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Summary. The article consists of two parts: the first one deals with
the concept of the prefixes of a finite sequence, the second one introduces
and deals with the concept of tree. Besides some auxiliary propositions
concerning finite sequences are presented. The trees are introduced as
non-empty sets of finite sequences of natural numbers which are closed on
prefixes and on sequences of less numbers (i.e. if (ni, ng, ..., ng) is a
vertex (element) of a tree and m; < mn; for i = 1, 2, ..., k, then (m1, ma,
..., mg) also is). Finite trees, elementary trees with n leaves, the leaves
and the subtrees of a tree, the inserting of a tree into another tree, with a
node used for detemining the place of insertion, antichains of prefixes, and
height and width of finite trees are introduced.

MML Identifier: TREES_1.

The notation and terminology used in this paper have been introduced in the
following papers: [8], [7], [2], [5], [4], [6], [3], and [1]. For simplicity we adopt the
following rules: D is a non-empty set, X is a set, z, y are arbitrary, k, n are
natural numbers, and p, ¢, r are finite sequences of elements of N. We now state
several propositions:
(1)  For all finite sequences p, ¢ such that ¢ = p | Segn holds lengq < n.
(2)  For all finite sequences p, ¢ such that ¢ = p | Segn holds len ¢ < len p.
(3)  For all finite sequences p, r such that r = p | Segn there exists g being
a finite sequence such that p =1r " gq.
(4)  e# ().
(5)  For all finite sequences p, g such that p=p ~ g or p=¢~ p holds ¢ = ¢.
(6)  For all finite sequences p, ¢ such that p~¢ = (z) holds p = (z) and g = ¢
or p=c and ¢ = (z).
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Let p, ¢ be finite sequences. The predicate p < ¢ is defined by:

there exists n such that p = ¢ | Segn.

We now state a number of propositions:

(7)  For all finite sequences p, g holds p < ¢ if and only if there exists n such
that p = g | Segn.

(8)  For all finite sequences p, g holds p < ¢ if and only if there exists r being

~

a finite sequence such that ¢ =p "~ r.
For all finite sequences p, g such that p < ¢ holds lenp < leng.
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For every finite sequence p holds ¢ < p and ep =< p.
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For every finite sequence p such that p < ¢ holds p = &.
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For every finite sequence p holds p < p.
For all finite sequences p, ¢ such that p < ¢ and ¢ < p holds p = q.
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For all finite sequences p, ¢, r such that p < ¢ and ¢ < r holds p < r.
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For all finite sequences p, q such that p < ¢ and lenp = len ¢ holds p = q.
(x) = (y) if and only if x = y.

We now define two new predicates. Let p, ¢ be finite sequences. The predicate
p and g are comparable is defined by:

p=qorqg=p.
The predicate p < ¢ is defined by:
p=gqandp#q.
One can prove the following propositions:
(17)  For all finite sequences p, ¢ holds p and ¢ are comparable if and only if
p=qorqg=p.
(18)  For all finite sequences p, ¢ holds p < ¢ if and only if p < ¢ and p # q.
(19)  For all finite sequences p, ¢ such that p and ¢ are comparable and len p =
len ¢ holds p = gq.
(20)  For all finite sequences p, ¢ holds p < g or p = g or ¢ < p if and only if p
and ¢ are comparable.
(21)  For every finite sequence p holds p and p are comparable.
In the sequel pq, ps will be finite sequences. Next we state a number of
propositions:
(22) If p; and py are comparable, then py and p; are comparable.

(23)  (z) and (y) are comparable if and only if x = y.

(24)  For all finite sequences p, g such that p < ¢ holds lenp < leng.

(25)  For no finite sequence p holds p < € or p < ep.

(26)  For no finite sequences p, ¢ holds p < ¢ and ¢ < p.

(27)  For all finite sequences p, ¢, r such that p < ¢ and ¢ < r or p < ¢ and

g=rorp=gandq=<rholdsp=<r.
(28)  If p1 < po, then pa £ p1.
(29) If p1 < p2, then ps £ p1.
(30)  If p1 ™ (z) 2 p2, then p1 < pa.
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(31)  If p1 = po, then p; < py ™ (x).

