Construction of a bilinear antisymmetric form in symplectic vector space ${ }^{1}$

Eugeniusz Kusak
Warsaw University
Białystok
Wojciech Leończuk
Warsaw University
Białystok
Michał Muzalewski
Warsaw University
Białystok

Abstract

Summary. In this text we will present unpublished results by Eugeniusz Kusak. It contains an axiomatic description of the class of all spaces $\left\langle V ; \perp_{\xi}\right\rangle$, where V is a vector space over a field $\mathrm{F}, \xi: V \times V \rightarrow F$ is a bilinear antisymmetric form i.e. $\xi(x, y)=-\xi(y, x)$ and $x \perp_{\xi} y$ iff $\xi(x, y)=0$ for $x, y \in V$. It also contains an effective construction of bilinear antisymmetric form ξ for given symplectic space $\langle V ; \perp\rangle$ such that $\perp=\perp_{\xi}$. The basic tool used in this method is the notion of orthogonal projection $\mathrm{J}(a, b, x)$ for $a, b, x \in V$. We should stress the fact that axioms of orthogonal and symplectic spaces differ only by one axiom, namely: $x \perp y+\varepsilon z \& y \perp z+\varepsilon x \Rightarrow z \perp x+\varepsilon y$. For $\varepsilon=+1$ we get the axiom characterizing symplectic geometry. For $\varepsilon=-1$ we get the axiom on three perpendiculars characterizing orthogonal geometry - see [1].

MML Identifier: SYMSP_1.

The terminology and notation used in this paper have been introduced in the following papers: [2], and [3]. In the sequel F will be a field. We consider symplectic structures which are systems

〈 scalars, a carrier, an orthogonality >
where the scalars is a field, the carrier is a vector space over the scalars, and the orthogonality is a relation on the carrier of the carrier of the carrier. The arguments of the notions defined below are the following: S which is a symplectic structure; a, b which are elements of the carrier of the carrier of S. The predicate $a \perp b$ is defined by:
$\langle a, b\rangle \in$ the orthogonality of S.
One can prove the following proposition

[^0](1) For every S being a symplectic structure for all elements a, b of the carrier of the carrier of S holds $a \perp b$ if and only if $\langle a, b\rangle \in$ the orthogonality of S.
The mode symplectic space, which widens to the type a symplectic structure, is defined by:

Let a, b, c, x be elements of the carrier of the carrier of it. Let l be an element of the carrier of the scalars of it. Then
(i) if $a \neq \Theta_{\text {the carrier of it }}$, then there exists y being an element of the carrier of the carrier of it such that $y \not \perp a$,
(ii) if $a \perp b$, then $l \cdot a \perp b$,
(iii) if $b \perp a$ and $c \perp a$, then $b+c \perp a$,
(iv) if $b \not \perp a$, then there exists k being an element of the carrier of the scalars of it such that $x-k \cdot b \perp a$,
(v) if $a \perp b+c$ and $b \perp c+a$, then $c \perp a+b$.

In the sequel S is a symplectic structure. We now state a proposition
(2) The following conditions are equivalent:
(i) for all elements a, b, c, x of the carrier of the carrier of S for every element l of the carrier of the scalars of S holds if $a \neq \Theta_{\text {the carrier of } S}$, then there exists y being an element of the carrier of the carrier of S such that $y \not \perp a$ but if $a \perp b$, then $l \cdot a \perp b$ but if $b \perp a$ and $c \perp a$, then $b+c \perp a$ but if $b \not \perp a$, then there exists k being an element of the carrier of the scalars of S such that $x-k \cdot b \perp a$ but if $a \perp b+c$ and $b \perp c+a$, then $c \perp a+b$,
(ii) S is a symplectic space.

We follow the rules: S is a symplectic space, $a, b, c, d, a^{\prime}, b^{\prime}, p, q, x, y, z$ are elements of the carrier of the carrier of S, and k, l are elements of the carrier of the scalars of S. Let us consider S. The functor 0_{S} yields an element of the carrier of the scalars of S and is defined by:
$0_{S}=0_{\text {the scalars of } S}$.
Next we state a proposition
(3) $0_{S}=0_{\text {the scalars of } S}$.

Let us consider S. The functor Ω_{S} yielding an element of the carrier of the scalars of S, is defined by:
$\Omega_{S}=1_{\text {the scalars of } S}$.
The following proposition is true
(4) $\Omega_{S}=1_{\text {the scalars of } S}$.

