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Summary. The article consists of two parts: the first one deals with
the concept of the prefixes of a finite sequence, the second one introduces
and deals with the concept of tree. Besides some auxiliary propositions
concerning finite sequences are presented. The trees are introduced as
non-empty sets of finite sequences of natural numbers which are closed on
prefixes and on sequences of less numbers (i.e. if 〈n1, n2, . . ., nk〉 is a
vertex (element) of a tree and mi ≤ ni for i = 1, 2, . . ., k, then 〈m1, m2,
. . ., mk〉 also is). Finite trees, elementary trees with n leaves, the leaves
and the subtrees of a tree, the inserting of a tree into another tree, with a
node used for detemining the place of insertion, antichains of prefixes, and
height and width of finite trees are introduced.

MML Identifier: TREES 1.

The notation and terminology used in this paper have been introduced in the
following papers: [8], [7], [2], [5], [4], [6], [3], and [1]. For simplicity we adopt the
following rules: D is a non-empty set, X is a set, x, y are arbitrary, k, n are
natural numbers, and p, q, r are finite sequences of elements of � . We now state
several propositions:

(1) For all finite sequences p, q such that q = p
�
Seg n holds len q ≤ n.

(2) For all finite sequences p, q such that q = p
�
Seg n holds len q ≤ len p.

(3) For all finite sequences p, r such that r = p
�
Seg n there exists q being

a finite sequence such that p = r � q.

(4) ε 6= 〈x〉.

(5) For all finite sequences p, q such that p = p � q or p = q � p holds q = ε.

(6) For all finite sequences p, q such that p � q = 〈x〉 holds p = 〈x〉 and q = ε
or p = ε and q = 〈x〉.
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Let p, q be finite sequences. The predicate p � q is defined by:
there exists n such that p = q

�
Seg n.

We now state a number of propositions:

(7) For all finite sequences p, q holds p � q if and only if there exists n such
that p = q

�
Seg n.

(8) For all finite sequences p, q holds p � q if and only if there exists r being
a finite sequence such that q = p � r.

(9) For all finite sequences p, q such that p � q holds len p ≤ len q.

(10) For every finite sequence p holds ε � p and εD � p.

(11) For every finite sequence p such that p � ε holds p = ε.

(12) For every finite sequence p holds p � p.

(13) For all finite sequences p, q such that p � q and q � p holds p = q.

(14) For all finite sequences p, q, r such that p � q and q � r holds p � r.

(15) For all finite sequences p, q such that p � q and len p = len q holds p = q.

(16) 〈x〉 � 〈y〉 if and only if x = y.

We now define two new predicates. Let p, q be finite sequences. The predicate
p and q are comparable is defined by:

p � q or q � p.
The predicate p ≺ q is defined by:

p � q and p 6= q.

One can prove the following propositions:

(17) For all finite sequences p, q holds p and q are comparable if and only if
p � q or q � p.

(18) For all finite sequences p, q holds p ≺ q if and only if p � q and p 6= q.

(19) For all finite sequences p, q such that p and q are comparable and len p =
len q holds p = q.

(20) For all finite sequences p, q holds p ≺ q or p = q or q ≺ p if and only if p
and q are comparable.

(21) For every finite sequence p holds p and p are comparable.

In the sequel p1, p2 will be finite sequences. Next we state a number of
propositions:

(22) If p1 and p2 are comparable, then p2 and p1 are comparable.

(23) 〈x〉 and 〈y〉 are comparable if and only if x = y.

(24) For all finite sequences p, q such that p ≺ q holds len p < len q.

(25) For no finite sequence p holds p ≺ ε or p ≺ εD.

(26) For no finite sequences p, q holds p ≺ q and q ≺ p.

(27) For all finite sequences p, q, r such that p ≺ q and q ≺ r or p ≺ q and
q � r or p � q and q ≺ r holds p ≺ r.

(28) If p1 � p2, then p2 � p1.

(29) If p1 ≺ p2, then p2 � p1.

(30) If p1 � 〈x〉 � p2, then p1 ≺ p2.
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(31) If p1 � p2, then p1 ≺ p2 � 〈x〉.

(32) If p1 ≺ p2 � 〈x〉, then p1 � p2.

(33) If ε ≺ p2 or ε 6= p2, then p1 ≺ p1 � p2.

