Universal Classes

Bogdan Nowak Łódź University Grzegorz Bancerek Warsaw University Białystok

Summary. In the article we have shown that there exist universal classes, i.e. there are sets which are closed w.r.t. basic set theory operations.

MML Identifier: CLASSES2.

The articles [11], [8], [4], [7], [10], [9], [5], [2], [1], [6], and [3] provide the terminology and notation for this paper. For simplicity we adopt the following convention: m is a cardinal number, A, B, C are ordinal numbers, x, y are arbitrary, and X, Y, W are sets. One can prove the following propositions:

- (1) If W is a Tarski-Class and $X \in W$, then $X \not\approx W$ and $\overline{X} < \overline{W}$.
- (2) If W is a Tarski-Class and $X \subseteq W$ and $\overline{X} < \overline{W}$, then $X \in W$.
- (3) If W is a Tarski-Class and $x \in W$ and $y \in W$, then $\{x\} \in W$ and $\{x, y\} \in W$.
- (4) If W is a Tarski-Class and $x \in W$ and $y \in W$, then $\langle x, y \rangle \in W$.
- (5) If W is a Tarski-Class and $X \in W$, then $\mathbf{T}(X) \subseteq W$.

The scheme TC deals with a unary predicate \mathcal{P} , and states that: for every X holds $\mathcal{P}[\mathbf{T}(X)]$

provided the parameter fulfills the following condition:

• for every X such that X is a Tarski-Class holds $\mathcal{P}[X]$.

Next we state a number of propositions:

- (6) If W is a Tarski-Class and $A \in W$, then succ $A \in W$ and $A \subseteq W$.
- (7) If $A \in \mathbf{T}(W)$, then succ $A \in \mathbf{T}(W)$ and $A \subseteq \mathbf{T}(W)$.
- (8) If W is a Tarski-Class and X is transitive and $X \in W$, then $X \subseteq W$.
- (9) If X is transitive and $X \in \mathbf{T}(W)$, then $X \subseteq \mathbf{T}(W)$.
- (10) If W is a Tarski-Class, then $\operatorname{On} W = \overline{\overline{W}}$.
- (11) $\operatorname{On} \mathbf{T}(W) = \overline{\overline{\mathbf{T}(W)}}.$

595

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (12) If W is a Tarski-Class and $X \in W$, then $\overline{X} \in W$.
- (13) If $X \in \mathbf{T}(W)$, then $\overline{\overline{X}} \in \mathbf{T}(W)$.
- (14) If W is a Tarski-Class and $x \in \operatorname{ord}(\overline{W})$, then $x \in W$.
- (15) If $x \in \operatorname{ord}(\overline{\mathbf{T}(W)})$, then $x \in \mathbf{T}(W)$.
- (16) If W is a Tarski-Class and $m < \overline{W}$, then $m \in W$.
- (17) If $m < \overline{\overline{\mathbf{T}(W)}}$, then $m \in \mathbf{T}(W)$.
- (18) If W is a Tarski-Class and $m \in W$, then $m \subseteq W$.
- (19) If $m \in \mathbf{T}(W)$, then $m \subseteq \mathbf{T}(W)$.
- (20) If W is a Tarski-Class, then $\operatorname{ord}(\overline{W})$ is a limit ordinal number.
- (21) If W is a Tarski-Class and $W \neq \emptyset$, then $\overline{W} \neq \overline{\mathbf{0}}$ and $\operatorname{ord}(\overline{W}) \neq \mathbf{0}$ and $\operatorname{ord}(\overline{W})$ is a limit ordinal number.
- (22) $\overline{\overline{\mathbf{T}(W)}} \neq \overline{\mathbf{0}}$ and $\operatorname{ord}(\overline{\overline{\mathbf{T}(W)}}) \neq \mathbf{0}$ and $\operatorname{ord}(\overline{\overline{\mathbf{T}(W)}})$ is a limit ordinal number.