Let us consider S. The functor Θ_{S} yields an element of the carrier of the carrier of S and is defined by:
$\Theta_{S}=\Theta_{\text {the carrier of } S}$.
The following propositions are true:
(5) $\Theta_{S}=\Theta_{\text {the carrier of } S}$.
(6) If $a \neq \Theta_{S}$, then there exists b such that $b \not \perp a$.
(7) If $a \perp b$, then $l \cdot a \perp b$.
(8) If $b \perp a$ and $c \perp a$, then $b+c \perp a$.
(9) If $b \not \perp a$, then there exists l such that $x-l \cdot b \perp a$.
(10) If $a \perp b+c$ and $b \perp c+a$, then $c \perp a+b$.
(11) $\Theta_{S} \perp a$.
(12) If $a \perp b$, then $b \perp a$.
(13) If $a \not \perp b$ and $c+a \perp b$, then $c \not \perp b$.
(14) If $b \not \perp a$ and $c \perp a$, then $b+c \not \perp a$.
(15) If $b \not \perp a$ and $l \neq 0_{S}$, then $l \cdot b \not \perp a$ and $b \not \perp l \cdot a$.
(16) If $a \perp b$, then $-a \perp b$.
(17) If $a+b \perp c$ and $a \perp c$, then $b \perp c$.
(18) If $a+b \perp c$ and $b \perp c$, then $a \perp c$.
(19) If $a \not \perp c$, then $a+b \not \perp c$ or $\left(\Omega_{S}+\Omega_{S}\right) \cdot a+b \not \perp c$.
(20) If $a^{\prime} \not \perp a$ and $a^{\prime} \perp b$ and $b^{\prime} \not \perp b$ and $b^{\prime} \perp a$, then $a^{\prime}+b^{\prime} \not \perp a$ and $a^{\prime}+b^{\prime} \not \perp b$.
(21) If $a \neq \Theta_{S}$ and $b \neq \Theta_{S}$, then there exists p such that $p \not \perp a$ and $p \not \perp b$.
(22) If $\Omega_{S}+\Omega_{S} \neq 0_{S}$ and $a \neq \Theta_{S}$ and $b \neq \Theta_{S}$ and $c \neq \Theta_{S}$, then there exists p such that $p \not \perp a$ and $p \not \perp b$ and $p \not \perp c$.
(23) If $a-b \perp d$ and $a-c \perp d$, then $b-c \perp d$.
(24) If $b \not \perp a$ and $x-k \cdot b \perp a$ and $x-l \cdot b \perp a$, then $k=l$.
(25) If $\Omega_{S}+\Omega_{S} \neq 0_{S}$, then $a \perp a$.

Let us consider S, a, b, x. Let us assume that $b \not \perp a$. The functor $\mathrm{J}(a, b, x)$ yields an element of the carrier of the scalars of S and is defined by:
for every element l of the carrier of the scalars of S such that $x-l \cdot b \perp a$ holds $\mathrm{J}(a, b, x)=l$.

