Tarski's Classes and Ranks

Grzegorz Bancerek Warsaw University Białystok

Summary. In the article the Tarski's classes (non-empty families of sets satisfying Tarski's axiom A given in [9]) and the rank sets are introduced and some of their properties are shown. The transitive closure and the rank of a set is given here too.

MML Identifier: CLASSES1.

The terminology and notation used here have been introduced in the following articles: [9], [8], [7], [3], [4], [6], [5], [2], and [1]. For simplicity we adopt the following rules: W, X, Y, Z will denote sets, D will denote a non-empty set, f will denote a function, and x, y will be arbitrary. Let B be a set. We say that B is a Tarski-Class if and only if:

for all X, Y such that $X \in B$ and $Y \subseteq X$ holds $Y \in B$ and for every X such that $X \in B$ holds $2^X \in B$ and for every X such that $X \subseteq B$ holds $X \approx B$ or $X \in B$.

Let A, B be sets. We say that B is Tarski-Class of A if and only if:

 $A \in B$ and B is a Tarski-Class.

Let A be a set. The functor $\mathbf{T}(A)$ yielding a non-empty family of sets, is defined as follows:

 $\mathbf{T}(A)$ is Tarski-Class of A and for every D such that D is Tarski-Class of A holds $\mathbf{T}(A) \subseteq D$.

We now state several propositions:

- (1) W is a Tarski-Class if and only if for all X, Y such that $X \in W$ and $Y \subseteq X$ holds $Y \in W$ and for every X such that $X \in W$ holds $2^X \in W$ and for every X such that $X \subseteq W$ holds $X \approx W$ or $X \in W$.
- (2) W is a Tarski-Class if and only if for all X, Y such that $X \in W$ and $Y \subseteq X$ holds $Y \in W$ and for every X such that $X \in W$ holds $2^X \in W$ and for every X such that $X \subseteq W$ and $\overline{X} < \overline{W}$ holds $X \in W$.
- (3) X is Tarski-Class of Y if and only if $Y \in X$ and X is a Tarski-Class.

563

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

GRZEGORZ BANCEREK

- (4) For every non-empty family W of sets holds $W = \mathbf{T}(X)$ if and only if W is Tarski-Class of X and for every D such that D is Tarski-Class of X holds $W \subseteq D$.
- (5) $X \in \mathbf{T}(X)$.
- (6) If $Y \in \mathbf{T}(X)$ and $Z \subseteq Y$, then $Z \in \mathbf{T}(X)$.
- (7) If $Y \in \mathbf{T}(X)$, then $2^Y \in \mathbf{T}(X)$.
- (8) If $Y \subseteq \mathbf{T}(X)$, then $Y \approx \mathbf{T}(X)$ or $Y \in \mathbf{T}(X)$.
- (9) If $Y \subseteq \mathbf{T}(X)$ and $\overline{\overline{Y}} < \overline{\mathbf{T}(X)}$, then $Y \in \mathbf{T}(X)$.

We follow a convention: u, v will denote elements of $\mathbf{T}(X)$, A, B, C will denote ordinal numbers, and L, L_1 will denote transfinite sequences. Let us consider X, A. The functor $\mathbf{T}_A(X)$ is defined as follows:

there exists L such that $\mathbf{T}_A(X) = \operatorname{last} L$ and dom $L = \operatorname{succ} A$ and $L(\mathbf{0}) = \{X\}$ and for all C, y such that $\operatorname{succ} C \in \operatorname{succ} A$ and y = L(C) holds $L(\operatorname{succ} C) = (\{u : \bigvee_v [v \in [y] \land u \subseteq v]\} \cup \{2^v : v \in [y]\}) \cup 2^{[y]} \cap \mathbf{T}(X)$ and for all C, L_1 such that $C \in \operatorname{succ} A$ and $C \neq \mathbf{0}$ and C is a limit ordinal number and $L_1 = L \upharpoonright C$ holds $L(C) = \bigcup(\operatorname{rng} L_1) \cap \mathbf{T}(X)$.

Let us consider X, A. Then $\mathbf{T}_A(X)$ is a subset of $\mathbf{T}(X)$.

