Abelian Groups, Fields and Vector Spaces ${ }^{1}$

Eugeniusz Kusak
Warsaw University
Białystok

Wojciech Leończuk
Warsaw University
Białystok

Michał Muzalewski
Warsaw University
Białystok

[^0]MML Identifier: VECTSP_1.

The articles [3], [1], and [2] provide the notation and terminology for this paper. We consider group structures which are systems

〈 a carrier, an addition, a reverse-map, a zero 〉
where the carrier is a non-empty set, the addition is a binary operation on the carrier, the reverse-map is a unary operation on the carrier, and the zero is an element of the carrier. In the sequel $G S$ denotes a group structure. Let us consider $G S$. An element of $G S$ is an element of the carrier of $G S$.

Next we state a proposition
(1) For every element x of the carrier of $G S$ holds x is an element of $G S$.

We now define three new functors. Let us consider $G S$. The functor $0_{G S}$ yields an element of $G S$ and is defined by: $0_{G S}=$ the zero of $G S$.
Let x be an element of $G S$. The functor $-x$ yielding an element of $G S$, is defined by:
$-x=($ the reverse-map of $G S)(x)$.
Let y be an element of $G S$. The functor $x+y$ yielding an element of $G S$, is defined by:
$x+y=($ the addition of $G S)(x, y)$.
Next we state three propositions:
(2) $0_{G S}=$ the zero of $G S$.
(3) For every element x of $G S$ holds $-x=($ the reverse-map of $G S)(x)$.
(4) For all elements x, y of $G S$ holds $x+y=($ the addition of $G S)(x, y)$.

[^1]We now define two new functors. The constant $+_{\mathbb{R}}$ is a binary operation on \mathbb{R} and is defined by:
for all elements x, y of \mathbb{R} holds $+_{\mathbb{R}}(x, y)=x+y$.
The constant $-_{\mathbb{R}}$ is a unary operation on \mathbb{R} and is defined by:
for every element x of \mathbb{R} for every real number x^{\prime} such that $x^{\prime}=x$ holds $-_{\mathbb{R}}(x)=-x^{\prime}$.

The constant \mathbb{R}_{G} is a group structure and is defined by:
$\mathbb{R}_{G}=\left\langle\mathbb{R},+_{\mathbb{R}},-_{\mathbb{R}}, 0\right\rangle$.
We now state two propositions:

$$
\begin{equation*}
\mathbb{R}_{G}=\left\langle\mathbb{R},+_{\mathbb{R}},-_{\mathbb{R}}, 0\right\rangle \tag{5}
\end{equation*}
$$

(6) For all elements x, y, z of \mathbb{R}_{G} holds $x+y=y+x$ and $(x+y)+z=x+(y+z)$ and $x+0_{\mathbb{R}_{G}}=x$ and $x+(-x)=0_{\mathbb{R}_{G}}$.
The mode Abelian group, which widens to the type a group structure, is defined by:
for all elements x, y, z of it holds $x+y=y+x$ and $(x+y)+z=x+(y+z)$ and $x+0_{\text {it }}=x$ and $x+(-x)=0_{\text {it }}$.

The following proposition is true
(7) For all elements x, y, z of $G S$ holds $x+y=y+x$ and $(x+y)+z=x+(y+z)$ and $x+0_{G S}=x$ and $x+(-x)=0_{G S}$ if and only if $G S$ is an Abelian group.
In the sequel G is an Abelian group and x, y, z are elements of G. We now state four propositions:
(8) $x+y=y+x$.
(9) $x+(y+z)=(x+y)+z$.
(10) $x+0_{G}=x$.
(11) $x+(-x)=0_{G}$.

Let us consider G, x, y. The functor $x-y$ yielding an element of G, is defined by:

$$
x-y=x+(-y) .
$$

The following propositions are true:
(13) If $x+y=x+z$, then $y=z$ but if $x+y=z+y$, then $x=z$.

$$
\begin{equation*}
-0_{G}=0_{G} \tag{12}
\end{equation*}
$$

We consider field structures which are systems
〈 a carrier, a multiplication, an addition, a reverse-map, a unity, a zero 〉
where the carrier is a non-empty set, the multiplication, the addition are binary operations on the carrier, the reverse-map is a unary operation on the carrier, and the unity, the zero are elements of the carrier. In the sequel $F S$ will denote a field structure. We now define five new functors. Let us consider FS. The functor $1_{F S}$ yields an element of the carrier of $F S$ and is defined by:
$1_{F S}=$ the unity of $F S$.
The functor $0_{F S}$ yields an element of the carrier of $F S$ and is defined by:
$0_{F S}=$ the zero of $F S$.