Let p be a finite sequence. The functor Seg�(p) yielding a set, is defined by:
x ∈ Seg�(p) if and only if there exists q being a finite sequence such that

x = q and q ≺ p.

The following propositions are true:

(34) For every finite sequence p holds X = Seg�(p) if and only if for every x
holds x ∈ X if and only if there exists q being a finite sequence such that
x = q and q ≺ p.

(35) For every finite sequence p such that x ∈ Seg�(p) holds x is a finite
sequence.

(36) For all finite sequences p, q holds p ∈ Seg�(q) if and only if p ≺ q.

(37) For all finite sequences p, q such that p ∈ Seg�(q) holds len p < len q.

(38) For all finite sequences p, q, r such that q � r ∈ Seg�(p) holds q ∈ Seg�(p).

(39) Seg�(ε) = ∅.

(40) Seg�(〈x〉) = {ε}.

(41) For all finite sequences p, q such that p � q holds Seg�(p) ⊆ Seg�(q).

(42) For all finite sequences p, q, r such that q ∈ Seg�(p) and r ∈ Seg�(p)
holds q and r are comparable.

The mode tree, which widens to the type a non-empty set, is defined by:
it ⊆ � ∗ and for every p such that p ∈ it holds Seg�(p) ⊆ it and for all p, k, n

such that p � 〈k〉 ∈ it and n ≤ k holds p � 〈n〉 ∈ it.

Next we state a proposition

(43) D is a tree if and only if D ⊆ � ∗ and for every p such that p ∈ D holds
Seg�(p) ⊆ D and for all p, k, n such that p � 〈k〉 ∈ D and n ≤ k holds
p � 〈n〉 ∈ D.

In the sequel T , T1 denote trees. The following proposition is true

(44) If x ∈ T , then x is a finite sequence of elements of � .

Let us consider T . We see that it makes sense to consider the following mode
for restricted scopes of arguments. Then all the objests of the mode element of
T are a finite sequence of elements of � .

The following propositions are true:

(45) For all finite sequences p, q such that p ∈ T and q � p holds q ∈ T .

(46) For every finite sequence r such that q � r ∈ T holds q ∈ T .

(47) ε ∈ T and ε � ∈ T .

(48) {ε} is a tree.

(49) T ∪ T1 is a tree.

(50) T ∩ T1 is a tree.

The mode finite tree, which widens to the type a tree, is defined by:
it is finite.
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The following proposition is true

(51) T is a finite tree if and only if T is finite.

In the sequel fT , fT1 will be finite trees. Next we state two propositions:

(52) fT ∪ fT1 is a finite tree.

(53) fT ∩ T is a finite tree and T ∩ fT is a finite tree.

Let us consider n. The functor elementary tree of n yielding a finite tree, is
defined by:

elementary tree of n = {〈k〉 : k < n} ∪ {ε}.

The following propositions are true:

(54) fT = elementary tree of n if and only if fT = {〈k〉 : k < n} ∪ {ε}.

(55) If k < n, then 〈k〉 ∈ elementary tree of n.

(56) elementary tree of 0 = {ε}.

(57) If p ∈ elementary tree of n, then p = ε or there exists k such that k < n
and p = 〈k〉.

We now define two new functors. Let us consider T . The functor Leaves T
yields a subset of T and is defined by:

p ∈ Leaves T if and only if p ∈ T and for no q holds q ∈ T and p ≺ q.
Let us consider p. Let us assume that p ∈ T . The functor T

�
p yields a tree and

is defined by:
q ∈ T

�
p if and only if p � q ∈ T .

We now state three propositions:

(58) For every subset X of T holds X = Leaves T if and only if for every p
holds p ∈ X if and only if p ∈ T and for no q holds q ∈ T and p ≺ q.

(59) If p ∈ T , then T1 = T
�
p if and only if for every q holds q ∈ T1 if and

only if p � q ∈ T .

(60) T
�
ε � = T .

The arguments of the notions defined below are the following: T which is a
finite tree; p which is an element of T . Then T

�
p is a finite tree.

Let us consider T . Let us assume that Leaves T 6= ∅. The mode leaf of T ,
which widens to the type an element of T , is defined by:

it ∈ Leaves T .

