Introduction to Trees

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The article consists of two parts: the first one deals with the concept of the prefixes of a finite sequence, the second one introduces and deals with the concept of tree. Besides some auxiliary propositions concerning finite sequences are presented. The trees are introduced as non-empty sets of finite sequences of natural numbers which are closed on prefixes and on sequences of less numbers (i.e. if $\left\langle n_{1}, n_{2}, \ldots, n_{k}\right\rangle$ is a vertex (element) of a tree and $m_{i} \leq n_{i}$ for $i=1,2, \ldots, k$, then $\left\langle m_{1}, m_{2}\right.$, $\left.\ldots, m_{k}\right\rangle$ also is). Finite trees, elementary trees with n leaves, the leaves and the subtrees of a tree, the inserting of a tree into another tree, with a node used for detemining the place of insertion, antichains of prefixes, and height and width of finite trees are introduced.

MML Identifier: TREES_1.

The notation and terminology used in this paper have been introduced in the following papers: [8], [7], [2], [5], [4], [6], [3], and [1]. For simplicity we adopt the following rules: D is a non-empty set, X is a set, x, y are arbitrary, k, n are natural numbers, and p, q, r are finite sequences of elements of \mathbb{N}. We now state several propositions:
(1) For all finite sequences p, q such that $q=p$ 「 $\operatorname{Seg} n$ holds len $q \leq n$.
(2) For all finite sequences p, q such that $q=p \upharpoonright \operatorname{Seg} n$ holds $\operatorname{len} q \leq \operatorname{len} p$.
(3) For all finite sequences p, r such that $r=p \upharpoonright \operatorname{Seg} n$ there exists q being a finite sequence such that $p=r^{\wedge} q$.
(4) $\varepsilon \neq\langle x\rangle$.
(5) For all finite sequences p, q such that $p=p^{\wedge} q$ or $p=q^{\wedge} p$ holds $q=\varepsilon$.
(6) For all finite sequences p, q such that $p^{\wedge} q=\langle x\rangle$ holds $p=\langle x\rangle$ and $q=\varepsilon$ or $p=\varepsilon$ and $q=\langle x\rangle$.

[^0]Let p, q be finite sequences. The predicate $p \preceq q$ is defined by:
there exists n such that $p=q \upharpoonright \operatorname{Seg} n$.
We now state a number of propositions:
(7) For all finite sequences p, q holds $p \preceq q$ if and only if there exists n such that $p=q \upharpoonright \operatorname{Seg} n$.
(8) For all finite sequences p, q holds $p \preceq q$ if and only if there exists r being a finite sequence such that $q=p^{\wedge} r$.
(9) For all finite sequences p, q such that $p \preceq q$ holds len $p \leq \operatorname{len} q$.
(10) For every finite sequence p holds $\varepsilon \preceq p$ and $\varepsilon_{D} \preceq p$.
(11) For every finite sequence p such that $p \preceq \varepsilon$ holds $p=\varepsilon$.
(12) For every finite sequence p holds $p \preceq p$.
(13) For all finite sequences p, q such that $p \preceq q$ and $q \preceq p$ holds $p=q$.
(14) For all finite sequences p, q, r such that $p \preceq q$ and $q \preceq r$ holds $p \preceq r$.
(15) For all finite sequences p, q such that $p \preceq q$ and len $p=\operatorname{len} q$ holds $p=q$.
(16) $\langle x\rangle \preceq\langle y\rangle$ if and only if $x=y$.

We now define two new predicates. Let p, q be finite sequences. The predicate p and q are comparable is defined by:
$p \preceq q$ or $q \preceq p$.
The predicate $p \prec q$ is defined by:
$p \preceq q$ and $p \neq q$.
One can prove the following propositions:
(17) For all finite sequences p, q holds p and q are comparable if and only if $p \preceq q$ or $q \preceq p$.
(18) For all finite sequences p, q holds $p \prec q$ if and only if $p \preceq q$ and $p \neq q$.
(19) For all finite sequences p, q such that p and q are comparable and len $p=$ len q holds $p=q$.
(20) For all finite sequences p, q holds $p \prec q$ or $p=q$ or $q \prec p$ if and only if p and q are comparable.
(21) For every finite sequence p holds p and p are comparable.

