Tarski's Classes and Ranks

Grzegorz Bancerek
Warsaw University
Białystok

Abstract

Summary. In the article the Tarski's classes (non-empty families of sets satisfying Tarski's axiom A given in [9]) and the rank sets are introduced and some of their properties are shown. The transitive closure and the rank of a set is given here too.

MML Identifier: CLASSES1.

The terminology and notation used here have been introduced in the following articles: [9], [8], [7], [3], [4], [6], [5], [2], and [1]. For simplicity we adopt the following rules: W, X, Y, Z will denote sets, D will denote a non-empty set, f will denote a function, and x, y will be arbitrary. Let B be a set. We say that B is a Tarski-Class if and only if:
for all X, Y such that $X \in B$ and $Y \subseteq X$ holds $Y \in B$ and for every X such that $X \in B$ holds $2^{X} \in B$ and for every X such that $X \subseteq B$ holds $X \approx B$ or $X \in B$.

Let A, B be sets. We say that B is Tarski-Class of A if and only if:
$A \in B$ and B is a Tarski-Class.
Let A be a set. The functor $\mathbf{T}(A)$ yielding a non-empty family of sets, is defined as follows:
$\mathbf{T}(A)$ is Tarski-Class of A and for every D such that D is Tarski-Class of A holds $\mathbf{T}(A) \subseteq D$.

We now state several propositions:
(1) W is a Tarski-Class if and only if for all X, Y such that $X \in W$ and $Y \subseteq X$ holds $Y \in W$ and for every X such that $X \in W$ holds $2^{X} \in W$ and for every X such that $X \subseteq W$ holds $X \approx W$ or $X \in W$.
(2) W is a Tarski-Class if and only if for all X, Y such that $X \in W$ and $Y \subseteq X$ holds $Y \in W$ and for every X such that $X \in W$ holds $2^{X} \in W$ and for every X such that $X \subseteq W$ and $\overline{\bar{X}}<\overline{\bar{W}}$ holds $X \in W$.
(3) X is Tarski-Class of Y if and only if $Y \in X$ and X is a Tarski-Class.
(4) For every non-empty family W of sets holds $W=\mathbf{T}(X)$ if and only if W is Tarski-Class of X and for every D such that D is Tarski-Class of X holds $W \subseteq D$.

$$
\begin{equation*}
X \in \mathbf{T}(X) . \tag{5}
\end{equation*}
$$

(6) If $Y \in \mathbf{T}(X)$ and $Z \subseteq Y$, then $Z \in \mathbf{T}(X)$.
(7) If $Y \in \mathbf{T}(X)$, then $2^{Y} \in \mathbf{T}(X)$.
(8) If $Y \subseteq \mathbf{T}(X)$, then $Y \approx \mathbf{T}(X)$ or $Y \in \mathbf{T}(X)$.
(9) If $Y \subseteq \mathbf{T}(X)$ and $\overline{\bar{Y}}<\overline{\overline{\mathbf{T}(X)}}$, then $Y \in \mathbf{T}(X)$.

We follow a convention: u, v will denote elements of $\mathbf{T}(X), A, B, C$ will denote ordinal numbers, and L, L_{1} will denote transfinite sequences. Let us consider X, A. The functor $\mathbf{T}_{A}(X)$ is defined as follows:
there exists L such that $\mathbf{T}_{A}(X)=\operatorname{last} L$ and $\operatorname{dom} L=\operatorname{succ} A$ and $L(\mathbf{0})=$ $\{X\}$ and for all C, y such that succ $C \in \operatorname{succ} A$ and $y=L(C)$ holds $L(\operatorname{succ} C)=$ $\left(\left\{u: \bigvee_{v}[v \in[y] \wedge u \subseteq v]\right\} \cup\left\{2^{v}: v \in[y]\right\}\right) \cup 2^{[y]} \cap \mathbf{T}(X)$ and for all C, L_{1} such that $C \in \operatorname{succ} A$ and $C \neq \mathbf{0}$ and C is a limit ordinal number and $L_{1}=L \upharpoonright C$ holds $L(C)=\bigcup\left(\operatorname{rng} L_{1}\right) \cap \mathbf{T}(X)$.

