Abelian Groups, Fields and Vector Spaces¹

Eugeniusz Kusak Warsaw University Białystok Wojciech Leończuk Warsaw University Białystok Michał Muzalewski Warsaw University Białystok

Summary. This text includes definitions of the Abelian group, field and vector space over a field and some elementary theorems about them.

MML Identifier: VECTSP_1.

The articles [3], [1], and [2] provide the notation and terminology for this paper. We consider group structures which are systems

 \langle a carrier, an addition, a reverse-map, a zero \rangle

where the carrier is a non-empty set, the addition is a binary operation on the carrier, the reverse-map is a unary operation on the carrier, and the zero is an element of the carrier. In the sequel GS denotes a group structure. Let us consider GS. An element of GS is an element of the carrier of GS.

Next we state a proposition

(1) For every element x of the carrier of GS holds x is an element of GS.

We now define three new functors. Let us consider GS. The functor 0_{GS} yields an element of GS and is defined by: 0_{GS} =the zero of GS.

Let x be an element of GS. The functor -x yielding an element of GS, is defined by:

-x = (the reverse-map of GS)(x).

Let y be an element of GS. The functor x + y yielding an element of GS, is defined by:

x + y = (the addition of GS)(x, y).

Next we state three propositions:

- (2) 0_{GS} = the zero of GS.
- (3) For every element x of GS holds -x = (the reverse-map of GS)(x).
- (4) For all elements x, y of GS holds x + y = (the addition of GS)(x, y).

¹Supported by RPBP.III-24.C6.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 We now define two new functors. The constant $+_{\mathbb{R}}$ is a binary operation on \mathbb{R} and is defined by:

for all elements x, y of \mathbb{R} holds $+_{\mathbb{R}}(x, y) = x + y$.

The constant $-_{\mathbb{R}}$ is a unary operation on \mathbb{R} and is defined by:

for every element x of \mathbb{R} for every real number x' such that x' = x holds $-_{\mathbb{R}}(x) = -x'$.

The constant \mathbb{R}_G is a group structure and is defined by:

 $\mathbb{R}_{\mathrm{G}} = \langle \mathbb{R}, +_{\mathbb{R}}, -_{\mathbb{R}}, 0 \rangle.$

We now state two propositions:

- (5) $\mathbb{R}_{\mathrm{G}} = \langle \mathbb{R}, +_{\mathbb{R}}, -_{\mathbb{R}}, 0 \rangle.$
- (6) For all elements x, y, z of \mathbb{R}_G holds x+y = y+x and (x+y)+z = x+(y+z)and $x + 0_{\mathbb{R}_G} = x$ and $x + (-x) = 0_{\mathbb{R}_G}$.

The mode Abelian group, which widens to the type a group structure, is defined by:

for all elements x, y, z of it holds x + y = y + x and (x + y) + z = x + (y + z)and $x + 0_{it} = x$ and $x + (-x) = 0_{it}$.

The following proposition is true

(7) For all elements x, y, z of GS holds x+y = y+x and (x+y)+z = x+(y+z)and $x+0_{GS} = x$ and $x+(-x) = 0_{GS}$ if and only if GS is an Abelian group.

In the sequel G is an Abelian group and x, y, z are elements of G. We now state four propositions:

- $(8) \quad x+y=y+x.$
- (9) x + (y + z) = (x + y) + z.
- (10) $x + 0_G = x.$
- (11) $x + (-x) = 0_G.$

Let us consider G, x, y. The functor x - y yielding an element of G, is defined by:

x - y = x + (-y).

The following propositions are true:

- (12) x y = x + (-y).
- (13) If x + y = x + z, then y = z but if x + y = z + y, then x = z.
- $(14) \quad -0_G = 0_G.$

We consider field structures which are systems

 \langle a carrier, a multiplication, an addition, a reverse-map, a unity, a zero \rangle

where the carrier is a non-empty set, the multiplication, the addition are binary operations on the carrier, the reverse-map is a unary operation on the carrier, and the unity, the zero are elements of the carrier. In the sequel FS will denote a field structure. We now define five new functors. Let us consider FS. The functor 1_{FS} yields an element of the carrier of FS and is defined by:

 1_{FS} = the unity of FS.

The functor 0_{FS} yields an element of the carrier of FS and is defined by:

 0_{FS} = the zero of FS.

Let x be an element of the carrier of FS. The functor -x yields an element of the carrier of FS and is defined by:

-x = (the reverse-map of FS)(x).

Let y be an element of the carrier of FS. The functor $x \cdot y$ yields an element of the carrier of FS and is defined by:

 $x \cdot y =$ (the multiplication of FS)(x, y).