In the sequel p_{1}, p_{2} will be finite sequences. Next we state a number of propositions:
(22) If p_{1} and p_{2} are comparable, then p_{2} and p_{1} are comparable.
(23) $\langle x\rangle$ and $\langle y\rangle$ are comparable if and only if $x=y$.
(24) For all finite sequences p, q such that $p \prec q$ holds len $p<\operatorname{len} q$.
(25) For no finite sequence p holds $p \prec \varepsilon$ or $p \prec \varepsilon_{D}$.
(26) For no finite sequences p, q holds $p \prec q$ and $q \prec p$.
(27) For all finite sequences p, q, r such that $p \prec q$ and $q \prec r$ or $p \prec q$ and $q \preceq r$ or $p \preceq q$ and $q \prec r$ holds $p \prec r$.
(28) If $p_{1} \preceq p_{2}$, then $p_{2} \nprec p_{1}$.
(29) If $p_{1} \prec p_{2}$, then $p_{2} \npreceq p_{1}$.
(30) If $p_{1} \frown\langle x\rangle \preceq p_{2}$, then $p_{1} \prec p_{2}$.
(31) If $p_{1} \preceq p_{2}$, then $p_{1} \prec p_{2} \wedge\langle x\rangle$.
(32) If $p_{1} \prec p_{2} \curvearrowleft\langle x\rangle$, then $p_{1} \preceq p_{2}$.
(33) If $\varepsilon \prec p_{2}$ or $\varepsilon \neq p_{2}$, then $p_{1} \prec p_{1}{ }^{\wedge} p_{2}$.

Let p be a finite sequence. The functor $\operatorname{Seg}_{\swarrow}(p)$ yielding a set, is defined by:
$x \in \operatorname{Seg}_{\preceq}(p)$ if and only if there exists q being a finite sequence such that $x=q$ and $q \prec p$.

The following propositions are true:
(34) For every finite sequence p holds $X=\operatorname{Seg}_{\preceq}(p)$ if and only if for every x holds $x \in X$ if and only if there exists q being a finite sequence such that $x=q$ and $q \prec p$.
(35) For every finite sequence p such that $x \in \operatorname{Seg}_{\preceq}(p)$ holds x is a finite sequence.
(36) For all finite sequences p, q holds $p \in \operatorname{Seg}_{\preceq}(q)$ if and only if $p \prec q$.
(37) For all finite sequences p, q such that $p \in \operatorname{Seg}_{\preceq}(q)$ holds len $p<\operatorname{len} q$.
(38) For all finite sequences p, q, r such that $q^{\wedge} r \in \operatorname{Seg}_{\preceq}(p)$ holds $q \in \operatorname{Seg}_{\preceq}(p)$.
(39) $\quad \operatorname{Seg}_{\preceq}(\varepsilon)=\emptyset$.
(40) $\operatorname{Seg}_{\preceq}(\langle x\rangle)=\{\varepsilon\}$.
(41) For all finite sequences p, q such that $p \preceq q$ holds $\operatorname{Seg}_{\preceq}(p) \subseteq \operatorname{Seg}_{\preceq}(q)$.
(42) For all finite sequences p, q, r such that $q \in \operatorname{Seg}_{\preceq}(p)$ and $r \in \operatorname{Seg}_{\preceq}(p)$ holds q and r are comparable.
The mode tree, which widens to the type a non-empty set, is defined by:
it $\subseteq \mathbb{N}^{*}$ and for every p such that $p \in$ it holds $\operatorname{Seg}_{\prec}(p) \subseteq$ it and for all p, k, n such that $p^{\wedge}\langle k\rangle \in$ it and $n \leq k$ holds $p^{\wedge}\langle n\rangle \in$ it.

Next we state a proposition
(43) D is a tree if and only if $D \subseteq \mathbb{N}^{*}$ and for every p such that $p \in D$ holds $\operatorname{Seg}_{\swarrow}(p) \subseteq D$ and for all p, k, n such that $p^{\wedge}\langle k\rangle \in D$ and $n \leq k$ holds $\left.\left.p^{\wedge} \overline{\langle }\right\rangle\right\rangle \in D$.
In the sequel T, T_{1} denote trees. The following proposition is true
(44) If $x \in T$, then x is a finite sequence of elements of \mathbb{N}.