Let x be an element of the carrier of $F S$. The functor $-x$ yields an element of the carrier of $F S$ and is defined by:
$-x=($ the reverse-map of $F S)(x)$.
Let y be an element of the carrier of $F S$. The functor $x \cdot y$ yields an element of the carrier of $F S$ and is defined by:
$x \cdot y=($ the multiplication of $F S)(x, y)$.
The functor $x+y$ yielding an element of the carrier of $F S$, is defined by:
$x+y=($ the addition of $F S)(x, y)$.
One can prove the following propositions:
(15) $1_{F S}=$ the unity of $F S$.
(16) $\quad 0_{F S}=$ the zero of $F S$.
(17) For every element x of the carrier of $F S$ holds $-x=$ (the reverse-map of $F S)(x)$.
(18) For all elements x, y of the carrier of $F S$ holds $x \cdot y=$ (the multiplication of $F S)(x, y)$.
(19) For all elements x, y of the carrier of $F S$ holds $x+y=$ (the addition of $F S)(x, y)$.
The constant $\cdot{ }_{\mathbb{R}}$ is a binary operation on \mathbb{R} and is defined by:
for all elements x, y of \mathbb{R} holds $\cdot \mathbb{R}(x, y)=x \cdot y$.
The constant \mathbb{R}_{F} is a field structure and is defined by:
$\mathbb{R}_{F}=\left\langle\mathbb{R}, \cdot_{\mathbb{R}},+_{\mathbb{R}},-_{\mathbb{R}}, 1,0\right\rangle$.
We now state two propositions:

$$
\begin{equation*}
\mathbb{R}_{\mathcal{F}}=\left\langle\mathbb{R}, \cdot_{\mathbb{R}},+_{\mathbb{R}},-_{\mathbb{R}}, 1,0\right\rangle . \tag{20}
\end{equation*}
$$

(21) Let x, y, z be elements of the carrier of \mathbb{R}_{F}. Then
(i) $x+y=y+x$,
(ii) $(x+y)+z=x+(y+z)$,
(iii) $x+0_{\mathbb{R}_{F}}=x$,
(iv) $x+(-x)=0_{\mathbb{R}_{F}}$,
(v) $x \cdot y=y \cdot x$,
(vi) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
(vii) $x \cdot\left(1_{\mathbb{R}_{\mathrm{F}}}\right)=x$,
(viii) if $x \neq 0_{\mathbb{R}_{\mathrm{F}}}$, then there exists y being an element of the carrier of \mathbb{R}_{F} such that $x \cdot y=1_{R_{F}}$,
(ix) $0_{\mathbb{R}_{\mathrm{F}}} \neq 1_{\mathbb{R}_{\mathrm{F}}}$,
(x) $x \cdot(y+z)=x \cdot y+x \cdot z$,
(xi) $\quad(y+z) \cdot x=y \cdot x+z \cdot x$.

The mode field, which widens to the type a field structure, is defined by:
Let x, y, z be elements of the carrier of it. Then
(i) $x+y=y+x$,
(ii) $(x+y)+z=x+(y+z)$,
(iii) $x+0_{\text {it }}=x$,
(iv) $x+(-x)=0_{\text {it }}$,
(v) $x \cdot y=y \cdot x$,
(vi) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
(vii) $\quad x \cdot\left(1_{\text {it }}\right)=x$,
(viii) if $x \neq 0_{\mathrm{it}}$, then there exists y being an element of the carrier of it such that $x \cdot y=1_{\text {it }}$,
(ix) $0_{\text {it }} \neq 1_{\text {it }}$,
(x) $x \cdot(y+z)=x \cdot y+x \cdot z$,
(xi) $\quad(y+z) \cdot x=y \cdot x+z \cdot x$.

We now state a proposition
(22) The following conditions are equivalent:
(i) for all elements x, y, z of the carrier of $F S$ holds $x+y=y+x$ and $(x+y)+z=x+(y+z)$ and $x+0_{F S}=x$ and $x+(-x)=0_{F S}$ and $x \cdot y=y \cdot x$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ and $x \cdot\left(1_{F S}\right)=x$ but if $x \neq 0_{F S}$, then there exists y being an element of the carrier of $F S$ such that $x \cdot y=1_{F S}$ and $0_{F S} \neq 1_{F S}$ and $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$,
(ii) $F S$ is a field.

