
FORMALIZED MATHEMATICS

Vol.1, No.3, May–August 1990
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Summary. In the article the Tarski’s classes (non-empty families
of sets satisfying Tarski’s axiom A given in [9]) and the rank sets are
introduced and some of their properties are shown. The transitive closure
and the rank of a set is given here too.

MML Identifier: CLASSES1.

The terminology and notation used here have been introduced in the following
articles: [9], [8], [7], [3], [4], [6], [5], [2], and [1]. For simplicity we adopt the
following rules: W , X, Y , Z will denote sets, D will denote a non-empty set, f
will denote a function, and x, y will be arbitrary. Let B be a set. We say that
B is a Tarski-Class if and only if:

for all X, Y such that X ∈ B and Y ⊆ X holds Y ∈ B and for every X such
that X ∈ B holds 2X ∈ B and for every X such that X ⊆ B holds X ≈ B or
X ∈ B.

Let A, B be sets. We say that B is Tarski-Class of A if and only if:
A ∈ B and B is a Tarski-Class.

Let A be a set. The functor T(A) yielding a non-empty family of sets, is
defined as follows:

T(A) is Tarski-Class of A and for every D such that D is Tarski-Class of A
holds T(A) ⊆ D.

We now state several propositions:

(1) W is a Tarski-Class if and only if for all X, Y such that X ∈ W and
Y ⊆ X holds Y ∈ W and for every X such that X ∈ W holds 2X ∈ W
and for every X such that X ⊆ W holds X ≈ W or X ∈ W .

(2) W is a Tarski-Class if and only if for all X, Y such that X ∈ W and
Y ⊆ X holds Y ∈ W and for every X such that X ∈ W holds 2X ∈ W

and for every X such that X ⊆ W and X < W holds X ∈ W .

(3) X is Tarski-Class of Y if and only if Y ∈ X and X is a Tarski-Class.
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(4) For every non-empty family W of sets holds W = T(X) if and only if
W is Tarski-Class of X and for every D such that D is Tarski-Class of X
holds W ⊆ D.

(5) X ∈ T(X).

(6) If Y ∈ T(X) and Z ⊆ Y , then Z ∈ T(X).

(7) If Y ∈ T(X), then 2Y ∈ T(X).

(8) If Y ⊆ T(X), then Y ≈ T(X) or Y ∈ T(X).

(9) If Y ⊆ T(X) and Y < T(X) , then Y ∈ T(X).

We follow a convention: u, v will denote elements of T(X), A, B, C will
denote ordinal numbers, and L, L1 will denote transfinite sequences. Let us
consider X, A. The functor TA(X) is defined as follows:

there exists L such that TA(X) = last L and dom L = succ A and L(0) =
{X} and for all C, y such that succ C ∈ succ A and y = L(C) holds L(succ C) =
({u :

∨
v[v ∈ [y] ∧ u ⊆ v]} ∪ {2v : v ∈ [y]}) ∪ 2[y] ∩ T(X) and for all C, L1 such

that C ∈ succ A and C 6= 0 and C is a limit ordinal number and L1 = L
�
C

holds L(C) =
⋃

(rng L1) ∩ T(X).

Let us consider X, A. Then TA(X) is a subset of T(X).

Next we state a number of propositions:

(10) T0(X) = {X}.

(11) Tsucc A(X) = ({u :
∨

v[v ∈ TA(X) ∧ u ⊆ v]} ∪ {2v : v ∈ TA(X)}) ∪
2TA(X) ∩ T(X).

(12) If A 6= 0 and A is a limit ordinal number, then TA(X) = {u :
∨

B [B ∈
A ∧ u ∈ TB(X)]}.

(13) Y ∈ Tsucc A(X) if and only if Y ⊆ TA(X) and Y ∈ T(X) or there exists
Z such that Z ∈ TA(X) but Y ⊆ Z or Y = 2Z .

(14) If Y ⊆ Z and Z ∈ TA(X), then Y ∈ Tsucc A(X).

(15) If Y ∈ TA(X), then 2Y ∈ Tsucc A(X).

(16) If A 6= 0 and A is a limit ordinal number, then x ∈ TA(X) if and only
if there exists B such that B ∈ A and x ∈ TB(X).

(17) If A 6= 0 and A is a limit ordinal number and Y ∈ TA(X) but Z ⊆ Y
or Z = 2Y , then Z ∈ TA(X).

(18) TA(X) ⊆ Tsucc A(X).

(19) If A ⊆ B, then TA(X) ⊆ TB(X).

(20) There exists A such that TA(X) = Tsucc A(X).

(21) If TA(X) = Tsucc A(X), then TA(X) = T(X).

(22) There exists A such that TA(X) = T(X).

(23) There exists A such that TA(X) = T(X) and for every B such that
B ∈ A holds TB(X) 6= T(X).

(24) If Y 6= X and Y ∈ T(X), then there exists A such that Y /∈ TA(X)
and Y ∈ Tsucc A(X).
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(25) If X is transitive, then for every A such that A 6= 0 holds TA(X) is
transitive.

(26) T0(X) ∈ T1(X) and T0(X) 6= T1(X).

(27) If X is transitive, then T(X) is transitive.

(28) If Y ∈ T(X), then Y < T(X) .

(29) If Y ∈ T(X), then Y 6≈ T(X).

(30) If x ∈ T(X) and y ∈ T(X), then {x} ∈ T(X) and {x, y} ∈ T(X).

