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Summary. The first part of the article is a continuation of [2].
Next, we define the identity sequence of natural numbers and the constant
sequences. The main part of this article is the definition of tuples. The
element of a set of all sequences of the length n of D is called a tuple of
a non-empty set D and it is denoted by element of D

n. Also some basic
facts about tuples of a non-empty set are proved.

MML Identifier: FINSEQ 2.

The notation and terminology used here have been introduced in the following
articles: [9], [8], [6], [1], [10], [4], [5], [2], [3], and [7]. For simplicity we adopt
the following rules: i, j, l denote natural numbers, a, b, x1, x2, x3 are arbitrary,
D, D′, E denote non-empty sets, d, d1, d2, d3 denote elements of D, d′, d′1, d′2,
d′3 denote elements of D′, and p, q, r denote finite sequences. Next we state a
number of propositions:

(1) min(i, j) is a natural number and max(i, j) is a natural number.

(2) If l = min(i, j), then Seg i ∩ Seg j = Seg l.

(3) If i ≤ j, then max(0, i − j) = 0.

(4) If j ≤ i, then max(0, i − j) = i − j.

(5) max(0, i − j) is a natural number.

(6) min(0, i) = 0 and min(i, 0) = 0 and max(0, i) = i and max(i, 0) = i.

(7) If i 6= 0, then Seg i is a non-empty subset of � .

(8) If i ∈ Seg(l + 1), then i ∈ Seg l or i = l + 1.

(9) If i ∈ Seg l, then i ∈ Seg(l + j).

(10) If len p = i and len q = i and for every j such that j ∈ Seg i holds
p(j) = q(j), then p = q.
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(11) If b ∈ rng p, then there exists i such that i ∈ Seg(len p) and p(i) = b.

(12) If i ∈ Seg(len p), then p(i) ∈ rng p.

(13) For every finite sequence p of elements of D such that i ∈ Seg(len p)
holds p(i) ∈ D.

(14) If for every i such that i ∈ Seg(len p) holds p(i) ∈ D, then p is a finite
sequence of elements of D.

(15) 〈d1, d2〉 is a finite sequence of elements of D.

(16) 〈d1, d2, d3〉 is a finite sequence of elements of D.

(17) If i ∈ Seg(len p), then (p � q)(i) = p(i).

(18) If i ∈ Seg(len p), then i ∈ Seg(len(p � q)).

(19) len(p � 〈a〉) = len p + 1.

(20) If p � 〈a〉 = q � 〈b〉, then p = q and a = b.

(21) If len p = i + 1, then there exist q, a such that p = q � 〈a〉.

(22) For every finite sequence p of elements of D such that len p 6= 0 there
exists a finite sequence q of elements of D and there exists d such that
p = q � 〈d〉.

(23) If q = p
�
Seg i and len p ≤ i, then p = q.

(24) If q = p
�
Seg i, then len q = min(i, len p).

(25) If len r = i + j, then there exist p, q such that len p = i and len q = j

and r = p � q.

(26) For every finite sequence r of elements of D such that len r = i + j

there exist finite sequences p, q of elements of D such that len p = i and
len q = j and r = p � q.

In the article we present several logical schemes. The scheme SeqLambdaD

concerns a natural number A, a non-empty set B, and a unary functor F yielding
an element of B and states that:

there exists a finite sequence z of elements of B such that len z = A and for
every j such that j ∈ SegA holds z(j) = F(j)
for all values of the parameters.

The scheme IndSeqD deals with a non-empty set A, and a unary predicate
P, and states that:

for every finite sequence p of elements of A holds P[p]
provided the parameters meet the following requirements:

• P[εA],
• for every finite sequence p of elements of A and for every element

x of A such that P[p] holds P[p � 〈x〉].
We now state a number of propositions:

(27) For every non-empty subset D′ of D and for every finite sequence p of
elements of D′ holds p is a finite sequence of elements of D.

(28) For every function f from Seg i into D holds f is a finite sequence of
elements of D.