Next we state a number of propositions:

- (10) $\mathbf{T}_{\mathbf{0}}(X) = \{X\}.$
- (11) $\mathbf{T}_{\operatorname{succ} A}(X) = \left(\{ u : \bigvee_{v} [v \in \mathbf{T}_{A}(X) \land u \subseteq v] \} \cup \{ 2^{v} : v \in \mathbf{T}_{A}(X) \} \right) \cup$ $2^{\mathbf{T}_{A}(X)} \cap \mathbf{T}(X).$
- (12) If $A \neq \mathbf{0}$ and A is a limit ordinal number, then $\mathbf{T}_A(X) = \{u : \bigvee_B [B \in A \land u \in \mathbf{T}_B(X)]\}.$
- (13) $Y \in \mathbf{T}_{\operatorname{succ} A}(X)$ if and only if $Y \subseteq \mathbf{T}_A(X)$ and $Y \in \mathbf{T}(X)$ or there exists Z such that $Z \in \mathbf{T}_A(X)$ but $Y \subseteq Z$ or $Y = 2^Z$.
- (14) If $Y \subseteq Z$ and $Z \in \mathbf{T}_A(X)$, then $Y \in \mathbf{T}_{\operatorname{succ} A}(X)$.
- (15) If $Y \in \mathbf{T}_A(X)$, then $2^Y \in \mathbf{T}_{\operatorname{succ} A}(X)$.
- (16) If $A \neq \mathbf{0}$ and A is a limit ordinal number, then $x \in \mathbf{T}_A(X)$ if and only if there exists B such that $B \in A$ and $x \in \mathbf{T}_B(X)$.
- (17) If $A \neq \mathbf{0}$ and A is a limit ordinal number and $Y \in \mathbf{T}_A(X)$ but $Z \subseteq Y$ or $Z = 2^Y$, then $Z \in \mathbf{T}_A(X)$.
- (18) $\mathbf{T}_A(X) \subseteq \mathbf{T}_{\operatorname{succ} A}(X).$
- (19) If $A \subseteq B$, then $\mathbf{T}_A(X) \subseteq \mathbf{T}_B(X)$.
- (20) There exists A such that $\mathbf{T}_A(X) = \mathbf{T}_{\operatorname{succ} A}(X)$.
- (21) If $\mathbf{T}_A(X) = \mathbf{T}_{\operatorname{succ} A}(X)$, then $\mathbf{T}_A(X) = \mathbf{T}(X)$.
- (22) There exists A such that $\mathbf{T}_A(X) = \mathbf{T}(X)$.
- (23) There exists A such that $\mathbf{T}_A(X) = \mathbf{T}(X)$ and for every B such that $B \in A$ holds $\mathbf{T}_B(X) \neq \mathbf{T}(X)$.
- (24) If $Y \neq X$ and $Y \in \mathbf{T}(X)$, then there exists A such that $Y \notin \mathbf{T}_A(X)$ and $Y \in \mathbf{T}_{\operatorname{succ} A}(X)$.

564

- (25) If X is transitive, then for every A such that $A \neq \mathbf{0}$ holds $\mathbf{T}_A(X)$ is transitive.
- (26) $\mathbf{T}_{\mathbf{0}}(X) \in \mathbf{T}_{\mathbf{1}}(X) \text{ and } \mathbf{T}_{\mathbf{0}}(X) \neq \mathbf{T}_{\mathbf{1}}(X).$
- (27) If X is transitive, then $\mathbf{T}(X)$ is transitive.
- (28) If $Y \in \mathbf{T}(X)$, then $\overline{Y} < \overline{\mathbf{T}(X)}$.
- (29) If $Y \in \mathbf{T}(X)$, then $Y \not\approx \mathbf{T}(X)$.
- (30) If $x \in \mathbf{T}(X)$ and $y \in \mathbf{T}(X)$, then $\{x\} \in \mathbf{T}(X)$ and $\{x, y\} \in \mathbf{T}(X)$.
- (31) If $x \in \mathbf{T}(X)$ and $y \in \mathbf{T}(X)$, then $\langle x, y \rangle \in \mathbf{T}(X)$.
- (32) If $Y \subseteq \mathbf{T}(X)$ and $Z \subseteq \mathbf{T}(X)$, then $[Y, Z] \subseteq \mathbf{T}(X)$.

