Analytical Ordered Affine Spaces ${ }^{1}$

Henryk Oryszczyszyn
Warsaw University
Białystok

Krzysztof Prażmowski
Warsaw University
Białystok

Abstract

Summary. In the article with a given arbitrary real linear space we correlate the (ordered) affine space defined in terms of a directed parallelity of segments. The abstract contains a construction of the ordered affine structure associated with a vector space; this is a structure of the type which frequently occurs in geometry and consists of the set of points and a binary relation on segments. For suitable underlying vector spaces we prove that the corresponding affine structures are ordered affine spaces or ordered affine planes, i.e. that they satisfy appropriate axioms. A formal definition of an arbitrary ordered affine space and an arbitrary ordered affine plane is given.

MML Identifier: ANALOAF.

The notation and terminology used here have been introduced in the following articles: [4], [3], [2], [1], and [5]. We adopt the following rules: V will denote a real linear space, p, q, u, v, w, y will denote vectors of V, and a, b will denote real numbers. Let us consider V, u, v, w, y. The predicate $u, v \| w, y$ is defined by:
$u=v$ or $w=y$ or there exist a, b such that $0<a$ and $0<b$ and $a \cdot(v-u)=$ $b \cdot(y-w)$.

Next we state a number of propositions:
(1) $u, v \| w, y$ if and only if $u=v$ or $w=y$ or there exist a, b such that $0<a$ and $0<b$ and $a \cdot(v-u)=b \cdot(y-w)$.
(2) If $0<a$ and $0<b$, then $0<a+b$.
(3) If $a \neq b$, then $0<a-b$ or $0<b-a$.
(4) $(w-v)+(v-u)=w-u$.
(5) $-(u-v)=v-u$.
(6) $w-(u-v)=w+(v-u)$.
(7) $(w-u)+u=w$.

[^0]（8）$(w+u)-u=w$ ．
（9）If $y+u=v+w$ ，then $y-w=v-u$ ．
$a \cdot(u-v)=-a \cdot(v-u)$ ．
$(a-b) \cdot(u-v)=(b-a) \cdot(v-u)$.
（12）If $a \neq 0$ and $a \cdot u=v$ ，then $u=a^{-1} \cdot v$ ．
（13）If $a \neq 0$ and $a \cdot u=v$ ，then $u=a^{-1} \cdot v$ but if $a \neq 0$ and $u=a^{-1} \cdot v$ ， then $a \cdot u=v$ ．
（14）If $u=v$ or $w=y$ ，then $u, v \Uparrow w, y$ ．
（15）If $a \cdot(v-u)=b \cdot(y-w)$ and $0<a$ and $0<b$ ，then $u, v \Uparrow w, y$ ．
（16）If $u, v \mathbb{\|} w, y$ and $u \neq v$ and $w \neq y$ ，then there exist a, b such that $a \cdot(v-u)=b \cdot(y-w)$ and $0<a$ and $0<b$ ．
$u, v \Uparrow u, v$.
$u, v \Uparrow w, w$ and $u, u \| v, w$.
If $u, v \Uparrow v, u$ ，then $u=v$ ．
If $p \neq q$ and $p, q \Uparrow u, v$ and $p, q \Uparrow w, y$ ，then $u, v \Uparrow w, y$ ．
If $u, v \| w, y$ ，then $v, u \Uparrow y, w$ and $w, y \Uparrow u, v$ ．
If $u, v \Uparrow v, w$ ，then $u, v \| u, w$ ．
If $u, v \| u, w$ ，then $u, v \| v, w$ or $u, w \| w, v$ ．
If $v-u=y-w$ ，then $u, v \| w, y$ ．
If $y=(v+w)-u$ ，then $u, v \mathbb{w}, y$ and $u, w \mathbb{\|} v, y$ ．
If there exist p, q such that $p \neq q$ ，then for every u, v, w there exists y such that $u, v \| w, y$ and $u, w \| v, y$ and $v \neq y$ ．
（27）If $p \neq v$ and $v, p \mathbb{\|} p, w$ ，then there exists y such that $u, p \mathbb{\|} p, y$ and $u, v \| w, y$ ．
（28）If for all a, b such that $a \cdot u+b \cdot v=0_{V}$ holds $a=0$ and $b=0$ ，then $u \neq v$ and $u \neq 0_{V}$ and $v \neq 0_{V}$ ．
If there exist u, v such that for all a, b such that $a \cdot u+b \cdot v=0_{V}$ holds $a=0$ and $b=0$ ，then there exist u, v, w, y such that u, v 丹 w, y and $u, v \nmid y, w$ 。
\[

$$
\begin{equation*}
\text { If } a-b=0 \text {, then } a=b \tag{30}
\end{equation*}
$$

\]

