Function Domains and Frænkel Operator

Andrzej Trybulec¹ Warsaw University, Białystok

Summary. We deal with a non-empty set of functions and a nonempty set of functions from a set A to a non-empty set B. In the case when B is a non-empty set, B^A is redefined. It yields a non-empty set of functions from A to B. An element of such a set is redefined as a function from A to B. Some theorems concerning these concepts are proved, as well as a number of schemes dealing with infinity and the Axiom of Choice. The article contains a number of schemes allowing for simple logical transformations related to terms constructed with the Frænkel Operator.

MML Identifier: FRAENKEL.

The articles [5], [4], [6], [1], [2], and [3] provide the notation and terminology for this paper. In the sequel A, B will be non-empty sets. We now state a proposition

(1) For arbitrary x holds $\{x\}$ is a non-empty set.

In the article we present several logical schemes. The scheme *Fraenkel5'* deals with a non-empty set \mathcal{A} , a unary functor \mathcal{F} , and two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

 $\{\mathcal{F}(v'):\mathcal{P}[v']\}\subseteq\{\mathcal{F}(u'):\mathcal{Q}[u']\}$

provided the parameters enjoy the following property:

• for every element v of \mathcal{A} such that $\mathcal{P}[v]$ holds $\mathcal{Q}[v]$.

The scheme *Fraenkel5*" concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a binary functor \mathcal{F} , and two binary predicates \mathcal{P} and \mathcal{Q} , and states that:

 $\{\mathcal{F}(u_1, v_1) : \mathcal{P}[u_1, v_1]\} \subseteq \{\mathcal{F}(u_2, v_2) : \mathcal{Q}[u_2, v_2]\}$

provided the following condition is fulfilled:

• for every element u of \mathcal{A} and for every element v of \mathcal{B} such that $\mathcal{P}[u, v]$ holds $\mathcal{Q}[u, v]$.

The scheme *Fraenkel6'* deals with a non-empty set \mathcal{A} , a unary functor \mathcal{F} , and two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

495

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP III.24 C1

 $\{\mathcal{F}(v_1):\mathcal{P}[v_1]\}=\{\mathcal{F}(v_2):\mathcal{Q}[v_2]\}$

provided the following requirement is fulfilled:

• for every element v of \mathcal{A} holds $\mathcal{P}[v]$ if and only if $\mathcal{Q}[v]$.

The scheme *Fraenkel6*" concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a binary functor \mathcal{F} , and two binary predicates \mathcal{P} and \mathcal{Q} , and states that:

 $\{\mathcal{F}(u_1, v_1) : \mathcal{P}[u_1, v_1]\} = \{\mathcal{F}(u_2, v_2) : \mathcal{Q}[u_2, v_2]\}$

provided the parameters fulfill the following requirement:

• for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{P}[u, v]$ if and only if $\mathcal{Q}[u, v]$.

The scheme *FraenkelF*' concerns a non-empty set \mathcal{A} , a unary functor \mathcal{F} , a unary functor \mathcal{G} , and a unary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(v_1): \mathcal{P}[v_1]\} = \{\mathcal{G}(v_2): \mathcal{P}[v_2]\}$

provided the following requirement is met:

• for every element v of \mathcal{A} holds $\mathcal{F}(v) = \mathcal{G}(v)$.

The scheme *FraenkelF'R* concerns a non-empty set \mathcal{A} , a unary functor \mathcal{F} , a unary functor \mathcal{G} , and a unary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(v_1):\mathcal{P}[v_1]\}=\{\mathcal{G}(v_2):\mathcal{P}[v_2]\}$

provided the parameters fulfill the following condition:

• for every element v of \mathcal{A} such that $\mathcal{P}[v]$ holds $\mathcal{F}(v) = \mathcal{G}(v)$.

The scheme *FraenkelF*" concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a binary functor \mathcal{F} , a binary functor \mathcal{G} , and a binary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(u_1, v_1) : \mathcal{P}[u_1, v_1]\} = \{\mathcal{G}(u_2, v_2) : \mathcal{P}[u_2, v_2]\}$

provided the parameters meet the following requirement:

• for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{F}(u, v) = \mathcal{G}(u, v)$.