In the sequel L, L_1 are transfinite sequences. We now state a number of propositions:

- (23) If W is a Tarski-Class but $X \in W$ and W is transitive or $X \in W$ and $X \subseteq W$ or $\overline{X} < \overline{W}$ and $X \subseteq W$, then $W^X \subseteq W$.
- (24) If $X \in \mathbf{T}(W)$ and W is transitive or $X \in \mathbf{T}(W)$ and $X \subseteq \mathbf{T}(W)$ or $\overline{X} < \overline{\mathbf{T}(W)}$ and $X \subseteq \mathbf{T}(W)$, then $\mathbf{T}(W)^X \subseteq \mathbf{T}(W)$.
- (25) If dom L is a limit ordinal number and for every A such that $A \in \text{dom } L$ holds $L(A) = \mathbf{R}_A$, then $\mathbf{R}_{\text{dom } L} = \bigcup L$.
- (26) If W is a Tarski-Class and $A \in \operatorname{On} W$, then $\overline{\mathbb{R}_A} < \overline{W}$ and $\mathbb{R}_A \in W$.
- (27) If $A \in \text{On } \mathbf{T}(W)$, then $\overline{\mathbf{R}_A} < \overline{\mathbf{T}(W)}$ and $\mathbf{R}_A \in \mathbf{T}(W)$.
- (28) If W is a Tarski-Class, then $\mathbf{R}_{\operatorname{ord}}(\overline{W}) \subseteq W$.

(29)
$$\mathbf{R}_{\operatorname{ord}(\overline{\mathbf{T}(W)})} \subseteq \mathbf{T}(W).$$

- (30) If W is a Tarski-Class and W is transitive and $X \in W$, then $\operatorname{rk}(X) \in W$.
- (31) If W is a Tarski-Class and W is transitive, then $W \subseteq \mathbf{R}_{\operatorname{ord}(\overline{W})}$.
- (32) If W is a Tarski-Class and W is transitive, then $\mathbf{R}_{\operatorname{ord}(\overline{W})} = W$.
- (33) If W is a Tarski-Class and $A \in \operatorname{On} W$, then $\overline{\overline{\mathbf{R}_A}} \leq \overline{W}$.
- (34) If $A \in \operatorname{On} \mathbf{T}(W)$, then $\overline{\mathbf{R}_A} \leq \overline{\mathbf{T}(W)}$.
- (35) If W is a Tarski-Class, then $\overline{W} = \overline{\mathbf{R}_{\mathrm{ord}}(\overline{W})}$.

(36)
$$\overline{\mathbf{T}(W)} = \overline{\mathbf{R}_{\mathrm{ord}}(\overline{\mathbf{T}(W)})}$$

(37) If W is a Tarski-Class and $X \subseteq \mathbf{R}_{\operatorname{ord}(\overline{W})}$, then $X \approx \mathbf{R}_{\operatorname{ord}(\overline{W})}$ or $X \in \mathbf{R}_{\operatorname{ord}(\overline{W})}$.

- (38) If $X \subseteq \mathbf{R}_{\operatorname{ord}(\overline{\mathbf{T}(W)})}$, then $X \approx \mathbf{R}_{\operatorname{ord}(\overline{\mathbf{T}(W)})}$ or $X \in \mathbf{R}_{\operatorname{ord}(\overline{\mathbf{T}(W)})}$.
- (39) If W is a Tarski-Class, then $\mathbf{R}_{\operatorname{ord}(\overline{W})}$ is a Tarski-Class.
- (40) $\mathbf{R}_{\text{ord}(\overline{\mathbf{T}(W)})}$ is a Tarski-Class.
- (41) If X is transitive and $A \in \operatorname{rk}(X)$, then there exists Y such that $Y \in X$ and $\operatorname{rk}(Y) = A$.
- (42) If X is transitive, then $\overline{\overline{\mathrm{rk}(X)}} \leq \overline{\overline{X}}$.
- (43) If W is a Tarski-Class and X is transitive and $X \in W$, then $X \in \mathbf{R}_{\operatorname{ord}(\overline{W})}$.
- (44) If X is transitive and $X \in \mathbf{T}(W)$, then $X \in \mathbf{R}_{\operatorname{ord}(\overline{\mathbf{T}(W)})}$.
- (45) If W is transitive, then $\mathbf{R}_{\operatorname{ord}(\overline{\mathbf{T}(W)})}$ is Tarski-Class of W.
- (46) If W is transitive, then $\mathbf{R}_{\operatorname{ord}(\overline{\mathbf{T}(W)})} = \mathbf{T}(W)$.