The functor x + y yielding an element of the carrier of FS, is defined by: x + y = (the addition of FS)(x, y).

One can prove the following propositions:

- (15) 1_{FS} = the unity of FS.
- (16) 0_{FS} = the zero of FS.
- (17) For every element x of the carrier of FS holds -x = (the reverse-map of FS)(x).
- (18) For all elements x, y of the carrier of FS holds $x \cdot y =$ (the multiplication of FS)(x, y).
- (19) For all elements x, y of the carrier of FS holds x + y = (the addition of FS)(x, y).

The constant $\cdot_{\mathbb{R}}$ is a binary operation on \mathbb{R} and is defined by:

for all elements x, y of \mathbb{R} holds $\cdot_{\mathbb{R}}(x, y) = x \cdot y$.

The constant \mathbb{R}_{F} is a field structure and is defined by:

$$\mathbb{R}_{\mathrm{F}} = \langle \mathbb{R}, \cdot_{\mathbb{R}}, +_{\mathbb{R}}, -_{\mathbb{R}}, 1, 0 \rangle.$$

We now state two propositions:

- (20) $\mathbb{R}_{\mathrm{F}} = \langle \mathbb{R}, \cdot_{\mathbb{R}}, +_{\mathbb{R}}, -_{\mathbb{R}}, 1, 0 \rangle.$
- (21) Let x, y, z be elements of the carrier of \mathbb{R}_{F} . Then

+z),

- (i) x+y=y+x,
- (ii) (x+y) + z = x + (y+z),
- (iii) $x + 0_{\mathbb{R}_{\mathrm{F}}} = x,$
- $(\mathrm{iv}) \quad x + (-x) = 0_{\mathbb{R}_{\mathrm{F}}},$
- (v) $x \cdot y = y \cdot x$,
- (vi) $(x \cdot y) \cdot z = x \cdot (y \cdot z),$
- (vii) $x \cdot (1_{\mathbb{R}_{\mathrm{F}}}) = x,$
- (viii) if $x \neq 0_{\mathbb{R}_{\mathrm{F}}}$, then there exists y being an element of the carrier of \mathbb{R}_{F} such that $x \cdot y = 1_{\mathbb{R}_{\mathrm{F}}}$,
- $(ix) \quad 0_{\mathbb{R}_{\mathrm{F}}} \neq 1_{\mathbb{R}_{\mathrm{F}}},$
- (x) $x \cdot (y+z) = x \cdot y + x \cdot z$,
- (xi) $(y+z) \cdot x = y \cdot x + z \cdot x.$

The mode field, which widens to the type a field structure, is defined by: Let x, y, z be elements of the carrier of it . Then

(i)
$$x + y = y + x$$
,
(ii) $(x + y) + z = x + (y)$
(iii) $x + 0_{it} = x$,
(iii) $x + 0_{it} = x$,

- (iv) $x + (-x) = 0_{it},$
- (v) $x \cdot y = y \cdot x$,
- (vi) $(x \cdot y) \cdot z = x \cdot (y \cdot z),$

- (vii) $x \cdot (1_{\text{it}}) = x$,
- (viii) if $x \neq 0_{it}$, then there exists y being an element of the carrier of it such that $x \cdot y = 1_{it}$,
- (ix) $0_{it} \neq 1_{it}$,
- (x) $x \cdot (y+z) = x \cdot y + x \cdot z$,
- (xi) $(y+z) \cdot x = y \cdot x + z \cdot x.$

We now state a proposition

- (22) The following conditions are equivalent:
 - (i) for all elements x, y, z of the carrier of FS holds x + y = y + x and (x+y)+z = x+(y+z) and $x+0_{FS} = x$ and $x+(-x) = 0_{FS}$ and $x \cdot y = y \cdot x$ and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ and $x \cdot (1_{FS}) = x$ but if $x \neq 0_{FS}$, then there exists y being an element of the carrier of FS such that $x \cdot y = 1_{FS}$ and $0_{FS} \neq 1_{FS}$ and $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(y+z) \cdot x = y \cdot x + z \cdot x$,

(ii)
$$FS$$
 is a field.