The scheme *FraenkelF6*"C deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a binary functor \mathcal{F} , and a binary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(u_1, v_1) : \mathcal{P}[u_1, v_1]\} = \{\mathcal{F}(v_2, u_2) : \mathcal{P}[u_2, v_2]\}$

provided the following requirement is met:

• for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{F}(u, v) = \mathcal{F}(v, u)$.

The scheme FraenkelF6" deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a binary functor \mathcal{F} , and two binary predicates \mathcal{P} and \mathcal{Q} , and states that:

 $\{\mathcal{F}(u_1, v_1) : \mathcal{P}[u_1, v_1]\} = \{\mathcal{F}(v_2, u_2) : \mathcal{Q}[u_2, v_2]\}$

provided the parameters meet the following requirements:

- for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{P}[u, v]$ if and only if $\mathcal{Q}[u, v]$,
- for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{F}(u, v) = \mathcal{F}(v, u)$.

The following propositions are true:

(2) For all non-empty sets A, B and for every function F from A into B and for every set X and for every element x of A such that $x \in X$ holds $(F \upharpoonright X)(x) = F(x)$.

- (3) For all non-empty sets A, B and for all functions F, G from A into B and for every set X such that $F \upharpoonright X = G \upharpoonright X$ for every element x of A such that $x \in X$ holds F(x) = G(x).
- (4) For every function f from A into B holds $f \in B^A$.
- (5) For all sets A, B holds $B^A \subseteq 2^{[A, B]}$.
- (6) For all sets X, Y such that $Y^X \neq \emptyset$ and $X \subseteq A$ and $Y \subseteq B$ for every element f of Y^X holds f is a partial function from A to B.

Now we present a number of schemes. The scheme RelevantArgs deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a set \mathcal{C} , a function \mathcal{D} from \mathcal{A} into \mathcal{B} , a function \mathcal{E} from \mathcal{A} into \mathcal{B} , and two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

 $\{\mathcal{D}(u'): \mathcal{P}[u'] \land u' \in \mathcal{C}\} = \{\mathcal{E}(v'): \mathcal{Q}[v'] \land v' \in \mathcal{C}\}$

provided the following requirements are met:

- $\mathcal{D} \upharpoonright \mathcal{C} = \mathcal{E} \upharpoonright \mathcal{C},$
- for every element u of \mathcal{A} such that $u \in \mathcal{C}$ holds $\mathcal{P}[u]$ if and only if $\mathcal{Q}[u]$.

The scheme $Fr_Set\theta$ deals with a non-empty set \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

 $\{xx: \mathcal{P}[xx]\} \subseteq \mathcal{A}$

for all values of the parameters.

The scheme *Gen1*" concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a binary functor \mathcal{F} , a unary predicate \mathcal{Q} , and a binary predicate \mathcal{P} , and states that:

for every element s of \mathcal{A} and for every element t of \mathcal{B} such that $\mathcal{P}[s,t]$ holds $\mathcal{Q}[\mathcal{F}(s,t)]$

provided the parameters meet the following requirement:

• for arbitrary s_t such that $s_t \in \{\mathcal{F}(s_1, t_1) : \mathcal{P}[s_1, t_1]\}$ holds $\mathcal{Q}[s_t]$.

The scheme Gen1"A deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a binary functor \mathcal{F} , a unary predicate \mathcal{Q} , and a binary predicate \mathcal{P} , and states that:

for arbitrary s_t such that $s_t \in \{\mathcal{F}(s_1, t_1) : \mathcal{P}[s_1, t_1]\}$ holds $\mathcal{Q}[s_t]$ provided the following requirement is met:

• for every element s of \mathcal{A} and for every element t of \mathcal{B} such that $\mathcal{P}[s,t]$ holds $\mathcal{Q}[\mathcal{F}(s,t)]$.

The scheme *Gen2*" deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a non-empty set \mathcal{C} , a binary functor \mathcal{F} yielding an element of \mathcal{C} , a unary predicate \mathcal{Q} , and a binary predicate \mathcal{P} , and states that:

 $\{s_t : s_t \in \{\mathcal{F}(s_1, t_1) : \mathcal{P}[s_1, t_1]\} \land \mathcal{Q}[s_t]\} = \{\mathcal{F}(s_2, t_2) : \mathcal{P}[s_2, t_2] \land \mathcal{Q}[\mathcal{F}(s_2, t_2)]\}$ for all values of the parameters.