Let us consider X, A. Then $\mathbf{T}_{A}(X)$ is a subset of $\mathbf{T}(X)$.
Next we state a number of propositions: $\mathbf{T}_{A}^{\text {succ } A}(X)$
$2^{(X)} \mathbf{T}(X)$.
(12) If $A \neq \mathbf{0}$ and A is a limit ordinal number, then $\mathbf{T}_{A}(X)=\left\{u: \bigvee_{B}[B \in\right.$ $\left.\left.A \wedge u \in \mathbf{T}_{B}(X)\right]\right\}$.
(13) $\quad Y \in \mathbf{T}_{\text {succ } A}(X)$ if and only if $Y \subseteq \mathbf{T}_{A}(X)$ and $Y \in \mathbf{T}(X)$ or there exists Z such that $Z \in \mathbf{T}_{A}(X)$ but $Y \subseteq Z$ or $Y=2^{Z}$.
(14) If $Y \subseteq Z$ and $Z \in \mathbf{T}_{A}(X)$, then $Y \in \mathbf{T}_{\text {succ } A}(X)$.

If $Y \in \mathbf{T}_{A}(X)$, then $2^{Y} \in \mathbf{T}_{\text {succ } A}(X)$.
(16) If $A \neq \mathbf{0}$ and A is a limit ordinal number, then $x \in \mathbf{T}_{A}(X)$ if and only if there exists B such that $B \in A$ and $x \in \mathbf{T}_{B}(X)$.
(17) If $A \neq \mathbf{0}$ and A is a limit ordinal number and $Y \in \mathbf{T}_{A}(X)$ but $Z \subseteq Y$ or $Z=2^{Y}$, then $Z \in \mathbf{T}_{A}(X)$.

$$
\begin{equation*}
\mathbf{T}_{A}(X) \subseteq \mathbf{T}_{\text {succ } A}(X) \tag{18}
\end{equation*}
$$

(19) If $A \subseteq B$, then $\mathbf{T}_{A}(X) \subseteq \mathbf{T}_{B}(X)$.
(20) There exists A such that $\mathbf{T}_{A}(X)=\mathbf{T}_{\text {succ } A}(X)$.
(21) If $\mathbf{T}_{A}(X)=\mathbf{T}_{\text {succ } A}(X)$, then $\mathbf{T}_{A}(X)=\mathbf{T}(X)$.
(22) There exists A such that $\mathbf{T}_{A}(X)=\mathbf{T}(X)$.
(23) There exists A such that $\mathbf{T}_{A}(X)=\mathbf{T}(X)$ and for every B such that $B \in A$ holds $\mathbf{T}_{B}(X) \neq \mathbf{T}(X)$.
(24) If $Y \neq X$ and $Y \in \mathbf{T}(X)$, then there exists A such that $Y \notin \mathbf{T}_{A}(X)$ and $Y \in \mathbf{T}_{\text {succ } A}(X)$.
(25) If X is transitive, then for every A such that $A \neq \mathbf{0}$ holds $\mathbf{T}_{A}(X)$ is transitive.

$$
\begin{equation*}
\mathbf{T}_{\mathbf{0}}(X) \in \mathbf{T}_{\mathbf{1}}(X) \text { and } \mathbf{T}_{\mathbf{0}}(X) \neq \mathbf{T}_{\mathbf{1}}(X) . \tag{26}
\end{equation*}
$$

(27) If X is transitive, then $\mathbf{T}(X)$ is transitive.
(28) If $Y \in \mathbf{T}(X)$, then $\overline{\bar{Y}}<\overline{\overline{\mathbf{T}(X)}}$.
(29) If $Y \in \mathbf{T}(X)$, then $Y \not \approx \mathbf{T}(X)$.
(30) If $x \in \mathbf{T}(X)$ and $y \in \mathbf{T}(X)$, then $\{x\} \in \mathbf{T}(X)$ and $\{x, y\} \in \mathbf{T}(X)$.
(31) If $x \in \mathbf{T}(X)$ and $y \in \mathbf{T}(X)$, then $\langle x, y\rangle \in \mathbf{T}(X)$.
(32) If $Y \subseteq \mathbf{T}(X)$ and $Z \subseteq \mathbf{T}(X)$, then $: Y, Z: \subseteq \mathbf{T}(X)$.