Let us consider A. The functor \mathbf{R}_A is defined as follows:

there exists L such that $\mathbf{R}_A = \operatorname{last} L$ and dom $L = \operatorname{succ} A$ and $L(\mathbf{0}) = \emptyset$ and for all C, y such that succ $C \in \operatorname{succ} A$ and y = L(C) holds $L(\operatorname{succ} C) = 2^{[y]}$ and for all C, L_1 such that $C \in \operatorname{succ} A$ and $C \neq \mathbf{0}$ and C is a limit ordinal number and $L_1 = L \upharpoonright C$ holds $L(C) = \bigcup (\operatorname{rng} L_1)$.

Let us consider A. Then \mathbf{R}_A is a set.

One can prove the following propositions:

- $(33) \quad \mathbf{R_0} = \emptyset.$
- (34) $\mathbf{R}_{\operatorname{succ} A} = 2^{\mathbf{R}_A}.$
- (35) If $A \neq \mathbf{0}$ and A is a limit ordinal number, then for every x holds $x \in \mathbf{R}_A$ if and only if there exists B such that $B \in A$ and $x \in \mathbf{R}_B$.
- (36) $X \subseteq \mathbf{R}_A$ if and only if $X \in \mathbf{R}_{\operatorname{succ} A}$.
- (37) \mathbf{R}_A is transitive.
- (38) If $X \in \mathbf{R}_A$, then $X \subseteq \mathbf{R}_A$.
- (39) $\mathbf{R}_A \subseteq \mathbf{R}_{\operatorname{succ} A}$.
- (40) $\bigcup \mathbf{R}_A \subseteq \mathbf{R}_A$.
- (41) If $X \in \mathbf{R}_A$, then $\bigcup X \in \mathbf{R}_A$.
- (42) $A \in B$ if and only if $\mathbf{R}_A \in \mathbf{R}_B$.
- (43) $A \subseteq B$ if and only if $\mathbf{R}_A \subseteq \mathbf{R}_B$.
- $(44) \quad A \subseteq \mathbf{R}_A.$
- (45) For all A, X such that $X \in \mathbf{R}_A$ holds $X \not\approx \mathbf{R}_A$ and $\overline{\overline{X}} < \overline{\mathbf{R}_A}$.
- (46) $X \subseteq \mathbf{R}_A$ if and only if $2^X \subseteq \mathbf{R}_{\operatorname{succ} A}$.
- (47) If $X \subseteq Y$ and $Y \in \mathbf{R}_A$, then $X \in \mathbf{R}_A$.
- (48) $X \in \mathbf{R}_A$ if and only if $2^X \in \mathbf{R}_{\operatorname{succ} A}$.
- (49) $x \in \mathbf{R}_A$ if and only if $\{x\} \in \mathbf{R}_{\operatorname{succ} A}$.
- (50) $x \in \mathbf{R}_A$ and $y \in \mathbf{R}_A$ if and only if $\{x, y\} \in \mathbf{R}_{\operatorname{succ} A}$.
- (51) $x \in \mathbf{R}_A$ and $y \in \mathbf{R}_A$ if and only if $\langle x, y \rangle \in \mathbf{R}_{\operatorname{succ(succ A)}}$.
- (52) If X is transitive and $\mathbf{R}_A \cap \mathbf{T}(X) = \mathbf{R}_{\operatorname{succ} A} \cap \mathbf{T}(X)$, then $\mathbf{T}(X) \subseteq \mathbf{R}_A$.
- (53) If X is transitive, then there exists A such that $\mathbf{T}(X) \subseteq \mathbf{R}_A$.
- (54) If X is transitive, then $\bigcup X \subseteq X$.

- (55) If X is transitive and Y is transitive, then $X \cup Y$ is transitive.
- (56) If X is transitive and Y is transitive, then $X \cap Y$ is transitive.

