Zermelo Theorem and Axiom of Choice

Grzegorz Bancerek Warsaw University Białystok

Summary. The article is continuation of [2] and [1], and the goal of it is show that Zermelo theorem (every set has a relation which well orders it - proposition (26)) and axiom of choice (for every non-empty family of nonempty and separate sets there is set which has exactly one common element with arbitraly family member - proposition (27)) are true. It is result of the Tarski's axiom A introduced in [5] and repeated in [6]. Inclusion as a settheoretical binary relation is introduced, the correspondence of well ordering relations to ordinal numbers is shown, and basic properties of equinumerosity are presented. Some facts are based on [4].

MML Identifier: WELLORD2.

The terminology and notation used in this paper are introduced in the following articles: [6], [7], [8], [3], [2], and [1]. For simplicity we adopt the following convention: X, Y, Z will denote sets, a will be arbitrary, R will denote a relation, and A, B will denote ordinal numbers. Let us consider X. The functor \subseteq_X yielding a relation, is defined by:

field $\subseteq_X = X$ and for all Y, Z such that $Y \in X$ and $Z \in X$ holds $\langle Y, Z \rangle \in \subseteq_X$ if and only if $Y \subseteq Z$.

The following propositions are true:

- (1) $R = \subseteq_X$ if and only if field R = X and for all Y, Z such that $Y \in X$ and $Z \in X$ holds $\langle Y, Z \rangle \in R$ if and only if $Y \subseteq Z$.
- (2) \subseteq_X is pseudo reflexive.
- (3) \subseteq_X is transitive.
- (4) \subseteq_A is connected.
- (5) \subseteq_X is antisymmetric.
- (6) \subseteq_A is well founded.
- (7) \subseteq_A is well ordering relation.
- (8) If $Y \subseteq X$, then $\subseteq_X |^2 Y = \subseteq_Y$.

265

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (9) For all A, X such that $X \subseteq A$ holds \subseteq_X is well ordering relation. We now state several propositions:
- (10) If $A \in B$, then $A = \subseteq_B \text{Seg}(A)$.
- (11) If \subseteq_A and \subseteq_B are isomorphic, then A = B.
- (12) For all X, R, A, B such that R and \subseteq_A are isomorphic and R and \subseteq_B are isomorphic holds A = B.
- (13) For every R such that R is well ordering relation and for every a such that $a \in \text{field } R$ there exists A such that $R \mid^2 R \text{Seg}(a)$ and \subseteq_A are isomorphic there exists A such that R and \subseteq_A are isomorphic.
- (14) For every R such that R is well ordering relation there exists A such that R and \subseteq_A are isomorphic.

Let us consider R. Let us assume that R is well ordering relation. The functor \overline{R} yields an ordinal number and is defined by:

R and $\subseteq_{\overline{R}}$ are isomorphic.

Let us consider A, R. The predicate A is an order type of R is defined by: $A = \overline{R}$.

One can prove the following propositions:

- (15) If R is well ordering relation, then for every A holds $A = \overline{R}$ if and only if R and \subseteq_A are isomorphic.
- (16) A is an order type of R if and only if $A = \overline{R}$.
- (17) If $X \subseteq A$, then $\overline{\subseteq_X} \subseteq A$.

We follow a convention: f will be a function and x, y, z, u will be arbitrary. One can prove the following proposition

(18) $X \approx Y$ if and only if there exists Z such that for every x such that $x \in X$ there exists y such that $y \in Y$ and $\langle x, y \rangle \in Z$ and for every y such that $y \in Y$ there exists x such that $x \in X$ and $\langle x, y \rangle \in Z$ and for all x, y, z, u such that $\langle x, y \rangle \in Z$ and $\langle z, u \rangle \in Z$ holds x = z if and only if y = u.

Let us consider X, Y. Let us note that one can characterize the predicate $X \approx Y$ by the following (equivalent) condition: there exists f such that f is one-to-one and dom f = X and rng f = Y.

Next we state several propositions:

- (19) $X \approx Y$ if and only if there exists f such that f is one-to-one and dom f = X and rng f = Y.
- (20) $X \approx X$.
- (21) If $X \approx Y$, then $Y \approx X$.
- (22) If $X \approx Y$ and $Y \approx Z$, then $X \approx Z$.
- (23) If R is well ordering relation and $X \approx \text{field } R$, then there exists R such that R well orders X.
- (24) If R is well ordering relation and $X \approx Y$ and $Y \subseteq$ field R, then there exists R such that R well orders X.
- (25) If R well orders X, then field $(R \mid^2 X) = X$ and $R \mid^2 X$ is well ordering relation.

- (26) For every X there exists R such that R well orders X.
- In the sequel M will be a non-empty family of sets. We now state a proposition
- (27) If for every X such that $X \in M$ holds $X \neq \emptyset$ and for all X, Y such that $X \in M$ and $Y \in M$ and $X \neq Y$ holds $X \cap Y = \emptyset$, then there exists Choice being a set such that for every X such that $X \in M$ there exists x such that Choice $\cap X = \{x\}$.

References

- [1] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91–96, 1990.
- [2] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123-129, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [4] Kazimierz Kuratowski and Andrzej Mostowski. *Teoria mnogości*. PTM, Wrocław, 1952.
- [5] Alfred Tarski. Über Unerreichbare Kardinalzahlen. Fundamenta Mathematicae, 30:176–183, 1938.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [7] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [8] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.

Received June 26, 1989