We now state a proposition

(61) If Leaves T 6= ∅, then for every element p of T holds p is a leaf of T if
and only if p ∈ Leaves T .

Let us consider T . The mode subtree of T , which widens to the type a tree,
is defined by:

there exists p being an element of T such that it = T
�
p.

One can prove the following proposition

(62) T1 is a subtree of T if and only if there exists p being an element of T
such that T1 = T

�
p.

In the sequel t is an element of T . Let us consider T , p, T1. Let us assume
that p ∈ T . The functor T (p/T1) yields a tree and is defined by:
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q ∈ T (p/T1) if and only if q ∈ T and p � q or there exists r such that r ∈ T1

and q = p � r.

In the sequel T2 is a tree. Next we state four propositions:

(63) If p ∈ T1, then T = T1(p/T2) if and only if for every q holds q ∈ T if and
only if q ∈ T1 and p � q or there exists r such that r ∈ T2 and q = p � r.

(64) If p ∈ T , then T (p/T1) = {t1 : p � t1} ∪ {p � s : s = s}.

(65) If p ∈ T and q ∈ T1, then p � q ∈ T (p/T1).

(66) If p ∈ T , then T1 = (T (p/T1))
�
p.

The arguments of the notions defined below are the following: T which is a
finite tree; t which is an element of T ; T1 which is a finite tree. Then T (t/T1) is
a finite tree.

In the sequel w will denote a finite sequence. The following two propositions
are true:

(67) For every finite sequence p holds Seg�(p) ≈ Seg(len p).

(68) For every finite sequence p holds card(Seg�(p)) = len p.

The mode antichain of prefixes, which widens to the type a set, is defined by:
for every x such that x ∈ it holds x is a finite sequence and for all p1, p2 such

that p1 ∈ it and p2 ∈ it and p1 6= p2 holds p1 and p2 are not comparable.

Next we state three propositions:

(69) X is an antichain of prefixes if and only if for every x such that x ∈ X
holds x is a finite sequence and for all p1, p2 such that p1 ∈ X and p2 ∈ X
and p1 6= p2 holds p1 and p2 are not comparable.

(70) {w} is an antichain of prefixes.

(71) If p1 and p2 are not comparable, then {p1, p2} is an antichain of prefixes.

Let us consider T . The mode antichain of prefixes of T , which widens to the
type an antichain of prefixes, is defined by:

it ⊆ T .

We now state a proposition

(72) For every antichain S of prefixes holds S is an antichain of prefixes of T
if and only if S ⊆ T .

In the sequel t1, t2 will be elements of T . The following three propositions are
true:

(73) ∅ is an antichain of prefixes of T and {ε} is an antichain of prefixes of T .

(74) {t} is an antichain of prefixes of T .

(75) If t1 and t2 are not comparable, then {t1, t2} is an antichain of prefixes
of T .

We now define two new functors. Let T be a finite tree. The functor height T
yields a natural number and is defined by:

there exists p such that p ∈ T and len p = height T and for every p such that
p ∈ T holds len p ≤ height T .
The functor width T yielding a natural number, is defined by:
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there exists X being an antichain of prefixes of T such that width T = card X
and for every antichain Y of prefixes of T holds card Y ≤ card X.

We now state three propositions:

(76) For every finite tree T for every n holds n = height T if and only if there
exists p such that p ∈ T and len p = n and for every p such that p ∈ T
holds len p ≤ n.

(77) For every finite tree T for every n holds n = width T if and only if there
exists X being an antichain of prefixes of T such that n = card X and for
every antichain Y of prefixes of T holds card Y ≤ card X.

(78) 1 ≤ width fT .

The following propositions are true:

(79) height(elementary tree of 0) = 0.

(80) If height fT = 0, then fT = elementary tree of 0.

(81) height(elementary tree of(n + 1)) = 1.

(82) width(elementary tree of 0) = 1.

(83) width(elementary tree of(n + 1)) = n + 1.

(84) For every element t of fT holds height(fT
�
t) ≤ height fT .

(85) For every element t of fT such that t 6= ε holds height(fT
�

t) <
height fT .

The scheme Tree Ind deals with a unary predicate P and states that:
for every fT holds P[fT ]

provided the parameter satisfies the following condition:
• for every fT such that for every n such that 〈n〉 ∈ fT holds P[fT

�

〈n〉] holds P[fT ].
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