(32) If p1 < p2 "~ (z), then p; < po.

(33) 1If e < pg or & # po, then p; < p1 ~ po.

Let p be a finite sequence. The functor Seg(p) yielding a set, is defined by:

r € Seg<(p) if and only if there exists ¢ being a finite sequence such that
r=gqand g < p.

The following propositions are true:

(34)  For every finite sequence p holds X = Seg~(p) if and only if for every
holds z € X if and only if there exists ¢ being a finite sequence such that
x=gq and q < p.

(35)  For every finite sequence p such that z € Seg<(p) holds z is a finite

sequence.

(36)  For all finite sequences p, ¢ holds p € Seg<(q) if and only if p < q.

(37)  For all finite sequences p, ¢ such that p € Segj(q) holds lenp < leng.
(38)  For all finite sequences p, ¢, 7 such that ¢~r € Seg<(p) holds ¢ € Seg(p).
(39)  Seg«(e) =0.

(10)  Seg=((a) = {c}.

(41)  For all finite sequences p, ¢ such that p < ¢ holds Seg~(p) C Seg<(q).
(42)  For all finite sequences p, g, r such that ¢ € Seg<(p) and r € Seg<(p)

holds ¢ and r are comparable.

The mode tree, which widens to the type a non-empty set, is defined by:
it € N* and for every p such that p € it holds Seg(p) C it and for all p, k, n
such that p = (k) € it and n < k holds p ~ (n) € it.

Next we state a proposition
(43) D is a tree if and only if D C N* and for every p such that p € D holds
Seg<(p) € D and for all p, k, n such that p ~ (k) € D and n < k holds
p~(n) e D.
In the sequel T', T} denote trees. The following proposition is true
(44) If x € T, then z is a finite sequence of elements of N.

Let us consider T. We see that it makes sense to consider the following mode
for restricted scopes of arguments. Then all the objests of the mode element of
T are a finite sequence of elements of N.

The following propositions are true:
(45)  For all finite sequences p, g such that p € T"and ¢ < p holds ¢ € T..
(46)  For every finite sequence r such that ¢ ~r € T holds ¢ € T..

(47) ee€eTandey €T.

(48)  {e} is a tree.

(49) T UT is a tree.

(50) T NTyis a tree.

The mode finite tree, which widens to the type a tree, is defined by:
it is finite.
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The following proposition is true
(51)  Tis a finite tree if and only if T is finite.

In the sequel fT, f17 will be finite trees. Next we state two propositions:
(52)  fT'U fT; is a finite tree.
(563)  fT'NT is a finite tree and T'N fT is a finite tree.

Let us consider n. The functor elementary tree of n yielding a finite tree, is
defined by:
elementary tree of n = {(k) : k < n} U {e}.
The following propositions are true:
(54)  fT = elementary tree of n if and only if fT = {(k) : k <n} U {e}.
(55) If k < n, then (k) € elementary tree of n.
(56)  elementary tree of 0 = {e}.
(57) If p € elementary tree of n, then p = € or there exists k such that k < n
and p = (k).
We now define two new functors. Let us consider 1. The functor LeavesT
yields a subset of 1" and is defined by:
p € Leaves T if and only if p € T and for no ¢ holds ¢ € T and p < g¢.
Let us consider p. Let us assume that p € T'. The functor T | p yields a tree and
is defined by:
geT |pifandonlyifp~qgeT.
We now state three propositions:

(58)  For every subset X of T holds X = LeavesT if and only if for every p
holds p € X if and only if p € T and for no ¢ holds ¢ € T and p < q.
(59) If pe T, then Ty = T | p if and only if for every ¢ holds ¢ € Ty if and
onlyifp~qeT.
(60) Tirey=T.
The arguments of the notions defined below are the following: T which is a
finite tree; p which is an element of 1. Then T | p is a finite tree.

Let us consider T. Let us assume that LeavesT # (). The mode leaf of T,
which widens to the type an element of T, is defined by:
it € Leaves T

We now state a proposition

(61) If Leaves T # (, then for every element p of T holds p is a leaf of T if
and only if p € Leaves T.