The following propositions are true:
(26) If $b \not \perp a$ and $x-l \cdot b \perp a$, then $\mathrm{J}(a, b, x)=l$.
(27) If $b \not \perp a$, then $x-\mathrm{J}(a, b, x) \cdot b \perp a$.
(28) If $b \not \perp a$, then $\mathrm{J}(a, b, l \cdot x)=l \cdot \mathrm{~J}(a, b, x)$.
(29) If $b \not \perp a$, then $\mathrm{J}(a, b, x+y)=\mathrm{J}(a, b, x)+\mathrm{J}(a, b, y)$.
(30) If $b \not \perp a$ and $l \neq 0_{S}$, then $\mathrm{J}(a, l \cdot b, x)=l^{-1} \cdot \mathrm{~J}(a, b, x)$.
(31) If $b \not \perp a$ and $l \neq 0_{S}$, then $\mathrm{J}(l \cdot a, b, x)=\mathrm{J}(a, b, x)$.
(32) If $b \not \perp a$ and $p \perp a$, then $\mathrm{J}(a, b+p, c)=\mathrm{J}(a, b, c)$ and $\mathrm{J}(a, b, c+p)=$ $\mathrm{J}(a, b, c)$.
(33) If $b \not \perp a$ and $p \perp b$ and $p \perp c$, then $\mathrm{J}(a+p, b, c)=\mathrm{J}(a, b, c)$.
(34) If $b \not \perp a$ and $c-b \perp a$, then $\mathrm{J}(a, b, c)=\Omega_{S}$.
(35) If $b \not \perp a$, then $\mathrm{J}(a, b, b)=\Omega_{S}$.
(36) If $b \not \perp a$, then $x \perp a$ if and only if $\mathrm{J}(a, b, x)=0_{S}$.
(37) If $b \not \perp a$ and $q \not \perp a$, then $\mathrm{J}(a, b, p) \cdot \mathrm{J}(a, b, q)^{-1}=\mathrm{J}(a, q, p)$.
(38) If $b \not \perp a$ and $c \not \perp a$, then $\mathrm{J}(a, b, c)=\mathrm{J}(a, c, b)^{-1}$.
(39) If $b \not \perp a$ and $b \perp c+a$, then $\mathrm{J}(a, b, c)=\mathrm{J}(c, b, a)$.
(40) If $a \not \perp b$ and $c \not \perp b$, then $\mathrm{J}(c, b, a)=\left(-\mathrm{J}(b, a, c)^{-1}\right) \cdot \mathrm{J}(a, b, c)$.
(41) If $\Omega_{S}+\Omega_{S} \neq 0_{S}$ and $a \not \perp p$ and $a \not \perp q$ and $b \not \perp p$ and $b \not \perp q$, then $\mathrm{J}(a, p, q) \cdot \mathrm{J}(b, q, p)=\mathrm{J}(p, a, b) \cdot \mathrm{J}(q, b, a)$.
(42) If $\Omega_{S}+\Omega_{S} \neq 0_{S}$ and $p \not \perp a$ and $p \not \perp x$ and $q \not \perp a$ and $q \not \perp x$, then $\mathrm{J}(a, q, p) \cdot \mathrm{J}(p, a, x)=\mathrm{J}(x, q, p) \cdot \mathrm{J}(q, a, x)$.
(43) Suppose $\Omega_{S}+\Omega_{S} \neq 0_{S}$ and $p \not \perp a$ and $p \not \perp x$ and $q \not \perp a$ and $q \not \perp x$ and $b \not \perp a$. Then $(\mathrm{J}(a, b, p) \cdot \mathrm{J}(p, a, x)) \cdot \mathrm{J}(x, p, y)=(\mathrm{J}(a, b, q) \cdot \mathrm{J}(q, a, x)) \cdot \mathrm{J}(x, q, y)$.
(44) If $a \not \perp p$ and $x \not \perp p$ and $y \not \perp p$, then $\mathrm{J}(p, a, x) \cdot \mathrm{J}(x, p, y)=(-\mathrm{J}(p, a, y))$. $\mathrm{J}(y, p, x)$.
Let us consider S, x, y, a, b. Let us assume that $b \not \perp a$ and $\Omega_{S}+\Omega_{S} \neq 0_{S}$. The functor $x{ }_{a, b} y$ yields an element of the carrier of the scalars of S and is defined by:
for every q such that $q \not \perp a$ and $q \not \perp x$ holds $x \cdot a, b y=(\mathrm{J}(a, b, q) \cdot \mathrm{J}(q, a, x))$. $\mathrm{J}(x, q, y)$ if there exists p such that $p \not \perp a$ and $p \not \perp x, x \cdot a, b y=0_{S}$ if for every p holds $p \perp a$ or $p \perp x$.

One can prove the following propositions:
(45) If $\Omega_{S}+\Omega_{S} \neq 0_{S}$ and $b \not \perp a$ and $p \not \perp a$ and $p \not \perp x$, then $x \cdot a, b y=$ $(\mathrm{J}(a, b, p) \cdot \mathrm{J}(p, a, x)) \cdot \mathrm{J}(x, p, y)$.
(46) If $\Omega_{S}+\Omega_{S} \neq 0_{S}$ and $b \not \perp a$ and for every p holds $p \perp a$ or $p \perp x$, then $x \cdot a, b=0_{S}$.
If $\Omega_{S}+\Omega_{S} \neq 0_{S}$ and $b \not \perp a$ and $x=\Theta_{S}$, then $x{ }_{a, b} y=0_{S}$.
If $\Omega_{S}+\Omega_{S} \neq 0_{S}$ and $b \not \perp a$, then $x \cdot a, b y=0_{S}$ if and only if $y \perp x$.
If $\Omega_{S}+\Omega_{S} \neq 0_{S}$ and $b \not \perp a$, then $x \cdot a, b y=-y \cdot a, b x$.
If $\Omega_{S}+\Omega_{S} \neq 0_{S}$ and $b \not \perp a$, then $x \cdot_{a, b}(l \cdot y)=l \cdot x \cdot_{a, b} y$.
If $\Omega_{S}+\Omega_{S} \neq 0_{S}$ and $b \not \perp a$, then $x \cdot_{a, b}(y+z)=x \cdot_{a, b} y+x{ }_{a, b} z$.

References

[1] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Construction of a bilinear symmetric form in orthogonal vector space. Formalized Mathematics, 1(2):353-356, 1990.
[2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[3] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received November 23, 1989

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6.