Let us consider A. The functor \mathbf{R}_{A} is defined as follows:
there exists L such that $\mathbf{R}_{A}=$ last L and $\operatorname{dom} L=\operatorname{succ} A$ and $L(\mathbf{0})=\emptyset$ and for all C, y such that succ $C \in \operatorname{succ} A$ and $y=L(C)$ holds $L(\operatorname{succ} C)=2^{[y]}$ and for all C, L_{1} such that $C \in \operatorname{succ} A$ and $C \neq \mathbf{0}$ and C is a limit ordinal number and $L_{1}=L \upharpoonright C$ holds $L(C)=\bigcup\left(\operatorname{rng} L_{1}\right)$.

Let us consider A. Then \mathbf{R}_{A} is a set.
One can prove the following propositions:

$$
\begin{equation*}
\mathbf{R}_{\mathbf{0}}=\emptyset \tag{33}
\end{equation*}
$$

(34) $\quad \mathbf{R}_{\text {succ } A}=2^{\mathbf{R}_{A}}$.
(35) If $A \neq \mathbf{0}$ and A is a limit ordinal number, then for every x holds $x \in \mathbf{R}_{A}$ if and only if there exists B such that $B \in A$ and $x \in \mathbf{R}_{B}$.
(36) $X \subseteq \mathbf{R}_{A}$ if and only if $X \in \mathbf{R}_{\text {succ } A}$.
(37) \mathbf{R}_{A} is transitive.
(38) If $X \in \mathbf{R}_{A}$, then $X \subseteq \mathbf{R}_{A}$.
$\mathbf{R}_{A} \subseteq \mathbf{R}_{\text {succ } A}$.
$\cup \mathbf{R}_{A} \subseteq \mathbf{R}_{A}$.
(41) If $X \in \mathbf{R}_{A}$, then $\bigcup X \in \mathbf{R}_{A}$.
(42) $A \in B$ if and only if $\mathbf{R}_{A} \in \mathbf{R}_{B}$.
(43) $A \subseteq B$ if and only if $\mathbf{R}_{A} \subseteq \mathbf{R}_{B}$.
(44) $A \subseteq \mathbf{R}_{A}$.
(45) For all A, X such that $X \in \mathbf{R}_{A}$ holds $X \not \approx \mathbf{R}_{A}$ and $\overline{\bar{X}}<\overline{\overline{\mathbf{R}_{A}}}$.
(46) $\quad X \subseteq \mathbf{R}_{A}$ if and only if $2^{X} \subseteq \mathbf{R}_{\text {succ } A}$.
(47) If $X \subseteq Y$ and $Y \in \mathbf{R}_{A}$, then $X \in \mathbf{R}_{A}$.
(48) $X \in \mathbf{R}_{A}$ if and only if $2^{X} \in \mathbf{R}_{\text {succ } A}$.
(49) $x \in \mathbf{R}_{A}$ if and only if $\{x\} \in \mathbf{R}_{\text {succ } A}$.
(50) $\quad x \in \mathbf{R}_{A}$ and $y \in \mathbf{R}_{A}$ if and only if $\{x, y\} \in \mathbf{R}_{\text {succ } A}$.
(51) $\quad x \in \mathbf{R}_{A}$ and $y \in \mathbf{R}_{A}$ if and only if $\langle x, y\rangle \in \mathbf{R}_{\text {succ(succ } A)}$.
(52) If X is transitive and $\mathbf{R}_{A} \cap \mathbf{T}(X)=\mathbf{R}_{\text {succ } A} \cap \mathbf{T}(X)$, then $\mathbf{T}(X) \subseteq \mathbf{R}_{A}$.
(53) If X is transitive, then there exists A such that $\mathbf{T}(X) \subseteq \mathbf{R}_{A}$.
(54) If X is transitive, then $\cup X \subseteq X$.
(55) If X is transitive and Y is transitive, then $X \cup Y$ is transitive.
(56) If X is transitive and Y is transitive, then $X \cap Y$ is transitive.