In the sequel F is a field and x, y, z are elements of the carrier of F. The following propositions are true:

- $(23) \quad x+y=y+x.$
- (24) (x+y) + z = x + (y+z).
- $(25) \quad x + 0_F = x.$
- (26) $x + (-x) = 0_F$.
- (27) $x \cdot y = y \cdot x.$
- (28) $(x \cdot y) \cdot z = x \cdot (y \cdot z).$
- $(29) \quad x \cdot (1_F) = x.$
- (30) If $x \neq 0_F$, then there exists y such that $x \cdot y = 1_F$.
- $(31) \quad 0_F \neq 1_F.$
- (32) $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(y+z) \cdot x = y \cdot x + z \cdot x$.
- (33) If $x \neq 0_F$ and $x \cdot y = x \cdot z$, then y = z.

Let us consider F, x. Let us assume that $x \neq 0_F$. The functor x^{-1} yields an element of the carrier of F and is defined by:

 $x \cdot (x^{-1}) = 1_F.$

We now state a proposition

(34) If $x \neq 0_F$, then $x \cdot x^{-1} = 1_F$ and $x^{-1} \cdot x = 1_F$.

We now define two new functors. Let us consider F, x, y. The functor x - y yielding an element of the carrier of F, is defined by:

- x y = x + (-y).
- The functor $\frac{x}{y}$ yielding an element of the carrier of F, is defined by: $\frac{x}{y} = x \cdot y^{-1}$.

One can prove the following propositions:

- (35) x y = x + (-y).
- $(36) \quad \frac{x}{y} = x \cdot y^{-1}.$
- (37) If x + y = x + z, then y = z but if x + y = z + y, then x = z.
- (38) -(x+y) = (-x) + (-y).

- (39) $x \cdot 0_F = 0_F$ and $0_F \cdot x = 0_F$.
- (40) -(-x) = x.
- $(41) \quad (-x) \cdot y = -x \cdot y.$
- $(42) \quad (-x) \cdot (-y) = x \cdot y.$
- (43) $x \cdot (y-z) = x \cdot y x \cdot z.$

(44) $x \cdot y = 0_F$ if and only if $x = 0_F$ or $y = 0_F$.

We consider vector space structures which are systems

 \langle scalars, a carrier, a multiplication \rangle

where the scalars is a field, the carrier is an Abelian group, and the multiplication is a function from [the carrier of the scalars, the carrier of the carrier] into the carrier of the carrier. In the sequel VS will denote a vector space structure. Let us consider VS. A vector of VS is an element of the carrier of VS.

One can prove the following proposition

(45) For every element x of the carrier of VS holds x is a vector of VS.

Let us consider F. The mode vector space structure over F, which widens to the type a vector space structure, is defined by:

the scalars of it = F.

One can prove the following proposition

(46) For every VS being a vector space structure holds VS is a vector space structure over F if and only if the scalars of VS = F.

In the sequel V is a vector space structure over F. The arguments of the notions defined below are the following: F, V which are objects of the type reserved above; x which is an element of the carrier of F; v which is an element of the carrier of V. The functor $x \cdot v$ yields an element of the carrier of V and is defined by:

for every element x' of the carrier of the scalars of V such that x' = x holds $x \cdot v = (\text{the multiplication of } V)(x', v).$

We now state a proposition

(47) For every vector space structure V over F for every element x of the carrier of F for every element v of the carrier of V for every element x' of the carrier of the scalars of V such that x' = x holds $x \cdot v =$ (the multiplication of V)(x', v).

Let us consider F. The mode vector space over F, which widens to the type a vector space structure over F, is defined by:

Let x, y be elements of the carrier of F. Let v, w be elements of the carrier of it. Then $x \cdot (v+w) = x \cdot v + x \cdot w$ and $(x+y) \cdot v = x \cdot v + y \cdot v$ and $(x \cdot y) \cdot v = x \cdot (y \cdot v)$ and $(1_F) \cdot v = v$.

We now state a proposition

(48) The following conditions are equivalent:

- (i) for all elements x, y of the carrier of F for all elements v, w of the carrier of V holds $x \cdot (v + w) = x \cdot v + x \cdot w$ and $(x + y) \cdot v = x \cdot v + y \cdot v$ and $(x \cdot y) \cdot v = x \cdot (y \cdot v)$ and $(1_F) \cdot v = v$,
- (ii) V is a vector space over F.