(31) If x ∈ T(X) and y ∈ T(X), then 〈〈x, y〉〉 ∈ T(X).

(32) If Y ⊆ T(X) and Z ⊆ T(X), then [: Y, Z :] ⊆ T(X).

Let us consider A. The functor RA is defined as follows:
there exists L such that RA = last L and dom L = succ A and L(0) = ∅ and

for all C, y such that succ C ∈ succ A and y = L(C) holds L(succ C) = 2[y] and
for all C, L1 such that C ∈ succ A and C 6= 0 and C is a limit ordinal number
and L1 = L

�
C holds L(C) =

⋃
(rng L1).

Let us consider A. Then RA is a set.

One can prove the following propositions:

(33) R0 = ∅.

(34) Rsucc A = 2RA .

(35) If A 6= 0 and A is a limit ordinal number, then for every x holds x ∈ RA

if and only if there exists B such that B ∈ A and x ∈ RB .

(36) X ⊆ RA if and only if X ∈ Rsucc A.

(37) RA is transitive.

(38) If X ∈ RA, then X ⊆ RA.

(39) RA ⊆ Rsucc A.

(40)
⋃

RA ⊆ RA.

(41) If X ∈ RA, then
⋃

X ∈ RA.

(42) A ∈ B if and only if RA ∈ RB .

(43) A ⊆ B if and only if RA ⊆ RB .

(44) A ⊆ RA.

(45) For all A, X such that X ∈ RA holds X 6≈ RA and X < RA .

(46) X ⊆ RA if and only if 2X ⊆ Rsucc A.

(47) If X ⊆ Y and Y ∈ RA, then X ∈ RA.

(48) X ∈ RA if and only if 2X ∈ Rsucc A.

(49) x ∈ RA if and only if {x} ∈ Rsucc A.

(50) x ∈ RA and y ∈ RA if and only if {x, y} ∈ Rsucc A.

(51) x ∈ RA and y ∈ RA if and only if 〈〈x, y〉〉 ∈ Rsucc(succ A).

(52) If X is transitive and RA ∩T(X) = Rsucc A ∩T(X), then T(X) ⊆ RA.

(53) If X is transitive, then there exists A such that T(X) ⊆ RA.

(54) If X is transitive, then
⋃

X ⊆ X.
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(55) If X is transitive and Y is transitive, then X ∪ Y is transitive.

(56) If X is transitive and Y is transitive, then X ∩ Y is transitive.

In the sequel k, n denote natural numbers. Let us consider X. The functor
X∗∈ yielding a set, is defined by:

x ∈ X∗∈ if and only if there exist f , n, Y such that x ∈ Y and Y = f(n)
and dom f = � and f(0) = X and for all k, y such that y = f(k) holds
f(k + 1) =

⋃
[y].

Next we state a number of propositions:

(57) Z = X∗∈ if and only if for every x holds x ∈ Z if and only if there exist
f , n, Y such that x ∈ Y and Y = f(n) and dom f = � and f(0) = X and
for all k, y such that y = f(k) holds f(k + 1) =

⋃
[y].

(58) X∗∈ is transitive.

(59) X ⊆ X∗∈ .

(60) If X ⊆ Y and Y is transitive, then X∗∈ ⊆ Y .

(61) If for every Z such that X ⊆ Z and Z is transitive holds Y ⊆ Z and
X ⊆ Y and Y is transitive, then X∗∈ = Y .

(62) If X is transitive, then X∗∈ = X.

(63) ∅∗∈ = ∅.

(64) A∗∈ = A.

(65) If X ⊆ Y , then X∗∈ ⊆ Y ∗∈ .

(66) (X∗∈)∗∈ = X∗∈ .

(67) (X ∪ Y )∗∈ = X∗∈ ∪ Y ∗∈ .

(68) (X ∩ Y )∗∈ ⊆ X∗∈ ∩ Y ∗∈ .

(69) There exists A such that X ⊆ RA.

Let us consider X. The functor rk(X) yielding an ordinal number, is defined
by:

X ⊆ Rrk(X) and for every B such that X ⊆ RB holds rk(X) ⊆ B.

We now state a number of propositions:

(70) A = rk(X) if and only if X ⊆ RA and for every B such that X ⊆ RB

holds A ⊆ B.

(71) rk(2X) = succ rk(X).

(72) rk(RA) = A.

(73) X ⊆ RA if and only if rk(X) ⊆ A.

(74) X ∈ RA if and only if rk(X) ∈ A.

(75) If X ⊆ Y , then rk(X) ⊆ rk(Y ).

(76) If X ∈ Y , then rk(X) ∈ rk(Y ).

(77) rk(X) ⊆ A if and only if for every Y such that Y ∈ X holds rk(Y ) ∈ A.

(78) A ⊆ rk(X) if and only if for every B such that B ∈ A there exists Y
such that Y ∈ X and B ⊆ rk(Y ).

(79) rk(X) = 0 if and only if X = ∅.
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(80) If rk(X) = succ A, then there exists Y such that Y ∈ X and rk(Y ) = A.

(81) rk(A) = A.

(82) rk(T(X)) 6= 0 and rk(T(X)) is a limit ordinal number.
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[7] Czes law Byliński. Functions and their basic properties. Formalized Math-

ematics, 1(1):55–65, 1990.

[8] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152,
1990.

[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathemat-

ics, 1(1):9–11, 1990.

Received March 23, 1990