(29) p is a function from Seg(len p) into rng p.
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(30) For every finite sequence p of elements of D holds p is a function from
Seg(len p) into D.

(31) For every function f from � into D holds f
�
Seg i is a finite sequence

of elements of D.

(32) For every function f from � into D such that q = f
�

Seg i holds
len q = i.

(33) For every function f such that rng p ⊆ dom f and q = f · p holds
len q = len p.

(34) If D = Seg i, then for every finite sequence p and for every finite se-
quence q of elements of D such that i ≤ len p holds p·q is a finite sequence.

(35) If D = Seg i, then for every finite sequence p of elements of D ′ and for
every finite sequence q of elements of D such that i ≤ len p holds p · q is
a finite sequence of elements of D′.

(36) For every finite sequence p of elements of D and for every function f

from D into D′ holds f · p is a finite sequence of elements of D ′.

(37) For every finite sequence p of elements of D and for every function f

from D into D′ such that q = f · p holds len q = len p.

(38) For every function f from D into D′ holds f · εD = εD′ .

(39) For every finite sequence p of elements of D and for every function f

from D into D′ such that p = 〈x1〉 holds f · p = 〈f(x1)〉.

(40) For every finite sequence p of elements of D and for every function f

from D into D′ such that p = 〈x1, x2〉 holds f · p = 〈f(x1), f(x2)〉.

(41) For every finite sequence p of elements of D and for every function f

from D into D′ such that p = 〈x1, x2, x3〉 holds f · p = 〈f(x1), f(x2),
f(x3)〉.

(42) For every function f from Seg i into Seg j such that if j = 0, then i = 0
but j ≤ len p holds p · f is a finite sequence.

(43) For every function f from Seg i into Seg i such that i ≤ len p holds p · f
is a finite sequence.

(44) For every function f from Seg(len p) into Seg(len p) holds p ·f is a finite
sequence.

(45) For every function f from Seg i into Seg i such that rng f = Seg i and
i ≤ len p and q = p · f holds len q = i.

(46) For every function f from Seg(len p) into Seg(len p) such that rng f =
Seg(len p) and q = p · f holds len q = len p.

(47) For every permutation f of Seg i such that i ≤ len p and q = p · f holds
len q = i.

(48) For every permutation f of Seg(len p) such that q = p · f holds len q =
len p.

(49) For every finite sequence p of elements of D and for every function f

from Seg i into Seg j such that if j = 0, then i = 0 but j ≤ len p holds
p · f is a finite sequence of elements of D.
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(50) For every finite sequence p of elements of D and for every function f

from Seg i into Seg i such that i ≤ len p holds p · f is a finite sequence of
elements of D.

(51) For every finite sequence p of elements of D and for every function f

from Seg(len p) into Seg(len p) holds p · f is a finite sequence of elements
of D.

(52) idSeg i is a finite sequence of elements of � .

Let us consider i. The functor idi yielding a finite sequence, is defined as
follows:

idi = idSeg i.

One can prove the following propositions:

(53) idi = idSeg i.

(54) dom(idi) = Seg i.

(55) len(idi) = i.

(56) If j ∈ Seg i, then idi(j) = j.

(57) If i 6= 0, then for every element k of Seg i holds idi(k) = k.

(58) id0 = ε.

(59) id1 = 〈1〉.

(60) idi+1 = idi � 〈i + 1〉.

(61) id2 = 〈1, 2〉.

(62) id3 = 〈1, 2, 3〉.

(63) p · idi = p
�
Seg i.

(64) If len p ≤ i, then p · idi = p.

(65) idi is a permutation of Seg i.

(66) Seg i 7−→ a is a finite sequence.

Let us consider i, a. The functor i 7−→ a yielding a finite sequence, is defined
as follows:

i 7−→ a = Seg i 7−→ a.

We now state a number of propositions:

(67) i 7−→ a = Seg i 7−→ a.

(68) dom(i 7−→ a) = Seg i.

(69) len(i 7−→ a) = i.