Let us consider T. We see that it makes sense to consider the following mode for restricted scopes of arguments. Then all the objests of the mode element of T are a finite sequence of elements of \mathbb{N}.

The following propositions are true:
(45) For all finite sequences p, q such that $p \in T$ and $q \preceq p$ holds $q \in T$.
(46) For every finite sequence r such that $q^{\wedge} r \in T$ holds $q \in T$.
(47) $\varepsilon \in T$ and $\varepsilon_{N} \in T$.
(48) $\{\varepsilon\}$ is a tree.
(49) $T \cup T_{1}$ is a tree.
(50) $T \cap T_{1}$ is a tree.

The mode finite tree, which widens to the type a tree, is defined by: it is finite.

The following proposition is true
(51) $\quad T$ is a finite tree if and only if T is finite.

In the sequel $f T, f T_{1}$ will be finite trees. Next we state two propositions:
$f T \cup f T_{1}$ is a finite tree.
$f T \cap T$ is a finite tree and $T \cap f T$ is a finite tree.
Let us consider n. The functor elementary tree of n yielding a finite tree, is defined by:
elementary tree of $n=\{\langle k\rangle: k<n\} \cup\{\varepsilon\}$.
The following propositions are true:
(54) $f T=$ elementary tree of n if and only if $f T=\{\langle k\rangle: k<n\} \cup\{\varepsilon\}$.
(55) If $k<n$, then $\langle k\rangle \in$ elementary tree of n.
elementary tree of $0=\{\varepsilon\}$.
(57) If $p \in$ elementary tree of n, then $p=\varepsilon$ or there exists k such that $k<n$ and $p=\langle k\rangle$.
We now define two new functors. Let us consider T. The functor Leaves T yields a subset of T and is defined by:
$p \in$ Leaves T if and only if $p \in T$ and for no q holds $q \in T$ and $p \prec q$.
Let us consider p. Let us assume that $p \in T$. The functor $T \upharpoonright p$ yields a tree and is defined by:
$q \in T \upharpoonright p$ if and only if $p^{\wedge} q \in T$.
We now state three propositions:
(58) For every subset X of T holds $X=$ Leaves T if and only if for every p holds $p \in X$ if and only if $p \in T$ and for no q holds $q \in T$ and $p \prec q$.
(59) If $p \in T$, then $T_{1}=T \upharpoonright p$ if and only if for every q holds $q \in T_{1}$ if and only if $p^{\wedge} q \in T$.
(60) $T \upharpoonright \varepsilon_{N}=T$.

The arguments of the notions defined below are the following: T which is a finite tree; p which is an element of T. Then $T \upharpoonright p$ is a finite tree.

Let us consider T. Let us assume that Leaves $T \neq \emptyset$. The mode leaf of T, which widens to the type an element of T, is defined by:
it \in Leaves T.
We now state a proposition
(61) If Leaves $T \neq \emptyset$, then for every element p of T holds p is a leaf of T if and only if $p \in$ Leaves T.
Let us consider T. The mode subtree of T, which widens to the type a tree, is defined by:
there exists p being an element of T such that it $=T \upharpoonright p$.
One can prove the following proposition
(62) $\quad T_{1}$ is a subtree of T if and only if there exists p being an element of T such that $T_{1}=T \upharpoonright p$.
In the sequel t is an element of T. Let us consider T, p, T_{1}. Let us assume that $p \in T$. The functor $T\left(p / T_{1}\right)$ yields a tree and is defined by:
$q \in T\left(p / T_{1}\right)$ if and only if $q \in T$ and $p \nprec q$ or there exists r such that $r \in T_{1}$ and $q=p^{\wedge} r$.

In the sequel T_{2} is a tree. Next we state four propositions:
(63) If $p \in T_{1}$, then $T=T_{1}\left(p / T_{2}\right)$ if and only if for every q holds $q \in T$ if and only if $q \in T_{1}$ and $p \nprec q$ or there exists r such that $r \in T_{2}$ and $q=p^{\wedge} r$.
(64) If $p \in T$, then $T\left(p / T_{1}\right)=\left\{t_{1}: p \nprec t_{1}\right\} \cup\left\{p^{\wedge} s: s=s\right\}$.
(65) If $p \in T$ and $q \in T_{1}$, then $p^{\wedge} q \in T\left(p / T_{1}\right)$.
(66) If $p \in T$, then $T_{1}=\left(T\left(p / T_{1}\right)\right) \upharpoonright p$.