Next we state a proposition
（31）Suppose there exist p, q such that for every w there exist a, b such that $a \cdot p+b \cdot q=w$ ．Then for all u, v, w, y such that $u, v \sharp w, y$ and $u, v \nVdash y, w$ there exists a vector z of V such that $u, v \mathbb{\|} u, z$ or $u, v \| z, u$ but $w, y \| w, z$ or $w, y \| z, w$ ．
We consider affine structures which are systems
〈 points，a congruence 〉
where the points is a non－empty set and the congruence is a relation on ：the points，the points j ．We adopt the following convention：$A S$ will denote an affine structure and a, b, c, d will denote elements of the points of $A S$ ．Let us consider $A S, a, b, c, d$ ．The predicate $a, b \Uparrow c, d$ is defined by：
$\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of $A S$.
We now state a proposition
(32) $a, b \Uparrow c, d$ if and only if $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of $A S$.

In the sequel x, z are arbitrary. Let us consider V. The functor \Uparrow_{V} yields a relation on : the vectors of V, the vectors of V : and is defined as follows:
$\langle x, z\rangle \in \mathbb{T}_{V}$ if and only if there exist u, v, w, y such that $x=\langle u, v\rangle$ and $z=\langle w, y\rangle$ and $u, v \Uparrow w, y$.

One can prove the following proposition

$$
\begin{equation*}
\langle\langle u, v\rangle,\langle w, y\rangle\rangle \in \Uparrow_{V} \text { if and only if } u, v \mathbb{N}^{w} w, y \tag{33}
\end{equation*}
$$

Let us consider V. The functor OASpace V yields an affine structure and is defined as follows:

OASpace $V=\left\langle\right.$ the vectors of $\left.V, \Uparrow_{V}\right\rangle$.
Next we state three propositions:
(34) OASpace $V=\left\langle\right.$ the vectors of $\left.V, \prod_{V}\right\rangle$.
(35) Suppose there exist u, v such that for all real numbers a, b such that $a \cdot u+b \cdot v=0_{V}$ holds $a=0$ and $b=0$. Then
(i) there exist elements a, b of the points of OASpace V such that $a \neq b$,
(ii) for all elements a, b, c, d, p, q, r, s of the points of OASpace V holds $a, b \| c, c$ but if $a, b \| b, a$, then $a=b$ but if $a \neq b$ and $a, b \| p, q$ and $a, b \| r, s$, then $p, q \| r, s$ but if $a, b \mathbb{\|} c, d$, then $b, a \| d, c$ but if $a, b \| b, c$, then $a, b \| a, c$ but if $a, b \| a, c$, then $a, b \| b, c$ or $a, c \| c, b$,
(iii) there exist elements a, b, c, d of the points of OASpace V such that $a, b \nmid c, d$ and $a, b \nmid d, c$,
(iv) for every elements a, b, c of the points of OASpace V there exists an element d of the points of OASpace V such that $a, b \| c, d$ and $a, c \| b, d$ and $b \neq d$,
(v) for all elements p, a, b, c of the points of OASpace V such that $p \neq b$ and $b, p \Uparrow p, c$ there exists an element d of the points of OASpace V such that $a, p \| p, d$ and $a, b \Uparrow c, d$.
(36) Suppose there exist vectors p, q of V such that for every vector w of V there exist real numbers a, b such that $a \cdot p+b \cdot q=w$. Let a, b, c, d be elements of the points of OASpace V. Then if $a, b \sharp c, d$ and $a, b \nVdash d, c$, then there exists an element t of the points of OASpace V such that $a, b \Uparrow a, t$ or $a, b \| t, a$ but $c, d \Uparrow c, t$ or $c, d \Uparrow t, c$.
An affine structure is called an ordered affine space if:
(i) there exist elements a, b of the points of it such that $a \neq b$,
(ii) for all elements a, b, c, d, p, q, r, s of the points of it holds $a, b \| c, c$ but if $a, b \| b, a$, then $a=b$ but if $a \neq b$ and $a, b \| p, q$ and $a, b \| r, s$, then $p, q \| r, s$ but if $a, b \| c, d$, then $b, a \| d, c$ but if $a, b \| b, c$, then $a, b \| a, c$ but if $a, b \| a, c$, then $a, b \| b, c$ or $a, c \| c, b$,
(iii) there exist elements a, b, c, d of the points of it such that $a, b \sharp c, d$ and a, b 甘 d, c,
(iv) for every elements a, b, c of the points of it there exists an element d of the points of it such that $a, b \| c, d$ and $a, c \| b, d$ and $b \neq d$,
(v) for all elements p, a, b, c of the points of it such that $p \neq b$ and $b, p \| p, c$ there exists an element d of the points of it such that $a, p \| p, d$ and $a, b \| c, d$.