A non-empty family of sets is called a universal class if:

it is transitive and it is a Tarski-Class.

In the sequel M denotes a non-empty family of sets. The following proposition is true

(47) For every M holds M is a universal class if and only if M is transitive and M is a Tarski-Class.

In the sequel $U_1, U_2, U_3, Universum$ will be universal classes. We now state several propositions:

- (48) If $X \in Universum$, then $X \subseteq Universum$.
- (49) If $X \in Universum$ and $Y \subseteq X$, then $Y \in Universum$.
- (50) On Universum is an ordinal number.
- (51) If X is transitive, then $\mathbf{T}(X)$ is a universal class.
- (52) $\mathbf{T}(Universum)$ is a universal class.

Let us consider Universum. Then OnUniversum is an ordinal number. Then $\mathbf{T}(Universum)$ is a universal class.

Next we state a proposition

(53) $\mathbf{T}(A)$ is a universal class.

Let us consider A. Then $\mathbf{T}(A)$ is a universal class.

Next we state a number of propositions:

- (54) $Universum = \mathbf{R}_{On Universum}$.
- (55) On $Universum \neq 0$ and On Universum is a limit ordinal number.
- (56) $U_1 \in U_2 \text{ or } U_1 = U_2 \text{ or } U_2 \in U_1.$
- (57) $U_1 \subseteq U_2 \text{ or } U_2 \in U_1.$
- (58) $U_1 \subseteq U_2 \text{ or } U_2 \subseteq U_1.$
- (59) If $U_1 \in U_2$ and $U_2 \in U_3$, then $U_1 \in U_3$.
- (60) If $U_1 \subseteq U_2$ and $U_2 \in U_3$, then $U_1 \in U_3$.
- (61) $U_1 \cup U_2$ is a universal class and $U_1 \cap U_2$ is a universal class.

- (62) $\emptyset \in Universum.$
- (63) If $x \in Universum$, then $\{x\} \in Universum$.
- (64) If $x \in Universum$ and $y \in Universum$, then $\{x, y\} \in Universum$ and $\langle x, y \rangle \in Universum$.
- (65) If $X \in Universum$, then $2^X \in Universum$ and $\bigcup X \in Universum$ and $\bigcap X \in Universum$.
- (66) If $X \in Universum$ and $Y \in Universum$, then $X \cup Y \in Universum$ and $X \cap Y \in Universum$ and $X \setminus Y \in Universum$ and $X \to Y \in Universum$.
- (67) If $X \in Universum$ and $Y \in Universum$, then $[X, Y] \in Universum$ and $Y^X \in Universum$.

In the sequel u, v are elements of Universum. Let us consider Universum, u. Then $\{u\}$ is an element of Universum. Then 2^u is an element of Universum. Then $\bigcup u$ is an element of Universum. Then $\bigcup u$ is an element of Universum. Let us consider v. Then $\{u, v\}$ is an element of Universum. Then $\langle u, v \rangle$ is an element of Universum. Then $u \cup v$ is an element of Universum. Then $u \cap v$ is an element of Universum. Then $u \cap v$ is an element of Universum. Then $u \cup v$ is an element of Universum. Then $u \cap v$ is an element of Universum. Then $u \cup v$ is an element of Universum. Then $u \to v$ is an element of Universum. Then $u \to v$ is an element of Universum. Then $u \to v$ is an element of Universum. Then v^u is an element of Universum.

The universal class \mathbf{U}_0 is defined as follows:

 $\mathbf{U}_0 = \mathbf{T}(\mathbf{0}).$

We now state four propositions:

- $(68) \quad \mathbf{U}_0 = \mathbf{T}(\mathbf{0}).$
- (69) $\overline{\mathbf{R}_{\omega}} = \overline{\overline{\omega}}.$
- (70) \mathbf{R}_{ω} is a Tarski-Class.
- (71) $\mathbf{U}_0 = \mathbf{R}_{\omega}.$

The universal class \mathbf{U}_1 is defined by:

 $\mathbf{U}_1 = \mathbf{T}(\mathbf{U}_0).$

The following proposition is true

 $(72) \quad \mathbf{U}_1 = \mathbf{T}(\mathbf{U}_0).$

We now define three new constructions. A set of a finite rank is an element of \mathbf{U}_0 .