The scheme Gen3 concerns a non-empty set \mathcal{A} , a unary functor \mathcal{F} , and two unary predicates \mathcal{P} and \mathcal{Q} , and states that:

 $\{\mathcal{F}(s): s \in \{s_1: \mathcal{Q}[s_1]\} \land \mathcal{P}[s]\} = \{\mathcal{F}(s_2): \mathcal{Q}[s_2] \land \mathcal{P}[s_2]\}$ for all values of the parameters.

The scheme *Gen3*" concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a binary functor \mathcal{F} , a unary predicate \mathcal{Q} , and a binary predicate \mathcal{P} , and states that: $\{\mathcal{F}(s,t): s \in \{s_1: \mathcal{Q}[s_1]\} \land \mathcal{P}[s,t]\} = \{\mathcal{F}(s_2,t_2): \mathcal{Q}[s_2] \land \mathcal{P}[s_2,t_2]\}$ for all values of the parameters.

The scheme *Gen4*" deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a binary functor \mathcal{F} , and two binary predicates \mathcal{P} and \mathcal{Q} , and states that:

 $\{\mathcal{F}(s,t):\mathcal{P}[s,t]\}\subseteq\{\mathcal{F}(s_1,t_1):\mathcal{Q}[s_1,t_1]\}$

provided the following condition is satisfied:

• for every element s of \mathcal{A} and for every element t of \mathcal{B} such that $\mathcal{P}[s,t]$ there exists an element s' of \mathcal{A} such that $\mathcal{Q}[s',t]$ and $\mathcal{F}(s,t) = \mathcal{F}(s',t)$.

The scheme $FrSet_1$ concerns a non-empty set \mathcal{A} , a set \mathcal{B} , a unary functor \mathcal{F} , and a unary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(y):\mathcal{F}(y)\in\mathcal{B}\wedge\mathcal{P}[y]\}\subseteq\mathcal{B}$

for all values of the parameters.

The scheme $FrSet_2$ deals with a non-empty set \mathcal{A} , a set \mathcal{B} , a unary functor \mathcal{F} , and a unary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(y): \mathcal{P}[y] \land \mathcal{F}(y) \notin \mathcal{B}\}$ misses \mathcal{B}

for all values of the parameters.

The scheme FrEqual deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a binary functor \mathcal{F} , an element \mathcal{C} of \mathcal{B} , and two binary predicates \mathcal{P} and \mathcal{Q} , and states that:

 $\{\mathcal{F}(s,t):\mathcal{Q}[s,t]\} = \{\mathcal{F}(s',\mathcal{C}):\mathcal{P}[s',\mathcal{C}]\}$

provided the parameters meet the following requirement:

• for every element s of \mathcal{A} and for every element t of \mathcal{B} holds $\mathcal{Q}[s,t]$ if and only if $t = \mathcal{C}$ and $\mathcal{P}[s,t]$.

The scheme FrEqual concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a binary functor \mathcal{F} , an element \mathcal{C} of \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(s,t): t = \mathcal{C} \land \mathcal{P}[s,t]\} = \{\mathcal{F}(s',\mathcal{C}): \mathcal{P}[s',\mathcal{C}]\}$

for all values of the parameters.

A non-empty set is said to be a non-empty set of functions if:

for every element x of it holds x is a function.

Next we state two propositions:

- (7) A is a non-empty set of functions if and only if for every element x of A holds x is a function.
- (8) For every function f holds $\{f\}$ is a non-empty set of functions.

Let A be a set, and let B be a non-empty set. A non-empty set of functions is called a non-empty set of functions from A to B if:

for every element x of it holds x is a function from A into B.

Next we state three propositions:

- (9) For every set A and for every non-empty set B and for every non-empty set C of functions holds C is a non-empty set of functions from A to B if and only if for every element x of C holds x is a function from A into B.
- (10) For every function f from A into B holds $\{f\}$ is a non-empty set of functions from A to B.

(11) For every set A and for every non-empty set B holds B^A is a non-empty set of functions from A to B.

Let A be a set, and let B be a non-empty set. Then B^A is a non-empty set of functions from A to B. Let F be a non-empty set of functions from A to B. We see that it makes sense to consider the following mode for restricted scopes of arguments. Then all the objects of the mode element of F are a function from A into B.