One can prove the following propositions:
(37) The following conditions are equivalent:
(i) there exist elements a, b of the points of $A S$ such that $a \neq b$ and for all elements a, b, c, d, p, q, r, s of the points of $A S$ holds $a, b \| c, c$ but if $a, b \| b, a$, then $a=b$ but if $a \neq b$ and $a, b \| p, q$ and $a, b \| r, s$, then $p, q \| r, s$ but if $a, b \| c, d$, then $b, a \| d, c$ but if $a, b \| b, c$, then $a, b \| a, c$ but if $a, b \| a, c$, then $a, b \| b, c$ or $a, c \| c, b$ and there exist elements a, b, c, d of the points of $A S$ such that $a, b \nVdash c, d$ and $a, b \nVdash d, c$ and for every elements a, b, c of the points of $A S$ there exists an element d of the points of $A S$ such that $a, b \| c, d$ and $a, c \| b, d$ and $b \neq d$ and for all elements p, a, b, c of the points of $A S$ such that $p \neq b$ and $b, p \| p, c$ there exists an element d of the points of $A S$ such that $a, p \| p, d$ and $a, b \| c, d$,
(ii) $A S$ is an ordered affine space.
(38) If there exist u, v such that for all real numbers a, b such that $a \cdot u+b \cdot v=$ 0_{V} holds $a=0$ and $b=0$, then OASpace V is an ordered affine space.
We adopt the following rules: A will denote an ordered affine space and a, b, c, d, p, q, r, s will denote elements of the points of A. We now state a number of propositions:
(39) There exist a, b such that $a \neq b$.
$a, b \| c, c$.
If $a, b \| b, a$, then $a=b$.
If $a \neq b$ and $a, b \Uparrow p, q$ and $a, b \Uparrow r, s$, then $p, q \Uparrow r, s$.
If $a, b \| c, d$, then $b, a \| d, c$.
If $a, b \| b, c$, then $a, b \| a, c$.
If $a, b \| a, c$, then $a, b \| b, c$ or $a, c \| c, b$.
There exist a, b, c, d such that $a, b \nVdash c, d$ and $a, b \notin d, c$.
There exists d such that $a, b \| c, d$ and $a, c \| b, d$ and $b \neq d$.
(48) If $p \neq b$ and $b, p \| p, c$, then there exists d such that $a, p \| p, d$ and $a, b \| c, d$.
An ordered affine space is said to be an ordered affine plane if:
Let a, b, c, d be elements of the points of it. Then if $a, b \nVdash c, d$ and $a, b \nVdash d, c$, then there exists an element p of the points of it such that $a, b \| a, p$ or $a, b \| p, a$ but $c, d \mathbb{\|}, p$ or $c, d \mathbb{\|} p, c$.

We now state three propositions:
(49) The following conditions are equivalent:
(i) for all elements a, b, c, d of the points of A such that $a, b \nVdash c, d$ and $a, b \nmid d, c$ there exists an element p of the points of A such that $a, b \| a, p$ or $a, b \| p, a$ but $c, d \| c, p$ or $c, d \| p, c$,
(ii) A is an ordered affine plane.
(50) The following conditions are equivalent:
(i) there exist elements a, b of the points of $A S$ such that $a \neq b$ and for all elements a, b, c, d, p, q, r, s of the points of $A S$ holds $a, b \| c, c$ but if $a, b \| b, a$, then $a=b$ but if $a \neq b$ and $a, b \| p, q$ and $a, b \| r, s$, then $p, q \| r, s$ but if $a, b \Uparrow c, d$, then $b, a \Uparrow d, c$ but if $a, b \| b, c$, then $a, b \Uparrow a, c$ but if $a, b \| a, c$, then $a, b \| b, c$ or $a, c \| c, b$ and there exist elements a, b, c, d of the points of $A S$ such that $a, b \nVdash c, d$ and $a, b \nmid d, c$ and for every elements a, b, c of the points of $A S$ there exists an element d of the points of $A S$ such that $a, b \Uparrow c, d$ and $a, c \mathbb{b}, d$ and $b \neq d$ and for all elements p, a, b, c of the points of $A S$ such that $p \neq b$ and $b, p \| p, c$ there exists an element d of the points of $A S$ such that $a, p \| p, d$ and $a, b \Uparrow c, d$ and for all elements a, b, c, d of the points of $A S$ such that $a, b \nVdash c, d$ and $a, b \nmid d, c$ there exists an element p of the points of $A S$ such that $a, b \Uparrow a, p$ or $a, b \Uparrow p, a$ but $c, d \| c, p$ or $c, d \Uparrow p, c$,
(ii) $A S$ is an ordered affine plane.
(51) If there exist u, v such that for all real numbers a, b such that $a \cdot u+b \cdot v=$ 0_{V} holds $a=0$ and $b=0$ and for every w there exist real numbers a, b such that $w=a \cdot u+b \cdot v$, then OASpace V is an ordered affine plane.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[5] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

Received April 11, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III.24-C6