A Set is an element of \mathbf{U}_1 .

Let us consider A. The functor \mathbf{U}_A is defined as follows:

there exists L such that $\mathbf{U}_A = \text{last } L$ and dom L = succ A and $L(\mathbf{0}) = \mathbf{U}_0$ and for all C, y such that succ $C \in \text{succ } A$ and y = L(C) holds $L(\text{succ } C) = \mathbf{T}([y])$ and for all C, L_1 such that $C \in \text{succ } A$ and $C \neq \mathbf{0}$ and C is a limit ordinal number and $L_1 = L \upharpoonright C$ holds $L(C) = \mathbf{T}(\bigcup L_1)$.

The following two propositions are true:

- (73) For every element u of \mathbf{U}_0 holds u is a set of a finite rank.
- (74) For every element u of \mathbf{U}_1 holds u is a *Set*.

Let u be a set of a finite rank. Then $\{u\}$ is a set of a finite rank. Then 2^u is a set of a finite rank. Then $\bigcup u$ is a set of a finite rank. Then $\bigcap u$ is a set of a finite rank. Let v be a set of a finite rank. Then $\{u, v\}$ is a set of a finite rank. Then $\langle u, v \rangle$ is a set of a finite rank. Then $u \cup v$ is a set of a finite rank. Then $u \cap v$ is a set of a finite rank. Then $u \setminus v$ is a set of a finite rank. Then $u \cap v$ is a set of a finite rank. Then $u \setminus v$ is a set of a finite rank. Then $u \cap v$ is a set of a finite rank. Then [u, v] is a set of a finite rank. Then v^u is a set of a finite rank. Then [u, v] is a set of a finite rank. Then v^u is a set of a finite rank.

Let u be a Set. Then $\{u\}$ is a Set. Then 2^u is a Set. Then $\bigcup u$ is a Set. Then $\cap u$ is a Set. Let v be a Set. Then $\{u, v\}$ is a Set. Then $\langle u, v \rangle$ is a Set. Then $u \cup v$ is a Set. Then $u \cap v$ is a Set. Then $u \cap v$ is a Set. Then $u \cup v$ is a Set. Then $u \cap v$ is a Set. Then $u \cup v$ is a Set. Then $u \cap v$ is a Set. Then $u \vee v$ is a Set. Then $u \to v$ is a Set. Then v^u is a Set. Then v^u is a Set.

Let us consider A. Then \mathbf{U}_A is a universal class.

We now state several propositions:

- $(75) \quad \mathbf{U_0} = \mathbf{U}_0.$
- (76) $\mathbf{U}_{\operatorname{succ} A} = \mathbf{T}(\mathbf{U}_A).$
- (77) $U_1 = U_1.$
- (78) If $A \neq \mathbf{0}$ and A is a limit ordinal number and dom L = A and for every B such that $B \in A$ holds $L(B) = \mathbf{U}_B$, then $\mathbf{U}_A = \mathbf{T}(\bigcup L)$.
- (79) $\mathbf{U}_0 \subseteq Universum$ and $\mathbf{T}(\mathbf{0}) \subseteq Universum$ and $\mathbf{U}_\mathbf{0} \subseteq Universum$.
- (80) $A \in B$ if and only if $\mathbf{U}_A \in \mathbf{U}_B$.
- (81) If $\mathbf{U}_A = \mathbf{U}_B$, then A = B.
- (82) $A \subseteq B$ if and only if $\mathbf{U}_A \subseteq \mathbf{U}_B$.

References

- [1] Grzegorz Bancerek. Cardinal arithmetics. *Formalized Mathematics*, 1(3):543–547, 1990.
- [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589– 593, 1990.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [5] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–290, 1990.
- [6] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
- [7] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.

- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received April 10, 1990