We follow a convention: V, V_1 denote vector spaces over F, x, y denote elements of the carrier of F, and v, w denote elements of the carrier of V. Let us consider F, V. The functor Θ_V yielding an element of the carrier of V, is defined by:

 $\Theta_V = 0_{\text{the carrier of } V}.$

One can prove the following propositions:

- (49) $\Theta_V = 0_{\text{the carrier of } V}.$
- (50) $\Theta_V + v = v.$
- (51) $v + \Theta_V = v.$
- $(52) \quad v + (-v) = \Theta_V.$
- $(53) \quad (-v) + v = \Theta_V.$
- (54) $-\Theta_V = \Theta_V.$
- (55) $x \cdot (v+w) = x \cdot v + x \cdot w.$
- (56) $(x+y) \cdot v = x \cdot v + y \cdot v.$
- (57) $(x \cdot y) \cdot v = x \cdot (y \cdot v).$
- $(58) \quad (1_F) \cdot v = v.$
- (59) $0_F \cdot v = \Theta_V$ and $(-1_F) \cdot v = -v$ and $x \cdot (\Theta_V) = \Theta_V$.
- (60) $x \cdot v = \Theta_V$ if and only if $x = 0_F$ or $v = \Theta_V$.

Let us consider F, V. The mode VSS of V, which widens to the type a vector space over F, is defined by: the carrier of the carrier of it \subseteq the carrier of the carrier of V and for all elements v, w of the carrier of it for all elements x, y of the carrier of F holds $x \cdot v + y \cdot w$ is an element of the carrier of it.

The following proposition is true

(61) the carrier of the carrier of $V_1 \subseteq$ the carrier of the carrier of V and for all elements v, w of the carrier of V_1 for all elements x, y of the carrier of F holds $x \cdot v + y \cdot w$ is an element of the carrier of V_1 if and only if V_1 is a VSS of V.

In the sequel u, v, w will be elements of the carrier of V. We now state a number of propositions:

- (62) v w = v + (-w).
- (63) $v + w = \Theta_V$ if and only if -v = w.
- (64) (i) -(v+w) = (-v) w,
- (ii) -(-v) = v,
- (iii) -((-v) + w) = v w,
- (iv) -(v w) = (-v) + w,
- (v) -((-v) w) = v + w,
- (vi) u (v + w) = (u v) w.
- (65) $\Theta_V v = -v$ and $v \Theta_V = v$.
- (66) $x + (-y) = 0_F$ if and only if x = y but $x y = 0_F$ if and only if x = y.
- (67) If $x \neq 0_F$, then $x^{-1} \cdot (x \cdot v) = v$.
- (68) $-x \cdot v = (-x) \cdot v$ and $w x \cdot v = w + (-x) \cdot v$.
- (69) $x \cdot (-v) = -x \cdot v.$

- (70) $x \cdot (v w) = x \cdot v x \cdot w.$
- (71) $v x \cdot (y \cdot w) = v (x \cdot y) \cdot w.$
- (72) \mathbb{R}_{F} is a field.
- (73) If $x \neq 0_F$, then $(x^{-1})^{-1} = x$.
- (74) If $x \neq 0_F$, then $x^{-1} \neq 0_F$ and $-x^{-1} \neq 0_F$.
- (75) For all elements x, y of \mathbb{R} holds $+_{\mathbb{R}}(x, y) = x + y$.
- (76) For every element x of \mathbb{R} for every real number x' such that x' = x holds $-_{\mathbb{R}}(x) = -x'$.
- (77) For all elements x, y of \mathbb{R} holds $\cdot_{\mathbb{R}}(x, y) = x \cdot y$.

 $(78) \quad 1_{\mathbb{R}_{\mathrm{F}}} + 1_{\mathbb{R}_{\mathrm{F}}} \neq 0_{\mathbb{R}_{\mathrm{F}}}.$

The mode Fano field, which widens to the type a field, is defined by:

 $\mathbf{1}_{it} + \mathbf{1}_{it} \neq \mathbf{0}_{it}.$

The following proposition is true

- (79) For every field F holds F is a Fano field if and only if $1_F + 1_F \neq 0_F$.
- In the sequel F will denote a field and a, b, c will denote elements of the carrier of F. One can prove the following propositions:

$$(80) \quad -(a-b) = (-a) + b$$

(81)
$$-(a-b) = b - a$$
.

- (82) $0_F + a = a.$
- $(83) \quad (-a) + a = 0_F.$
- (84) If $a b = 0_F$, then a = b.
- (85) $-0_F = 0_F$.
- (86) If $-a = 0_F$, then $a = 0_F$.
- (87) If $a b = 0_F$, then $b a = 0_F$.
- (88) If $a \neq 0_F$ and $a \cdot c b = 0_F$, then $c = b \cdot a^{-1}$ but if $a \neq 0_F$ and $b c \cdot a = 0_F$, then $c = b \cdot a^{-1}$.
- (89) a+b = -((-a) + (-b)).
- (90) (a+b) (a+c) = b c.

References

- Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175– 180, 1990.
- [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received November 23, 1989