The arguments of the notions defined below are the following: T which is a finite tree; t which is an element of $T ; T_{1}$ which is a finite tree. Then $T\left(t / T_{1}\right)$ is a finite tree.

In the sequel w will denote a finite sequence. The following two propositions are true:
(67) For every finite sequence p holds $\operatorname{Seg}_{\preceq}(p) \approx \operatorname{Seg}(\operatorname{len} p)$.
(68) For every finite sequence p holds $\operatorname{card}\left(\operatorname{Seg}_{\preceq}(p)\right)=\operatorname{len} p$.

The mode antichain of prefixes, which widens to the type a set, is defined by: for every x such that $x \in$ it holds x is a finite sequence and for all p_{1}, p_{2} such that $p_{1} \in$ it and $p_{2} \in$ it and $p_{1} \neq p_{2}$ holds p_{1} and p_{2} are not comparable.

Next we state three propositions:
(69) $\quad X$ is an antichain of prefixes if and only if for every x such that $x \in X$ holds x is a finite sequence and for all p_{1}, p_{2} such that $p_{1} \in X$ and $p_{2} \in X$ and $p_{1} \neq p_{2}$ holds p_{1} and p_{2} are not comparable.
(70) $\{w\}$ is an antichain of prefixes.
(71) If p_{1} and p_{2} are not comparable, then $\left\{p_{1}, p_{2}\right\}$ is an antichain of prefixes.

Let us consider T. The mode antichain of prefixes of T, which widens to the type an antichain of prefixes, is defined by:
it $\subseteq T$.
We now state a proposition
(72) For every antichain S of prefixes holds S is an antichain of prefixes of T if and only if $S \subseteq T$.
In the sequel t_{1}, t_{2} will be elements of T. The following three propositions are true:
(73) \emptyset is an antichain of prefixes of T and $\{\varepsilon\}$ is an antichain of prefixes of T.
$\{t\}$ is an antichain of prefixes of T.
(75) If t_{1} and t_{2} are not comparable, then $\left\{t_{1}, t_{2}\right\}$ is an antichain of prefixes of T.
We now define two new functors. Let T be a finite tree. The functor height T yields a natural number and is defined by:
there exists p such that $p \in T$ and len $p=$ height T and for every p such that $p \in T$ holds len $p \leq$ height T.
The functor width T yielding a natural number, is defined by:
there exists X being an antichain of prefixes of T such that $\operatorname{width} T=\operatorname{card} X$ and for every antichain Y of prefixes of T holds card $Y \leq \operatorname{card} X$.

We now state three propositions:
(76) For every finite tree T for every n holds $n=$ height T if and only if there exists p such that $p \in T$ and len $p=n$ and for every p such that $p \in T$ holds len $p \leq n$.
(77) For every finite tree T for every n holds $n=$ width T if and only if there exists X being an antichain of prefixes of T such that $n=\operatorname{card} X$ and for every antichain Y of prefixes of T holds card $Y \leq \operatorname{card} X$.
(78) $1 \leq$ width $f T$.

The following propositions are true:
(79) height (elementary tree of 0$)=0$.
(80) If height $f T=0$, then $f T=$ elementary tree of 0 .
(81) height $($ elementary tree of $(n+1))=1$.
(82) \quad width $($ elementary tree of 0$)=1$.
(83) $\quad \operatorname{width}($ elementary tree of $(n+1))=n+1$.
(84) For every element t of $f T$ holds height $(f T \upharpoonright t) \leq$ height $f T$.
(85) For every element t of $f T$ such that $t \neq \varepsilon$ holds height $(f T \upharpoonright t)<$ height $f T$.
The scheme Tree_Ind deals with a unary predicate \mathcal{P} and states that:
for every $f T$ holds $\mathcal{P}[f T]$
provided the parameter satisfies the following condition:

- for every $f T$ such that for every n such that $\langle n\rangle \in f T$ holds $\mathcal{P}[f T \upharpoonright$ $\langle n\rangle$] holds $\mathcal{P}[f T]$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received October 25, 1989

[^0]: ${ }^{1}$ Partially supported by Le Hodey Foundation. The part of this work had been done on Mizar Workshop '89 (Fourdrain, France) in Summer '89.