In the sequel phi will be an element of B^A . The following propositions are true:

- (12) For every function f from A into B holds f is an element of B^A .
- (13) For every element f of B^A holds dom f = A and rng $f \subseteq B$.
- (14) For all sets X, Y such that $Y^X \neq \emptyset$ and $X \subseteq A$ and $Y \subseteq B$ for every element f of Y^X there exists an element phi of B^A such that $phi \upharpoonright X = f$.

(15) For every set X and for every phi holds $phi \upharpoonright X = phi \upharpoonright (A \cap X)$.

Now we present four schemes. The scheme *FraenkelFin* deals with a nonempty set \mathcal{A} , a set \mathcal{B} , and a unary functor \mathcal{F} and states that:

 $\{\mathcal{F}(w): w \in \mathcal{B}\}$ is finite

provided the parameters meet the following requirement:

• \mathcal{B} is finite.

The scheme *CartFin* deals with a non-empty set \mathcal{A} , a set \mathcal{B} , a set \mathcal{C} , and a binary functor \mathcal{F} and states that:

 $\{\mathcal{F}(u',v'): u' \in \mathcal{B} \land v' \in \mathcal{C}\}$ is finite

provided the parameters fulfill the following requirements:

- \mathcal{B} is finite,
- C is finite.

The scheme *Finiteness* deals with a non-empty set \mathcal{A} , an element \mathcal{B} of Fin \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

for every element x of \mathcal{A} such that $x \in \mathcal{B}$ there exists an element y of \mathcal{A} such that $y \in \mathcal{B}$ and $\mathcal{P}[y, x]$ and for every element z of \mathcal{A} such that $z \in \mathcal{B}$ and $\mathcal{P}[z, y]$ holds $\mathcal{P}[y, z]$

provided the following requirements are fulfilled:

- for every element x of \mathcal{A} holds $\mathcal{P}[x, x]$,
- for all elements x, y, z of \mathcal{A} such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, z]$ holds $\mathcal{P}[x, z]$.

The scheme *Fin_Im* deals with a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , an element \mathcal{C} of Fin \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

there exists an element c_1 of Fin \mathcal{A} such that for every element t of \mathcal{A} holds $t \in c_1$ if and only if there exists an element t' of \mathcal{B} such that $t' \in \mathcal{C}$ and $t = \mathcal{F}(t')$ and $\mathcal{P}[t, t']$

for all values of the parameters.

The following proposition is true

(16) For all sets A, B such that A is finite and B is finite holds B^A is finite.

Now we present three schemes. The scheme ImFin concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , a set \mathcal{C} , a set \mathcal{D} , and a unary functor \mathcal{F} and states that: $\{\mathcal{F}(phi') : phi' \circ \mathcal{C} \subseteq \mathcal{D}\}$ is finite

provided the parameters fulfill the following conditions:

- C is finite,
- \mathcal{D} is finite,
- for all elements phi, psi of $\mathcal{B}^{\mathcal{A}}$ such that $phi \upharpoonright \mathcal{C} = psi \upharpoonright \mathcal{C}$ holds $\mathcal{F}(phi) = \mathcal{F}(psi)$.

The scheme *FunctChoice* concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , an element \mathcal{C} of Fin \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

there exists a function ff from \mathcal{A} into \mathcal{B} such that for every element t of \mathcal{A} such that $t \in \mathcal{C}$ holds $\mathcal{P}[t, ff(t)]$

provided the parameters fulfill the following condition:

• for every element t of \mathcal{A} such that $t \in \mathcal{C}$ there exists an element ff of \mathcal{B} such that $\mathcal{P}[t, ff]$.

The scheme *FuncsChoice* concerns a non-empty set \mathcal{A} , a non-empty set \mathcal{B} , an element \mathcal{C} of Fin \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

there exists an element ff of $\mathcal{B}^{\mathcal{A}}$ such that for every element t of \mathcal{A} such that $t \in \mathcal{C}$ holds $\mathcal{P}[t, ff(t)]$

provided the parameters meet the following requirement:

• for every element t of \mathcal{A} such that $t \in \mathcal{C}$ there exists an element ff of \mathcal{B} such that $\mathcal{P}[t, ff]$.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357– 367, 1990.
- [4] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [6] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.

Received February 7, 1990