{A} such that $\mathcal{Q}\left[s^{\prime}, t\right]$ and $\mathcal{F}(s, t)=$ $\mathcal{F}\left(s^{\prime}, t\right)$.
The scheme $\operatorname{FrSet} 1$ concerns a non-empty set \mathcal{A}, a set \mathcal{B}, a unary functor \mathcal{F}, and a unary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(y): \mathcal{F}(y) \in \mathcal{B} \wedge \mathcal{P}[y]\} \subseteq \mathcal{B}$ for all values of the parameters.

The scheme $\operatorname{FrSet} 2$ deals with a non-empty set \mathcal{A}, a set \mathcal{B}, a unary functor \mathcal{F}, and a unary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(y): \mathcal{P}[y] \wedge \mathcal{F}(y) \notin \mathcal{B}\}$ misses \mathcal{B}
for all values of the parameters.
The scheme $\operatorname{Fr} E q u a 1$ deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, an element \mathcal{C} of \mathcal{B}, and two binary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\{\mathcal{F}(s, t): \mathcal{Q}[s, t]\}=\left\{\mathcal{F}\left(s^{\prime}, \mathcal{C}\right): \mathcal{P}\left[s^{\prime}, \mathcal{C}\right]\right\}$
provided the parameters meet the following requirement:

- for every element s of \mathcal{A} and for every element t of \mathcal{B} holds $\mathcal{Q}[s, t]$ if and only if $t=\mathcal{C}$ and $\mathcal{P}[s, t]$.
The scheme $\operatorname{FrEqua2}$ concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, an element \mathcal{C} of \mathcal{B}, and a binary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(s, t): t=\mathcal{C} \wedge \mathcal{P}[s, t]\}=\left\{\mathcal{F}\left(s^{\prime}, \mathcal{C}\right): \mathcal{P}\left[s^{\prime}, \mathcal{C}\right]\right\}$
for all values of the parameters.
A non-empty set is said to be a non-empty set of functions if: for every element x of it holds x is a function.
Next we state two propositions:
(7) $\quad A$ is a non-empty set of functions if and only if for every element x of A holds x is a function.
(8) For every function f holds $\{f\}$ is a non-empty set of functions.

Let A be a set, and let B be a non-empty set. A non-empty set of functions is called a non-empty set of functions from A to B if:
for every element x of it holds x is a function from A into B.
Next we state three propositions:
(9) For every set A and for every non-empty set B and for every non-empty set C of functions holds C is a non-empty set of functions from A to B if and only if for every element x of C holds x is a function from A into B.
(10) For every function f from A into B holds $\{f\}$ is a non-empty set of functions from A to B.
(11) For every set A and for every non-empty set B holds B^{A} is a non-empty set of functions from A to B.
Let A be a set, and let B be a non-empty set. Then B^{A} is a non-empty set of functions from A to B. Let F be a non-empty set of functions from A to B. We see that it makes sense to consider the following mode for restricted scopes of arguments. Then all the objests of the mode element of F are a function from A into B.

In the sequel phi will be an element of B^{A}. The following propositions are true:
(12) For every function f from A into B holds f is an element of B^{A}.
(13) For every element f of B^{A} holds $\operatorname{dom} f=A$ and $\operatorname{rng} f \subseteq B$.
(14) For all sets X, Y such that $Y^{X} \neq \emptyset$ and $X \subseteq A$ and $Y \subseteq B$ for every element f of Y^{X} there exists an element phi of \bar{B}^{A} such that $p h i \upharpoonright X=f$.
(15) For every set X and for every $p h i$ holds $p h i \upharpoonright X=p h i \upharpoonright(A \cap X)$.

Now we present four schemes. The scheme FraenkelFin deals with a nonempty set \mathcal{A}, a set \mathcal{B}, and a unary functor \mathcal{F} and states that:
$\{\mathcal{F}(w): w \in \mathcal{B}\}$ is finite
provided the parameters meet the following requirement:

- \mathcal{B} is finite.

