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Université Catholique de Louvain

Universal Classes

Bogdan Nowak
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Summary. In the article we have shown that there exist univer-
sal classes, i.e. there are sets which are closed w.r.t. basic set theory
operations.

MML Identifier: CLASSES2.

The articles [11], [8], [4], [7], [10], [9], [5], [2], [1], [6], and [3] provide the ter-
minology and notation for this paper. For simplicity we adopt the following
convention: m is a cardinal number, A, B, C are ordinal numbers, x, y are
arbitrary, and X, Y , W are sets. One can prove the following propositions:

(1) If W is a Tarski-Class and X ∈ W , then X 6≈ W and X < W .

(2) If W is a Tarski-Class and X ⊆ W and X < W , then X ∈ W .

(3) If W is a Tarski-Class and x ∈ W and y ∈ W , then {x} ∈ W and
{x, y} ∈ W .

(4) If W is a Tarski-Class and x ∈ W and y ∈ W , then 〈〈x, y〉〉 ∈ W .

(5) If W is a Tarski-Class and X ∈ W , then T(X) ⊆ W .

The scheme TC deals with a unary predicate P, and states that:
for every X holds P[T(X)]

provided the parameter fulfills the following condition:
• for every X such that X is a Tarski-Class holds P[X].
Next we state a number of propositions:

(6) If W is a Tarski-Class and A ∈ W , then succ A ∈ W and A ⊆ W .

(7) If A ∈ T(W ), then succ A ∈ T(W ) and A ⊆ T(W ).

(8) If W is a Tarski-Class and X is transitive and X ∈ W , then X ⊆ W .

(9) If X is transitive and X ∈ T(W ), then X ⊆ T(W ).

(10) If W is a Tarski-Class, then On W = W .

(11) OnT(W ) = T(W ).
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(12) If W is a Tarski-Class and X ∈ W , then X ∈ W .

(13) If X ∈ T(W ), then X ∈ T(W ).

(14) If W is a Tarski-Class and x ∈ ord(W ), then x ∈ W .

(15) If x ∈ ord(T(W )), then x ∈ T(W ).

(16) If W is a Tarski-Class and m < W , then m ∈ W .

(17) If m < T(W ), then m ∈ T(W ).

(18) If W is a Tarski-Class and m ∈ W , then m ⊆ W .

(19) If m ∈ T(W ), then m ⊆ T(W ).

(20) If W is a Tarski-Class, then ord(W ) is a limit ordinal number.

(21) If W is a Tarski-Class and W 6= ∅, then W 6= 0 and ord(W ) 6= 0 and

ord(W ) is a limit ordinal number.

(22) T(W ) 6= 0 and ord(T(W )) 6= 0 and ord(T(W )) is a limit ordinal
number.

In the sequel L, L1 are transfinite sequences. We now state a number of
propositions:

(23) If W is a Tarski-Class but X ∈ W and W is transitive or X ∈ W and

X ⊆ W or X < W and X ⊆ W , then W X ⊆ W .

(24) If X ∈ T(W ) and W is transitive or X ∈ T(W ) and X ⊆ T(W ) or

X < T(W ) and X ⊆ T(W ), then T(W )X ⊆ T(W ).

(25) If dom L is a limit ordinal number and for every A such that A ∈ dom L

holds L(A) = RA, then Rdom L =
⋃

L.

(26) If W is a Tarski-Class and A ∈ On W , then RA < W and RA ∈ W .

(27) If A ∈ OnT(W ), then RA < T(W ) and RA ∈ T(W ).

(28) If W is a Tarski-Class, then R
ord(W )

⊆ W .

(29) R
ord(T(W ) )

⊆ T(W ).

(30) If W is a Tarski-Class and W is transitive and X ∈ W , then rk(X) ∈ W .

(31) If W is a Tarski-Class and W is transitive, then W ⊆ R
ord(W )

.

(32) If W is a Tarski-Class and W is transitive, then R
ord(W )

= W .

(33) If W is a Tarski-Class and A ∈ On W , then RA ≤ W .

(34) If A ∈ OnT(W ), then RA ≤ T(W ).

(35) If W is a Tarski-Class, then W = R
ord(W )

.

(36) T(W ) = R
ord(T(W ) )

.

(37) If W is a Tarski-Class and X ⊆ R
ord(W )

, then X ≈ R
ord(W )

or X ∈

R
ord(W )

.
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(38) If X ⊆ R
ord(T(W ) )

, then X ≈ R
ord(T(W ) )

or X ∈ R
ord(T(W ) )

.

(39) If W is a Tarski-Class, then R
ord(W )

is a Tarski-Class.

(40) R
ord(T(W ) )

is a Tarski-Class.

(41) If X is transitive and A ∈ rk(X), then there exists Y such that Y ∈ X

and rk(Y ) = A.

(42) If X is transitive, then rk(X) ≤ X .

(43) If W is a Tarski-Class and X is transitive and X ∈ W , then X ∈
R

ord(W )
.

(44) If X is transitive and X ∈ T(W ), then X ∈ R
ord(T(W ))

.

(45) If W is transitive, then R
ord(T(W ) )

is Tarski-Class of W .

(46) If W is transitive, then R
ord(T(W ) )

= T(W ).

A non-empty family of sets is called a universal class if:
it is transitive and it is a Tarski-Class.

