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Summary. In this text we will present unpublished results by Eu-
geniusz Kusak. It contains an axiomatic description of the class of all
spaces 〈V ; ⊥ξ〉, where V is a vector space over a field F, ξ : V × V → F

is a bilinear antisymmetric form i.e. ξ(x, y) = −ξ(y, x) and x ⊥ξ y iff
ξ(x, y) = 0 for x, y ∈ V . It also contains an effective construction of
bilinear antisymmetric form ξ for given symplectic space 〈V ; ⊥〉 such that
⊥=⊥ξ. The basic tool used in this method is the notion of orthogonal
projection J(a, b, x) for a, b, x ∈ V . We should stress the fact that axioms
of orthogonal and symplectic spaces differ only by one axiom, namely:
x ⊥ y + εz & y ⊥ z + εx ⇒ z ⊥ x + εy. For ε = +1 we get the axiom
characterizing symplectic geometry. For ε = −1 we get the axiom on three
perpendiculars characterizing orthogonal geometry - see [1].

MML Identifier: SYMSP 1.

The terminology and notation used in this paper have been introduced in the
following papers: [2], and [3]. In the sequel F will be a field. We consider
symplectic structures which are systems

〈 scalars, a carrier, an orthogonality 〉
where the scalars is a field, the carrier is a vector space over the scalars, and

the orthogonality is a relation on the carrier of the carrier of the carrier. The
arguments of the notions defined below are the following: S which is a symplectic
structure; a, b which are elements of the carrier of the carrier of S. The predicate
a ⊥ b is defined by:

〈〈a, b〉〉 ∈the orthogonality of S.

One can prove the following proposition
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(1) For every S being a symplectic structure for all elements a, b of the carrier
of the carrier of S holds a ⊥ b if and only if 〈〈a, b〉〉 ∈the orthogonality of S.

The mode symplectic space, which widens to the type a symplectic structure,
is defined by:

Let a, b, c, x be elements of the carrier of the carrier of it . Let l be an element
of the carrier of the scalars of it . Then
(i) if a 6= Θthe carrier of it, then there exists y being an element of the carrier of

the carrier of it such that y 6⊥ a,
(ii) if a ⊥ b, then l · a ⊥ b,
(iii) if b ⊥ a and c ⊥ a, then b + c ⊥ a,
(iv) if b 6⊥ a, then there exists k being an element of the carrier of the scalars
of it such that x − k · b ⊥ a,
(v) if a ⊥ b + c and b ⊥ c + a, then c ⊥ a + b.

In the sequel S is a symplectic structure. We now state a proposition

(2) The following conditions are equivalent:
(i) for all elements a, b, c, x of the carrier of the carrier of S for every

element l of the carrier of the scalars of S holds if a 6= Θthe carrier of S , then
there exists y being an element of the carrier of the carrier of S such that
y 6⊥ a but if a ⊥ b, then l · a ⊥ b but if b ⊥ a and c ⊥ a, then b + c ⊥ a but
if b 6⊥ a, then there exists k being an element of the carrier of the scalars
of S such that x − k · b ⊥ a but if a ⊥ b + c and b ⊥ c + a, then c ⊥ a + b,

(ii) S is a symplectic space.

We follow the rules: S is a symplectic space, a, b, c, d, a′, b′, p, q, x, y, z are
elements of the carrier of the carrier of S, and k, l are elements of the carrier
of the scalars of S. Let us consider S. The functor 0S yields an element of the
carrier of the scalars of S and is defined by:

0S = 0the scalars of S.

Next we state a proposition

(3) 0S = 0the scalars of S .

Let us consider S. The functor ΩS yielding an element of the carrier of the
scalars of S, is defined by:

ΩS = 1the scalars of S .

The following proposition is true

(4) ΩS = 1the scalars of S .

Let us consider S. The functor ΘS yields an element of the carrier of the
carrier of S and is defined by:

ΘS = Θthe carrier of S.

The following propositions are true:

(5) ΘS = Θthe carrier of S .

(6) If a 6= ΘS, then there exists b such that b 6⊥ a.

(7) If a ⊥ b, then l · a ⊥ b.

(8) If b ⊥ a and c ⊥ a, then b + c ⊥ a.

(9) If b 6⊥ a, then there exists l such that x − l · b ⊥ a.
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(10) If a ⊥ b + c and b ⊥ c + a, then c ⊥ a + b.

(11) ΘS ⊥ a.

(12) If a ⊥ b, then b ⊥ a.

(13) If a 6⊥ b and c + a ⊥ b, then c 6⊥ b.

(14) If b 6⊥ a and c ⊥ a, then b + c 6⊥ a.

(15) If b 6⊥ a and l 6= 0S , then l · b 6⊥ a and b 6⊥ l · a.

(16) If a ⊥ b, then −a ⊥ b.

(17) If a + b ⊥ c and a ⊥ c, then b ⊥ c.

(18) If a + b ⊥ c and b ⊥ c, then a ⊥ c.

(19) If a 6⊥ c, then a + b 6⊥ c or (ΩS + ΩS) · a + b 6⊥ c.

(20) If a′ 6⊥ a and a′ ⊥ b and b′ 6⊥ b and b′ ⊥ a, then a′ +b′ 6⊥ a and a′+b′ 6⊥ b.