The scheme CartFin deals with a non-empty set \mathcal{A}, a set \mathcal{B}, a set \mathcal{C}, and a binary functor \mathcal{F} and states that:
$\left\{\mathcal{F}\left(u^{\prime}, v^{\prime}\right): u^{\prime} \in \mathcal{B} \wedge v^{\prime} \in \mathcal{C}\right\}$ is finite
provided the parameters fulfill the following requirements:

- \mathcal{B} is finite,
- \mathcal{C} is finite.

The scheme Finiteness deals with a non-empty set \mathcal{A}, an element \mathcal{B} of $\operatorname{Fin} \mathcal{A}$, and a binary predicate \mathcal{P}, and states that:
for every element x of \mathcal{A} such that $x \in \mathcal{B}$ there exists an element y of \mathcal{A} such that $y \in \mathcal{B}$ and $\mathcal{P}[y, x]$ and for every element z of \mathcal{A} such that $z \in \mathcal{B}$ and $\mathcal{P}[z, y]$ holds $\mathcal{P}[y, z]$
provided the following requirements are fulfilled:

- for every element x of \mathcal{A} holds $\mathcal{P}[x, x]$,
- for all elements x, y, z of \mathcal{A} such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, z]$ holds $\mathcal{P}[x, z]$.
The scheme Fin_Im deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, an element \mathcal{C} of $\operatorname{Fin} \mathcal{B}$, a unary functor \mathcal{F} yielding an element of \mathcal{A}, and a binary predicate \mathcal{P}, and states that:
there exists an element c_{1} of $\operatorname{Fin} \mathcal{A}$ such that for every element t of \mathcal{A} holds $t \in c_{1}$ if and only if there exists an element t^{\prime} of \mathcal{B} such that $t^{\prime} \in \mathcal{C}$ and $t=\mathcal{F}\left(t^{\prime}\right)$ and $\mathcal{P}\left[t, t^{\prime}\right]$
for all values of the parameters.
The following proposition is true
(16) For all sets A, B such that A is finite and B is finite holds B^{A} is finite.

Now we present three schemes. The scheme ImFin concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a set \mathcal{C}, a set \mathcal{D}, and a unary functor \mathcal{F} and states that:
$\left\{\mathcal{F}\left(p h i^{\prime}\right): p h i^{\prime}{ }^{\circ} \mathcal{C} \subseteq \mathcal{D}\right\}$ is finite provided the parameters fulfill the following conditions:

- \mathcal{C} is finite,
- \mathcal{D} is finite,
- for all elements phi, psi of $\mathcal{B}^{\mathcal{A}}$ such that phi $\upharpoonright \mathcal{C}=p s i \upharpoonright \mathcal{C}$ holds $\mathcal{F}(p h i)=\mathcal{F}(p s i)$.
The scheme FunctChoice concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, an element \mathcal{C} of $\operatorname{Fin} \mathcal{A}$, and a binary predicate \mathcal{P}, and states that:
there exists a function $f f$ from \mathcal{A} into \mathcal{B} such that for every element t of \mathcal{A} such that $t \in \mathcal{C}$ holds $\mathcal{P}[t, f f(t)]$
provided the parameters fulfill the following condition:
- for every element t of \mathcal{A} such that $t \in \mathcal{C}$ there exists an element $f f$ of \mathcal{B} such that $\mathcal{P}[t, f f]$.
The scheme FuncsChoice concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, an element \mathcal{C} of $\operatorname{Fin} \mathcal{A}$, and a binary predicate \mathcal{P}, and states that:
there exists an element $f f$ of $\mathcal{B}^{\mathcal{A}}$ such that for every element t of \mathcal{A} such that $t \in \mathcal{C}$ holds $\mathcal{P}[t, f f(t)]$
provided the parameters meet the following requirement:
- for every element t of \mathcal{A} such that $t \in \mathcal{C}$ there exists an element $f f$ of \mathcal{B} such that $\mathcal{P}[t, f f]$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[4] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[6] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.

[^0]: ${ }^{1}$ Supported by RPBP III. 24 C1