In the sequel M denotes a non-empty family of sets. The following proposi-
tion is true

(47) For every M holds M is a universal class if and only if M is transitive
and M is a Tarski-Class.

In the sequel U1, U2, U3, Universum will be universal classes. We now state
several propositions:

(48) If X ∈ Universum, then X ⊆ Universum.

(49) If X ∈ Universum and Y ⊆ X, then Y ∈ Universum.

(50) On Universum is an ordinal number.

(51) If X is transitive, then T(X) is a universal class.

(52) T(Universum) is a universal class.

Let us consider Universum. Then On Universum is an ordinal number.
Then T(Universum) is a universal class.

Next we state a proposition

(53) T(A) is a universal class.

Let us consider A. Then T(A) is a universal class.

Next we state a number of propositions:

(54) Universum = ROn Universum.

(55) On Universum 6= 0 and On Universum is a limit ordinal number.

(56) U1 ∈ U2 or U1 = U2 or U2 ∈ U1.

(57) U1 ⊆ U2 or U2 ∈ U1.

(58) U1 ⊆ U2 or U2 ⊆ U1.

(59) If U1 ∈ U2 and U2 ∈ U3, then U1 ∈ U3.

(60) If U1 ⊆ U2 and U2 ∈ U3, then U1 ∈ U3.

(61) U1 ∪ U2 is a universal class and U1 ∩ U2 is a universal class.
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(62) ∅ ∈ Universum.

(63) If x ∈ Universum, then {x} ∈ Universum.

(64) If x ∈ Universum and y ∈ Universum, then {x, y} ∈ Universum and
〈〈x, y〉〉 ∈ Universum.

(65) If X ∈ Universum, then 2X ∈ Universum and
⋃

X ∈ Universum and
⋂

X ∈ Universum.

(66) If X ∈ Universum and Y ∈ Universum, then X∪Y ∈ Universum and
X ∩ Y ∈ Universum and X \ Y ∈ Universum and X−. Y ∈ Universum.

(67) If X ∈ Universum and Y ∈ Universum, then [: X, Y :] ∈ Universum

and Y X ∈ Universum.

In the sequel u, v are elements of Universum. Let us consider Universum,
u. Then {u} is an element of Universum. Then 2u is an element of Universum.
Then

⋃
u is an element of Universum. Then

⋂
u is an element of Universum.

Let us consider v. Then {u, v} is an element of Universum. Then 〈〈u, v〉〉 is an
element of Universum. Then u ∪ v is an element of Universum. Then u ∩ v is
an element of Universum. Then u \ v is an element of Universum. Then u−. v

is an element of Universum. Then [: u, v :] is an element of Universum. Then
vu is an element of Universum.

The universal class U0 is defined as follows:

U0 = T(0).

We now state four propositions:

(68) U0 = T(0).

(69) Rω = ω .

(70) Rω is a Tarski-Class.

(71) U0 = Rω.

The universal class U1 is defined by:

U1 = T(U0).

The following proposition is true

(72) U1 = T(U0).

We now define three new constructions. A set of a finite rank is an element
of U0.

A Set is an element of U1.

Let us consider A. The functor UA is defined as follows:

there exists L such that UA = last L and dom L = succ A and L(0) = U0 and
for all C, y such that succ C ∈ succ A and y = L(C) holds L(succ C) = T([y])
and for all C, L1 such that C ∈ succ A and C 6= 0 and C is a limit ordinal
number and L1 = L

�
C holds L(C) = T(

⋃
L1).

The following two propositions are true:

(73) For every element u of U0 holds u is a set of a finite rank.

(74) For every element u of U1 holds u is a Set.
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Let u be a set of a finite rank. Then {u} is a set of a finite rank. Then 2u is
a set of a finite rank. Then

⋃
u is a set of a finite rank. Then

⋂
u is a set of a

finite rank. Let v be a set of a finite rank. Then {u, v} is a set of a finite rank.
Then 〈〈u, v〉〉 is a set of a finite rank. Then u ∪ v is a set of a finite rank. Then
u ∩ v is a set of a finite rank. Then u \ v is a set of a finite rank. Then u−. v is
a set of a finite rank. Then [: u, v :] is a set of a finite rank. Then vu is a set of
a finite rank.

Let u be a Set. Then {u} is a Set. Then 2u is a Set. Then
⋃

u is a Set. Then
⋂

u is a Set. Let v be a Set. Then {u, v} is a Set. Then 〈〈u, v〉〉 is a Set. Then
u∪ v is a Set. Then u∩ v is a Set. Then u \ v is a Set. Then u−. v is a Set. Then
[: u, v :] is a Set. Then vu is a Set.

Let us consider A. Then UA is a universal class.

We now state several propositions:

(75) U0 = U0.

(76) Usucc A = T(UA).

(77) U1 = U1.

(78) If A 6= 0 and A is a limit ordinal number and dom L = A and for every
B such that B ∈ A holds L(B) = UB , then UA = T(

⋃
L).

(79) U0 ⊆ Universum and T(0) ⊆ Universum and U0 ⊆ Universum.

(80) A ∈ B if and only if UA ∈ UB .

(81) If UA = UB , then A = B.

(82) A ⊆ B if and only if UA ⊆ UB .
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