Let us consider T. The mode subtree of T, which widens to the type a tree,
is defined by:
there exists p being an element of T" such that it =T | p.

One can prove the following proposition

(62) T is a subtree of T if and only if there exists p being an element of T
such that T =T | p.

In the sequel ¢ is an element of T. Let us consider T', p, T7. Let us assume
that p € T. The functor T'(p/T1) yields a tree and is defined by:
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q € T(p/Ty) if and only if ¢ € T and p £ ¢ or there exists r such that r € T}
and g=p "~ .
In the sequel T5 is a tree. Next we state four propositions:

(63) Ifp e T, then T = Ti(p/T») if and only if for every ¢ holds ¢ € T if and
only if ¢ € T} and p 4 q or there exists r such that »r € T, and g =p " r.

(64) IfpeT,then T(p/Th)={t1:pAti}U{p~s:s=s}.
(65) IfpeT and q € Ty, then p~q € T(p/T1).
(66) IfpeT,then Ty = (T'(p/Th)) I p-
The arguments of the notions defined below are the following: T which is a

finite tree; ¢ which is an element of T'; T7 which is a finite tree. Then T'(¢t/T}) is
a finite tree.

In the sequel w will denote a finite sequence. The following two propositions
are true:

(67)  For every finite sequence p holds Seg~(p) =~ Seg(len p).
(68)  For every finite sequence p holds card(Seg<(p)) = len p.
The mode antichain of prefixes, which widens to the type a set, is defined by:

for every x such that x € it holds x is a finite sequence and for all p1, ps such
that p; € it and py € it and p; # p2 holds p; and py are not comparable.

Next we state three propositions:

(69) X is an antichain of prefixes if and only if for every x such that z € X
holds x is a finite sequence and for all py, ps such that p; € X and ps € X
and py # po holds p; and ps are not comparable.

(70)  {w} is an antichain of prefixes.

(71)  If p; and po are not comparable, then {p1,ps} is an antichain of prefixes.

Let us consider T'. The mode antichain of prefixes of T', which widens to the
type an antichain of prefixes, is defined by:

itCT.

We now state a proposition

(72)  For every antichain S of prefixes holds S is an antichain of prefixes of T
if and only if S C T.

In the sequel t1, to will be elements of T'. The following three propositions are
true:

(73) 0 is an antichain of prefixes of T" and {¢} is an antichain of prefixes of 7.

(74)  {t} is an antichain of prefixes of 7.

(75) If t; and ty are not comparable, then {t1,t2} is an antichain of prefixes
of T.

We now define two new functors. Let T be a finite tree. The functor height T
yields a natural number and is defined by:

there exists p such that p € T" and len p = height T and for every p such that
p € T holds len p < height T'.
The functor width T yielding a natural number, is defined by:
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there exists X being an antichain of prefixes of 1" such that widthT = card X
and for every antichain Y of prefixes of T holds card Y < card X.
We now state three propositions:

(76)  For every finite tree T for every n holds n = height T" if and only if there
exists p such that p € T and lenp = n and for every p such that p € T
holds len p < n.

(77)  For every finite tree T for every n holds n = width 7" if and only if there
exists X being an antichain of prefixes of T" such that n = card X and for
every antichain Y of prefixes of T" holds card Y < card X.

(78) 1 < width fT.

The following propositions are true:

-
=]

height(elementary tree of 0) = 0.
If height fT' = 0, then fT = elementary tree of 0.
height (elementary tree of (n + 1)) = 1.
width(elementary tree of 0) = 1.
width(elementary tree of (n + 1)) = n + 1.
For every element t of fT holds height(f7" | t) < height fT.
For every element ¢ of f7T such that ¢ # & holds height(f7T | t) <
height fT.
The scheme Tree_Ind deals with a unary predicate P and states that:
for every fT holds P[fT]
provided the parameter satisfies the following condition:

e for every fT such that for every n such that (n) € fT holds P[fT |
(n)] holds P[fT].
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