(70) If j ∈ Seg i, then (i 7−→ a)(j) = a.

(71) If i 6= 0, then for every element k of Seg i holds (i 7−→ d)(k) = d.

(72) 0 7−→ a = ε.

(73) 1 7−→ a = 〈a〉.

(74) i + 1 7−→ a = (i 7−→ a) � 〈a〉.

(75) 2 7−→ a = 〈a, a〉.

(76) 3 7−→ a = 〈a, a, a〉.

(77) i 7−→ d is a finite sequence of elements of D.
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(78) For every function F such that [: rng p, rng q :] ⊆ dom F holds F ◦(p, q)
is a finite sequence.

(79) For every function F such that [: rng p, rng q :] ⊆ dom F and r = F ◦(p, q)
holds len r = min(len p, len q).

(80) For every function F such that [: {a}, rng p :] ⊆ dom F holds F ◦(a, p) is
a finite sequence.

(81) For every function F such that [: {a}, rng p :] ⊆ dom F and r = F ◦(a, p)
holds len r = len p.

(82) For every function F such that [: rng p, {a} :] ⊆ dom F holds F ◦(p, a) is
a finite sequence.

(83) For every function F such that [: rng p, {a} :] ⊆ dom F and r = F ◦(p, a)
holds len r = len p.

(84) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D and for every finite sequence q of elements of D ′ holds
F ◦(p, q) is a finite sequence of elements of E.

(85) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D and for every finite sequence q of elements of D ′ such
that r = F ◦(p, q) holds len r = min(len p, len q).

(86) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D and for every finite sequence q of elements of D ′ such
that len p = len q and r = F ◦(p, q) holds len r = len p and len r = len q.

(87) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D and for every finite sequence p′ of elements of D′ holds
F ◦(εD, p′) = εE and F ◦(p, εD′) = εE.

(88) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D and for every finite sequence q of elements of D ′ such
that p = 〈d1〉 and q = 〈d′1〉 holds F ◦(p, q) = 〈F (d1, d

′
1)〉.

(89) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D and for every finite sequence q of elements of D ′ such
that p = 〈d1, d2〉 and q = 〈d′1, d

′
2〉 holds F ◦(p, q) = 〈F (d1, d

′
1), F (d2, d

′
2)〉.

(90) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D and for every finite sequence q of elements of D ′ such
that p = 〈d1, d2, d3〉 and q = 〈d′1, d

′
2, d

′
3〉 holds F ◦(p, q) = 〈F (d1, d

′
1),

F (d2, d
′
2), F (d3, d

′
3)〉.

(91) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D′ holds F ◦(d, p) is a finite sequence of elements of E.

(92) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D′ such that r = F ◦(d, p) holds len r = len p.

(93) For every function F from [: D, D′ :] into E holds F ◦(d, εD′) = εE .

(94) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D′ such that p = 〈d′1〉 holds F ◦(d, p) = 〈F (d, d′1)〉.

(95) For every function F from [: D, D′ :] into E and for every finite sequence
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p of elements of D′ such that p = 〈d′1, d
′
2〉 holds F ◦(d, p) = 〈F (d, d′1),

F (d, d′2)〉.

(96) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D′ such that p = 〈d′1, d

′
2, d

′
3〉 holds F ◦(d, p) = 〈F (d, d′1),

F (d, d′2), F (d, d′3)〉.

(97) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D holds F ◦(p, d′) is a finite sequence of elements of E.

(98) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D such that r = F ◦(p, d′) holds len r = len p.

(99) For every function F from [: D, D′ :] into E holds F ◦(εD, d′) = εE .

(100) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D such that p = 〈d1〉 holds F ◦(p, d′) = 〈F (d1, d

′)〉.

(101) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D such that p = 〈d1, d2〉 holds F ◦(p, d′) = 〈F (d1, d

′),
F (d2, d

′)〉.

(102) For every function F from [: D, D′ :] into E and for every finite sequence
p of elements of D such that p = 〈d1, d2, d3〉 holds F ◦(p, d′) = 〈F (d1, d

′),
F (d2, d

′), F (d3, d
′)〉.