In the sequel F is a field and x, y, z are elements of the carrier of F. The following propositions are true:
(28) $\quad(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
(30) If $x \neq 0_{F}$, then there exists y such that $x \cdot y=1_{F}$.
(31) $\quad 0_{F} \neq 1_{F}$.
(32) $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$.
(33) If $x \neq 0_{F}$ and $x \cdot y=x \cdot z$, then $y=z$.

Let us consider F, x. Let us assume that $x \neq 0_{F}$. The functor x^{-1} yields an element of the carrier of F and is defined by:

$$
x \cdot\left(x^{-1}\right)=1_{F}
$$

We now state a proposition
(34) If $x \neq 0_{F}$, then $x \cdot x^{-1}=1_{F}$ and $x^{-1} \cdot x=1_{F}$.

We now define two new functors. Let us consider F, x, y. The functor $x-y$ yielding an element of the carrier of F, is defined by:

$$
x-y=x+(-y)
$$

The functor $\frac{x}{y}$ yielding an element of the carrier of F, is defined by:

$$
\frac{x}{y}=x \cdot y^{-1}
$$

One can prove the following propositions:

$$
\begin{align*}
& x-y=x+(-y) . \tag{35}\\
& \frac{x}{y}=x \cdot y^{-1} . \tag{36}\\
& \text { If } x+y=x+z, \text { then } y=z \text { but if } x+y=z+y, \text { then } x=z . \\
& -(x+y)=(-x)+(-y) .
\end{align*}
$$

$$
\begin{align*}
& x \cdot 0_{F}=0_{F} \text { and } 0_{F} \cdot x=0_{F} . \tag{39}\\
& -(-x)=x . \tag{40}\\
& (-x) \cdot y=-x \cdot y . \tag{41}\\
& (-x) \cdot(-y)=x \cdot y . \tag{42}\\
& x \cdot(y-z)=x \cdot y-x \cdot z . \tag{43}\\
& x \cdot y=0_{F} \text { if and only if } x=0_{F} \text { or } y=0_{F} . \tag{44}
\end{align*}
$$

We consider vector space structures which are systems
〈 scalars, a carrier, a multiplication 〉
where the scalars is a field, the carrier is an Abelian group, and the multiplication is a function from : the carrier of the scalars, the carrier of the carrier: into the carrier of the carrier. In the sequel $V S$ will denote a vector space structure. Let us consider $V S$. A vector of $V S$ is an element of the carrier of $V S$.

One can prove the following proposition
(45) For every element x of the carrier of $V S$ holds x is a vector of $V S$.

Let us consider F. The mode vector space structure over F, which widens to the type a vector space structure, is defined by:
the scalars of it $=F$.
One can prove the following proposition
(46) For every $V S$ being a vector space structure holds $V S$ is a vector space structure over F if and only if the scalars of $V S=F$.
In the sequel V is a vector space structure over F. The arguments of the notions defined below are the following: F, V which are objects of the type reserved above; x which is an element of the carrier of $F ; v$ which is an element of the carrier of V. The functor $x \cdot v$ yields an element of the carrier of V and is defined by:
for every element x^{\prime} of the carrier of the scalars of V such that $x^{\prime}=x$ holds $x \cdot v=($ the multiplication of $V)\left(x^{\prime}, v\right)$.

We now state a proposition
(47) For every vector space structure V over F for every element x of the carrier of F for every element v of the carrier of V for every element x^{\prime} of the carrier of the scalars of V such that $x^{\prime}=x$ holds $x \cdot v=$ (the multiplication of $V)\left(x^{\prime}, v\right)$.
Let us consider F. The mode vector space over F, which widens to the type a vector space structure over F, is defined by:

Let x, y be elements of the carrier of F. Let v, w be elements of the carrier of it. Then $x \cdot(v+w)=x \cdot v+x \cdot w$ and $(x+y) \cdot v=x \cdot v+y \cdot v$ and $(x \cdot y) \cdot v=x \cdot(y \cdot v)$ and $\left(1_{F}\right) \cdot v=v$.

We now state a proposition
(48) The following conditions are equivalent:
(i) for all elements x, y of the carrier of F for all elements v, w of the carrier of V holds $x \cdot(v+w)=x \cdot v+x \cdot w$ and $(x+y) \cdot v=x \cdot v+y \cdot v$ and $(x \cdot y) \cdot v=x \cdot(y \cdot v)$ and $\left(1_{F}\right) \cdot v=v$,
(ii) $\quad V$ is a vector space over F.

