Equivalence Relations and Classes of Abstraction ${ }^{1}$

Konrad Raczkowski
Warsaw University
Białystok

Paweł Sadowski
Warsaw University
Białystok

Summary. In this article we deal with the notion of equivalence relation. The main properties of equivalence relations are proved. Then we define the classes of abstraction determined by an equivalence relation. Finally, the connections between a partition of a set and an equivalence relation are presented. We introduce the following notation of modes: Equivalence Relation, a partition.

MML Identifier: EQREL_1.

The notation and terminology used in this paper are introduced in the following articles: [6], [7], [9], [8], [5], [3], [2], [4], and [1]. For simplicity we adopt the following rules: x, y, z are arbitrary, i, j are natural numbers, X, Y are sets, A, B are subsets of X, R, R_{1}, R_{2} are relations on X, and $S F X X$ is a family of subsets of $: X, X:$. The following two propositions are true:
(1) If $i<j$, then $j-i$ is a natural number.
(2) For every Y such that $Y \subseteq\{X, X$: holds Y is a relation on X.

Let us consider X. The functor ∇_{X} yielding a relation on X, is defined as follows:
$\nabla_{X}=[: X, X]$.
We now state a proposition
(3) $\nabla_{X}=[: X, X:]$.

Let us consider X, R_{1}, R_{2}. Then $R_{1} \cap R_{2}$ is a relation on X. Then $R_{1} \cup R_{2}$ is a relation on X.

Next we state a proposition
(4) \triangle_{X} is reflexive in X and \triangle_{X} is symmetric in X and \triangle_{X} is transitive in X.

[^0]Let us consider X. A relation on X is called an equivalence relation of X if: it is reflexive in X and it is symmetric in X and it is transitive in X.
The following three propositions are true:
(5) $\quad R$ is an equivalence relation of X if and only if R is reflexive in X and R is symmetric in X and R is transitive in X.
(6) \triangle_{X} is an equivalence relation of X.
(7) $\quad \nabla_{X}$ is an equivalence relation of X.

Let us consider X. Then \triangle_{X} is an equivalence relation of X. Then ∇_{X} is an equivalence relation of X.

In the sequel $E q R, E q R_{1}, E q R_{2}$ will be equivalence relations of X. We now state several propositions:
(8) $E q R$ is reflexive in X.
(9) $E q R$ is symmetric in X.
(10) $E q R$ is transitive in X.
(11) If $x \in X$, then $\langle x, x\rangle \in E q R$.
(12) If $\langle x, y\rangle \in E q R$, then $\langle y, x\rangle \in E q R$.
(13) If $\langle x, y\rangle \in E q R$ and $\langle y, z\rangle \in E q R$, then $\langle x, z\rangle \in E q R$.
(14) If there exists x such that $x \in X$, then $E q R \neq \varnothing$.
(15) field $E q R=X$.
(16) $\quad R$ is an equivalence relation of X if and only if R is pseudo reflexive and R is symmetric and R is transitive and field $R=X$.
Let us consider $X, E q R_{1}, E q R_{2}$. Then $E q R_{1} \cap E q R_{2}$ is an equivalence relation of X.

We now state four propositions:

$$
\begin{align*}
& \triangle_{X} \cap E q R=\triangle_{X} \tag{17}\\
& \left(\nabla_{X}\right) \cap R=R .
\end{align*}
$$

(19) For every $S F X X$ such that $S F X X \neq \emptyset$ and for every Y such that $Y \in S F X X$ holds Y is an equivalence relation of X holds $\bigcap S F X X$ is an equivalence relation of X.
(20) For every R there exists $E q R$ such that $R \subseteq E q R$ and for every $E q R_{2}$ such that $R \subseteq E q R_{2}$ holds $E q R \subseteq E q R_{2}$.
Let us consider $X, E q R_{1}, E q R_{2}$. The functor $E q R_{1} \sqcup E q R_{2}$ yielding an equivalence relation of X, is defined by:
$E q R_{1} \cup E q R_{2} \subseteq E q R_{1} \sqcup E q R_{2}$ and for every $E q R$ such that $E q R_{1} \cup E q R_{2} \subseteq$ $E q R$ holds $E q R_{1} \sqcup E q R_{2} \subseteq E q R$.