In the sequel k, n denote natural numbers. Let us consider X. The functor $X^{* \in}$ yielding a set, is defined by:

 $x \in X^{*\epsilon}$ if and only if there exist f, n, Y such that $x \in Y$ and Y = f(n)and dom $f = \mathbb{N}$ and f(0) = X and for all k, y such that y = f(k) holds $f(k+1) = \bigcup[y]$.

Next we state a number of propositions:

- (57) $Z = X^{* \in}$ if and only if for every x holds $x \in Z$ if and only if there exist f, n, Y such that $x \in Y$ and Y = f(n) and dom $f = \mathbb{N}$ and f(0) = X and for all k, y such that y = f(k) holds $f(k+1) = \bigcup [y]$.
- (58) $X^{*\epsilon}$ is transitive.
- $(59) \quad X \subseteq X^{*\epsilon}.$
- (60) If $X \subseteq Y$ and Y is transitive, then $X^{* \in} \subseteq Y$.
- (61) If for every Z such that $X \subseteq Z$ and Z is transitive holds $Y \subseteq Z$ and $X \subseteq Y$ and Y is transitive, then $X^{* \in} = Y$.
- (62) If X is transitive, then $X^{*\epsilon} = X$.
- $(63) \quad \emptyset^{*\epsilon} = \emptyset.$
- $(64) \quad A^{*\epsilon} = A.$
- (65) If $X \subseteq Y$, then $X^{*\epsilon} \subseteq Y^{*\epsilon}$.
- $(66) \quad (X^{*\epsilon})^{*\epsilon} = X^{*\epsilon}.$
- (67) $(X \cup Y)^{*_{\in}} = X^{*_{\in}} \cup Y^{*_{\in}}.$
- (68) $(X \cap Y)^{* \in} \subseteq X^{* \in} \cap Y^{* \in}.$
- (69) There exists A such that $X \subseteq \mathbf{R}_A$.

Let us consider X. The functor rk(X) yielding an ordinal number, is defined by:

 $X \subseteq \mathbf{R}_{\mathrm{rk}(X)}$ and for every B such that $X \subseteq \mathbf{R}_B$ holds $\mathrm{rk}(X) \subseteq B$.

We now state a number of propositions:

- (70) $A = \operatorname{rk}(X)$ if and only if $X \subseteq \mathbf{R}_A$ and for every B such that $X \subseteq \mathbf{R}_B$ holds $A \subseteq B$.
- (71) $\operatorname{rk}(2^X) = \operatorname{succ}\operatorname{rk}(X).$
- (72) $\operatorname{rk}(\mathbf{R}_A) = A.$
- (73) $X \subseteq \mathbf{R}_A$ if and only if $\operatorname{rk}(X) \subseteq A$.
- (74) $X \in \mathbf{R}_A$ if and only if $\operatorname{rk}(X) \in A$.
- (75) If $X \subseteq Y$, then $\operatorname{rk}(X) \subseteq \operatorname{rk}(Y)$.
- (76) If $X \in Y$, then $\operatorname{rk}(X) \in \operatorname{rk}(Y)$.
- (77) $\operatorname{rk}(X) \subseteq A$ if and only if for every Y such that $Y \in X$ holds $\operatorname{rk}(Y) \in A$.
- (78) $A \subseteq \operatorname{rk}(X)$ if and only if for every B such that $B \in A$ there exists Y such that $Y \in X$ and $B \subseteq \operatorname{rk}(Y)$.
- (79) $\operatorname{rk}(X) = \mathbf{0}$ if and only if $X = \emptyset$.

- (80) If $\operatorname{rk}(X) = \operatorname{succ} A$, then there exists Y such that $Y \in X$ and $\operatorname{rk}(Y) = A$.
- $(81) \quad \operatorname{rk}(A) = A.$
- (82) $\operatorname{rk}(\mathbf{T}(X)) \neq \mathbf{0}$ and $\operatorname{rk}(\mathbf{T}(X))$ is a limit ordinal number.

References

- [1] Grzegorz Bancerek. Cardinal arithmetics. *Formalized Mathematics*, 1(3):543–547, 1990.
- [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377– 382, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [5] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–290, 1990.
- [6] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [8] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received March 23, 1990