We follow a convention: V, V_{1} denote vector spaces over F, x, y denote elements of the carrier of F, and v, w denote elements of the carrier of V. Let us consider F, V. The functor Θ_{V} yielding an element of the carrier of V, is defined by:
$\Theta_{V}=0_{\text {the carrier of } V}$.
One can prove the following propositions:
(49) $\Theta_{V}=0_{\text {the carrier of } V}$.
(60) $\quad x \cdot v=\Theta_{V}$ if and only if $x=0_{F}$ or $v=\Theta_{V}$.

Let us consider F, V. The mode VSS of V, which widens to the type a vector space over F, is defined by: the carrier of the carrier of it \subseteq the carrier of the carrier of V and for all elements v, w of the carrier of it for all elements x, y of the carrier of F holds $x \cdot v+y \cdot w$ is an element of the carrier of it .

The following proposition is true
(61) the carrier of the carrier of $V_{1} \subseteq$ the carrier of the carrier of V and for all elements v, w of the carrier of V_{1} for all elements x, y of the carrier of F holds $x \cdot v+y \cdot w$ is an element of the carrier of V_{1} if and only if V_{1} is a VSS of V.
In the sequel u, v, w will be elements of the carrier of V. We now state a number of propositions:

$$
\begin{equation*}
v-w=v+(-w) . \tag{62}
\end{equation*}
$$

(63) $v+w=\Theta_{V}$ if and only if $-v=w$.
(64) (i) $-(v+w)=(-v)-w$,
(ii) $-(-v)=v$,
(iii) $-((-v)+w)=v-w$,
(iv) $-(v-w)=(-v)+w$,
(v) $-((-v)-w)=v+w$,
(vi) $\quad u-(v+w)=(u-v)-w$.
$\Theta_{V}-v=-v$ and $v-\Theta_{V}=v$.
$x+(-y)=0_{F}$ if and only if $x=y$ but $x-y=0_{F}$ if and only if $x=y$.
If $x \neq 0_{F}$, then $x^{-1} \cdot(x \cdot v)=v$.
(68) $-x \cdot v=(-x) \cdot v$ and $w-x \cdot v=w+(-x) \cdot v$.

$$
\begin{equation*}
x \cdot(-v)=-x \cdot v \tag{67}
\end{equation*}
$$

(71) $v-x \cdot(y \cdot w)=v-(x \cdot y) \cdot w$.
(72) $\quad \mathbb{R}_{F}$ is a field.
(73) If $x \neq 0_{F}$, then $\left(x^{-1}\right)^{-1}=x$.
(74) If $x \neq 0_{F}$, then $x^{-1} \neq 0_{F}$ and $-x^{-1} \neq 0_{F}$.
(75) For all elements x, y of \mathbb{R} holds $+_{\mathbb{R}}(x, y)=x+y$.
(76) For every element x of \mathbb{R} for every real number x^{\prime} such that $x^{\prime}=x$ holds $-_{\mathbb{R}}(x)=-x^{\prime}$.
(77) For all elements x, y of \mathbb{R} holds $\cdot{ }_{\mathbb{R}}(x, y)=x \cdot y$.
(78) $\quad 1_{\mathbb{R}_{F}}+1_{\mathbb{R}_{F}} \neq 0_{\mathbb{R}_{F}}$.

The mode Fano field, which widens to the type a field, is defined by:
$1_{\text {it }}+1_{\text {it }} \neq 0_{\text {it }}$.
The following proposition is true
(79) For every field F holds F is a Fano field if and only if $1_{F}+1_{F} \neq 0_{F}$.

In the sequel F will denote a field and a, b, c will denote elements of the carrier of F. One can prove the following propositions:
$(80) \quad-(a-b)=(-a)+b$.
(81) $-(a-b)=b-a$.
(82) $0_{F}+a=a$.
(83) $\quad(-a)+a=0_{F}$.
(84) If $a-b=0_{F}$, then $a=b$.
(85) $-0_{F}=0_{F}$.
(86) If $-a=0_{F}$, then $a=0_{F}$.
(87) If $a-b=0_{F}$, then $b-a=0_{F}$.
(88) If $a \neq 0_{F}$ and $a \cdot c-b=0_{F}$, then $c=b \cdot a^{-1}$ but if $a \neq 0_{F}$ and $b-c \cdot a=0_{F}$, then $c=b \cdot a^{-1}$.
(89) $a+b=-((-a)+(-b))$.
(90) $(a+b)-(a+c)=b-c$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received November 23, 1989

[^0]: Summary. This text includes definitions of the Abelian group, field and vector space over a field and some elementary theorems about them.

[^1]: ${ }^{1}$ Supported by RPBP.III-24.C6.