(21) If a 6= ΘS and b 6= ΘS, then there exists p such that p 6⊥ a and p 6⊥ b.

(22) If ΩS + ΩS 6= 0S and a 6= ΘS and b 6= ΘS and c 6= ΘS, then there exists
p such that p 6⊥ a and p 6⊥ b and p 6⊥ c.

(23) If a − b ⊥ d and a − c ⊥ d, then b − c ⊥ d.

(24) If b 6⊥ a and x − k · b ⊥ a and x − l · b ⊥ a, then k = l.

(25) If ΩS + ΩS 6= 0S , then a ⊥ a.

Let us consider S, a, b, x. Let us assume that b 6⊥ a. The functor J(a, b, x)
yields an element of the carrier of the scalars of S and is defined by:

for every element l of the carrier of the scalars of S such that x − l · b ⊥ a

holds J(a, b, x) = l.

The following propositions are true:

(26) If b 6⊥ a and x − l · b ⊥ a, then J(a, b, x) = l.

(27) If b 6⊥ a, then x − J(a, b, x) · b ⊥ a.

(28) If b 6⊥ a, then J(a, b, l · x) = l · J(a, b, x).

(29) If b 6⊥ a, then J(a, b, x + y) = J(a, b, x) + J(a, b, y).

(30) If b 6⊥ a and l 6= 0S , then J(a, l · b, x) = l−1 · J(a, b, x).

(31) If b 6⊥ a and l 6= 0S , then J(l · a, b, x) = J(a, b, x).

(32) If b 6⊥ a and p ⊥ a, then J(a, b + p, c) = J(a, b, c) and J(a, b, c + p) =
J(a, b, c).

(33) If b 6⊥ a and p ⊥ b and p ⊥ c, then J(a + p, b, c) = J(a, b, c).

(34) If b 6⊥ a and c − b ⊥ a, then J(a, b, c) = ΩS .

(35) If b 6⊥ a, then J(a, b, b) = ΩS .

(36) If b 6⊥ a, then x ⊥ a if and only if J(a, b, x) = 0S .

(37) If b 6⊥ a and q 6⊥ a, then J(a, b, p) · J(a, b, q)−1 = J(a, q, p).

(38) If b 6⊥ a and c 6⊥ a, then J(a, b, c) = J(a, c, b)−1.

(39) If b 6⊥ a and b ⊥ c + a, then J(a, b, c) = J(c, b, a).

(40) If a 6⊥ b and c 6⊥ b, then J(c, b, a) = (−J(b, a, c)−1) · J(a, b, c).

(41) If ΩS + ΩS 6= 0S and a 6⊥ p and a 6⊥ q and b 6⊥ p and b 6⊥ q, then
J(a, p, q) · J(b, q, p) = J(p, a, b) · J(q, b, a).
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(42) If ΩS + ΩS 6= 0S and p 6⊥ a and p 6⊥ x and q 6⊥ a and q 6⊥ x, then
J(a, q, p) · J(p, a, x) = J(x, q, p) · J(q, a, x).

(43) Suppose ΩS + ΩS 6= 0S and p 6⊥ a and p 6⊥ x and q 6⊥ a and q 6⊥ x and
b 6⊥ a. Then (J(a, b, p)·J(p, a, x))·J(x, p, y) = (J(a, b, q)·J(q, a, x))·J(x, q, y).

(44) If a 6⊥ p and x 6⊥ p and y 6⊥ p, then J(p, a, x) · J(x, p, y) = (−J(p, a, y)) ·
J(y, p, x).

Let us consider S, x, y, a, b. Let us assume that b 6⊥ a and ΩS +ΩS 6= 0S . The
functor x ·a,b y yields an element of the carrier of the scalars of S and is defined
by:

for every q such that q 6⊥ a and q 6⊥ x holds x ·a,b y = (J(a, b, q) · J(q, a, x)) ·
J(x, q, y) if there exists p such that p 6⊥ a and p 6⊥ x, x ·a,b y = 0S if for every p

holds p ⊥ a or p ⊥ x.

One can prove the following propositions:

(45) If ΩS + ΩS 6= 0S and b 6⊥ a and p 6⊥ a and p 6⊥ x, then x ·a,b y =
(J(a, b, p) · J(p, a, x)) · J(x, p, y).

(46) If ΩS + ΩS 6= 0S and b 6⊥ a and for every p holds p ⊥ a or p ⊥ x, then
x ·a,b y = 0S .

(47) If ΩS + ΩS 6= 0S and b 6⊥ a and x = ΘS, then x ·a,b y = 0S .

(48) If ΩS + ΩS 6= 0S and b 6⊥ a, then x ·a,b y = 0S if and only if y ⊥ x.

(49) If ΩS + ΩS 6= 0S and b 6⊥ a, then x ·a,b y = −y ·a,b x.

(50) If ΩS + ΩS 6= 0S and b 6⊥ a, then x ·a,b (l · y) = l · x ·a,b y.

(51) If ΩS + ΩS 6= 0S and b 6⊥ a, then x ·a,b (y + z) = x ·a,b y + x ·a,b z.
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