In the sequel k, n denote natural numbers. Let us consider X. The functor $X^{*} \in$ yielding a set, is defined by:
$x \in X^{*} \in$ if and only if there exist f, n, Y such that $x \in Y$ and $Y=f(n)$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=X$ and for all k, y such that $y=f(k)$ holds $f(k+1)=\bigcup[y]$.

Next we state a number of propositions:
(57) $Z=X^{* \in}$ if and only if for every x holds $x \in Z$ if and only if there exist f, n, Y such that $x \in Y$ and $Y=f(n)$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=X$ and for all k, y such that $y=f(k)$ holds $f(k+1)=\bigcup[y]$.
(58) $X^{*} \in$ is transitive.
(59) $X \subseteq X^{* \epsilon}$.
(60) If $X \subseteq Y$ and Y is transitive, then $X^{* \in \subseteq} \subseteq Y$.
(61) If for every Z such that $X \subseteq Z$ and Z is transitive holds $Y \subseteq Z$ and $X \subseteq Y$ and Y is transitive, then $X^{* \epsilon}=Y$.
(62) If X is transitive, then $X^{*} \epsilon=X$.
(63) $\emptyset^{* \in}=\emptyset$.
(64) $A^{* \epsilon}=A$.
(65) If $X \subseteq Y$, then $X^{*} \subseteq \subseteq Y^{* \epsilon .}$
(66) $\left(X^{* \epsilon}\right)^{* \epsilon}=X^{* \epsilon}$.
(67) $(X \cup Y)^{* \epsilon}=X^{* \epsilon} \cup Y^{* \epsilon}$.
(68) $\quad(X \cap Y)^{* \epsilon} \subseteq X^{* \epsilon} \cap Y^{* \epsilon}$.
(69) There exists A such that $X \subseteq \mathbf{R}_{A}$.

Let us consider X. The functor $\operatorname{rk}(X)$ yielding an ordinal number, is defined by:
$X \subseteq \mathbf{R}_{\mathrm{rk}(X)}$ and for every B such that $X \subseteq \mathbf{R}_{B}$ holds $\operatorname{rk}(X) \subseteq B$.
We now state a number of propositions:
(70) $\quad A=\operatorname{rk}(X)$ if and only if $X \subseteq \mathbf{R}_{A}$ and for every B such that $X \subseteq \mathbf{R}_{B}$ holds $A \subseteq B$.
(71) $\quad \operatorname{rk}\left(2^{X}\right)=\operatorname{succ} \operatorname{rk}(X)$.
(72) $\quad \operatorname{rk}\left(\mathbf{R}_{A}\right)=A$.
(73) $\quad X \subseteq \mathbf{R}_{A}$ if and only if $\operatorname{rk}(X) \subseteq A$.
(74) $\quad X \in \mathbf{R}_{A}$ if and only if $\operatorname{rk}(X) \in A$.
(75) If $X \subseteq Y$, then $\operatorname{rk}(X) \subseteq \operatorname{rk}(Y)$.
(76) If $X \in Y$, then $\operatorname{rk}(X) \in \operatorname{rk}(Y)$.
(77) $\quad \operatorname{rk}(X) \subseteq A$ if and only if for every Y such that $Y \in X$ holds $\operatorname{rk}(Y) \in A$.
(78) $\quad A \subseteq \operatorname{rk}(X)$ if and only if for every B such that $B \in A$ there exists Y such that $Y \in X$ and $B \subseteq \operatorname{rk}(Y)$.

$$
\begin{equation*}
\operatorname{rk}(X)=0 \text { if and only if } X=\emptyset \tag{79}
\end{equation*}
$$

(80) If $\operatorname{rk}(X)=\operatorname{succ} A$, then there exists Y such that $Y \in X$ and $\operatorname{rk}(Y)=A$.
(81) $\operatorname{rk}(A)=A$.
(82) $\quad \operatorname{rk}(\mathbf{T}(X)) \neq \mathbf{0}$ and $\operatorname{rk}(\mathbf{T}(X))$ is a limit ordinal number.

References

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.
[6] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[8] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received March 23, 1990