Next we state several propositions:
(21) For every equivalence relation R of X holds $R=E q R_{1} \sqcup E q R_{2}$ if and only if $E q R_{1} \cup E q R_{2} \subseteq R$ and for every $E q R$ such that $E q R_{1} \cup E q R_{2} \subseteq$ $E q R$ holds $R \subseteq E q R$.
(22) $E q R \sqcup E q R=E q R$.

$$
\begin{equation*}
E q R_{1} \sqcup E q R_{2}=E q R_{2} \sqcup E q R_{1} . \tag{23}
\end{equation*}
$$

$$
\begin{align*}
& E q R_{1} \cap\left(E q R_{1} \sqcup E q R_{2}\right)=E q R_{1} . \tag{24}\\
& E q R_{1} \sqcup\left(E q R_{1} \cap E q R_{2}\right)=E q R_{1} . \tag{25}
\end{align*}
$$

The scheme $E x _E q_{-}$Rel concerns a set \mathcal{A}, and a binary predicate \mathcal{P}, and states that:
there exists an equivalence relation $E q R$ of \mathcal{A} such that for all x, y holds $\langle x, y\rangle \in E q R$ if and only if $x \in \mathcal{A}$ and $y \in \mathcal{A}$ and $\mathcal{P}[x, y]$
provided the parameters satisfy the following conditions:

- for every x such that $x \in \mathcal{A}$ holds $\mathcal{P}[x, x]$,
- for all x, y such that $\mathcal{P}[x, y]$ holds $\mathcal{P}[y, x]$,
- for all x, y, z such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, z]$ holds $\mathcal{P}[x, z]$.

Let us consider $X, E q R, x$. The functor $[x]_{E q R}$ yielding a subset of X, is defined by:
$[x]_{E q R}=E q R^{\circ}\{x\}$.
We now state a number of propositions:
(28) For every x such that $x \in X$ holds $x \in[x]_{E q R}$.
(29) For every x such that $x \in X$ there exists y such that $x \in[y]_{E q R}$.
(30) If $y \in[x]_{E q R}$ and $z \in[x]_{E q R}$, then $\langle y, z\rangle \in E q R$.
(31) For every x such that $x \in X$ holds $y \in[x]_{E q R}$ if and only if $[x]_{E q R}=$ $[y]_{E q R}$.
(32) For all x, y such that $x \in X$ and $y \in X$ holds $[x]_{E q R}=[y]_{E q R}$ or $[x]_{E q R}$ misses $[y]_{E q R}$.
(33) For every x such that $x \in X$ holds $[x]_{\triangle_{X}}=\{x\}$.

$$
\begin{equation*}
\text { For every } x \text { such that } x \in X \text { holds }[x]_{\nabla_{X}}=X \text {. } \tag{34}
\end{equation*}
$$

If there exists x such that $[x]_{E q R}=X$, then $E q R=\nabla_{X}$.
Suppose $x \in X$. Then $\langle x, y\rangle \in E q R_{1} \sqcup E q R_{2}$ if and only if there exists a finite sequence f such that $1 \leq \operatorname{len} f$ and $x=f(1)$ and $y=f(\operatorname{len} f)$ and for every i such that $1 \leq i$ and $i<\operatorname{len} f$ holds $\langle f(i), f(i+1)\rangle \in E q R_{1} \cup E q R_{2}$.
(37) For every equivalence relation E of X such that $E=E q R_{1} \cup E q R_{2}$ for every x such that $x \in X$ holds $[x]_{E}=[x]_{E q R_{1}}$ or $[x]_{E}=[x]_{E q R_{2}}$.
If $E q R_{1} \cup E q R_{2}=\nabla_{X}$, then $E q R_{1}=\nabla_{X}$ or $E q R_{2}=\nabla_{X}$.
Let us consider $X, E q R$. The functor Classes $E q R$ yields a family of subsets of X and is defined as follows:
$A \in$ Classes $E q R$ if and only if there exists x such that $x \in X$ and $A=[x]_{E q R}$. The following two propositions are true:
(39) $\quad A \in$ Classes $E q R$ if and only if there exists x such that $x \in X$ and $A=[x]_{E q R}$.
(40) If $X=\emptyset$, then Classes $E q R=\emptyset$.

Let us consider X. A family of subsets of X is said to be a partition of X if:
\bigcup it $=X$ and for every A such that $A \in$ it holds $A \neq \emptyset$ and for every B such that $B \in$ it holds $A=B$ or A misses B if $X \neq \emptyset$, it $=\emptyset$, otherwise.

We now state several propositions:
(41) If $X \neq \emptyset$, then for every family F of subsets of X holds F is a partition of X if and only if $\bigcup F=X$ and for every A such that $A \in F$ holds $A \neq \emptyset$ and for every B such that $B \in F$ holds $A=B$ or A misses B.
(42) Classes $E q R$ is a partition of X.
(43) For every partition P of X there exists $E q R$ such that $P=$ Classes $E q R$.
(44) For every x such that $x \in X$ holds $\langle x, y\rangle \in E q R$ if and only if $[x]_{E q R}=$ $\left.{ }_{[y]}\right]_{E q R}$.
(45) If $x \in$ Classes $E q R$, then there exists an element y of X such that $x=[y]_{E q R}$.
(46) For every x such that $x \in X$ holds $[x]_{E q R} \in$ Classes $E q R$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[7] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[8] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[9] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

[^0]: ${ }^{1}$ Supported by RPBP III. 24 C8