Let us consider D. A non-empty set is said to be a non-empty set of finite
sequences of D if:

if a ∈ it, then a is a finite sequence of elements of D.

We now state two propositions:

(103) For all D, D′ holds D′ is a non-empty set of finite sequences of D if
and only if for every a such that a ∈ D′ holds a is a finite sequence of
elements of D.

(104) D∗ is a non-empty set of finite sequences of D.

Let us consider D. Then D∗ is a non-empty set of finite sequences of D.

Next we state two propositions:

(105) For every non-empty set D′ of finite sequences of D holds D′ ⊆ D∗.

(106) For every non-empty set S of finite sequences of D and for every element
s of S holds s is a finite sequence of elements of D.

Let us consider D, and let S be a non-empty set of finite sequences of D. We
see that it makes sense to consider the following mode for restricted scopes of
arguments. Then all the objests of the mode element of S are a finite sequence
of elements of D.

One can prove the following proposition

(107) For every non-empty subset D′ of D and for every non-empty set S of
finite sequences of D′ holds S is a non-empty set of finite sequences of D.

In the sequel s is an element of D∗. Let us consider i, D. The functor Di

yielding a non-empty set of finite sequences of D, is defined as follows:
Di = {s : len s = i}.

Next we state a number of propositions:
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(108) Di = {s : len s = i}.

(109) For every element z of Di holds len z = i.

(110) For every finite sequence z of elements of D holds z is an element of
Dlen z.

(111) Di = DSeg i.

(112) D0 = {εD}.

(113) For every element z of D0 holds z = εD.

(114) εD is an element of D0.

(115) For every element z of D0 and for every element t of Di holds z � t = t

and t � z = t.

(116) D1 = {〈d〉}.

(117) For every element z of D1 there exists d such that z = 〈d〉.

(118) 〈d〉 is an element of D1.

(119) D2 = {〈d1, d2〉}.

(120) For every element z of D2 there exist d1, d2 such that z = 〈d1, d2〉.

(121) 〈d1, d2〉 is an element of D2.

(122) D3 = {〈d1, d2, d3〉}.

(123) For every element z of D3 there exist d1, d2, d3 such that z = 〈d1, d2,

d3〉.

(124) 〈d1, d2, d3〉 is an element of D3.

(125) Di+j = {z � t}.

(126) For every element s of Di+j there exists an element z of Di and there
exists an element t of Dj such that s = z � t.

(127) For every element z of Di and for every element t of Dj holds z � t is
an element of Di+j .

(128) D∗ =
⋃
{Di}.

(129) For every non-empty subset D′ of D and for every element z of D′i

holds z is an element of Di.

(130) If Di = Dj, then i = j.

(131) idi is an element of � i .

(132) i 7−→ d is an element of Di.

(133) For every element z of Di and for every function f from D into D′ holds

f · z is an element of D′i.

(134) For every element z of Di and for every function f from Seg i into Seg i

such that rng f = Seg i holds z · f is an element of Di.

(135) For every element z of Di and for every permutation f of Seg i holds
z · f is an element of Di.

(136) For every element z of Di and for every d holds (z � 〈d〉)(i + 1) = d.

(137) For every element z of Di+1 there exists an element t of Di and there
exists d such that z = t � 〈d〉.
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(138) For every element z of Di holds z · idi = z.

(139) For all elements z1, z2 of Di such that for every j such that j ∈ Seg i

holds z1(j) = z2(j) holds z1 = z2.

(140) For every function F from [: D, D′ :] into E and for every element z1 of

Di and for every element z2 of D′i holds F ◦(z1, z2) is an element of Ei.

(141) For every function F from [: D, D′ :] into E and for every element z of

D′i holds F ◦(d, z) is an element of Ei.

(142) For every function F from [: D, D′ :] into E and for every element z of
Di holds F ◦(z, d′) is an element of Ei.
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