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Summary. In the article we deal with a binary operation that is

associative, commutative. We define for such an operation a functor that

depends on two more arguments: a finite set of indices and a function

indexing elements of the domain of the operation and yields the result

of applying the operation to all indexed elements. The definition has a

restriction that requires that either the set of indices is non empty or the

operation has the unity. We prove theorems describing some properties of

the functor introduced. Most of them we prove in two versions depending

on which requirement is fulfilled. In the second part we deal with the

union of finite sets that enjoys mentioned above properties. We prove

analogs of the theorems proved in the first part. We precede the main

part of the article with auxiliary theorems related to boolean properties of

sets, enumerated sets, finite subsets, and functions. We define a casting

function that yields to a set the empty set typed as a finite subset of the

set. We prove also two schemes of the induction on finite sets.

MML Identifier: SETWISEO.

The terminology and notation used in this paper have been introduced in the
following articles: [5], [4], [7], [6], [2], [1], and [3]. We adopt the following rules: x,
y, z will be arbitrary and X, Y , Z, X ′, Y ′ will be sets. The following propositions
are true:

(1) If {x} ⊆ {y}, then x = y.

(2) {x, y, z} 6= ∅.

(3) {x} ⊆ {x, y, z}.

(4) {x, y} ⊆ {x, y, z}.

(5) If X ⊆ Y ∪ {x}, then x ∈ X or X ⊆ Y .

(6) x ∈ X ∪ {y} if and only if x ∈ X or x = y.

(7) If X ∪ Y ⊆ Z, then X ⊆ Z and Y ⊆ Z.
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(8) X ∪ {x} ⊆ Y if and only if x ∈ Y and X ⊆ Y .

(9) If X ′ ∪Y ′ = X ∪Y and X misses X ′ and Y misses Y ′, then X = Y ′ and
Y = X ′.

(10) If X ′ ∪Y ′ = X ∪Y and Y misses X ′ and X misses Y ′, then X = X ′ and
Y = Y ′.

(11) For all X, Y for every function f holds f ◦ (Y \ f −1 X) = f ◦ Y \ X.

In the sequel X, Y will denote non-empty sets and f will denote a function
from X into Y . Next we state two propositions:

(12) For every element x of X holds x ∈ f −1 {f(x)}.

(13) For every element x of X holds f ◦ {x} = {f(x)}.

The scheme SubsetEx deals with a constant A that is a non-empty set and a
unary predicate P and states that:

there exists B being a subset of A such that for every element x of A holds
x ∈ B if and only if P[x]
for all values of the parameters.

We now state several propositions:

(14) For every element B of Fin X for every x such that x ∈ B holds x is an
element of X.

(15) For every element A of Fin X for every set B for every function f from X
into Y such that for every element x of X such that x ∈ A holds f(x) ∈ B
holds f ◦ A ⊆ B.

(16) For every set X for every element B of Fin X for every set A such that
A ⊆ B holds A is an element of Fin X.

(17) For every element A of Fin X holds f ◦ A is an element of Fin Y .

(18) For every element B of Fin X such that B 6= ∅ there exists x being an
element of X such that x ∈ B.

(19) For every element A of Fin X such that f ◦ A = ∅ holds A = ∅.

Let X be a set. The functor 0X yielding an element of Fin X, is defined by:
0X = ∅.

One can prove the following proposition

(20) For every set X holds 0X = ∅.

The arguments of the notions defined below are the following: X which is a
non-empty set; A which is a set; f which is a function from X into Fin A; x which
is an element of X. Then f(x) is an element of Fin A.

The scheme FinSubFuncEx deals with a constant A that is a non-empty set, a
constant B that is an element of FinA and a binary predicate P and states that:

there exists f being a function from A into FinA such that for all elements b,
a of A holds a ∈ f(b) if and only if a ∈ B and P[a, b]
for all values of the parameters.

The arguments of the notions defined below are the following: X which is a
non-empty set; F which is a binary operation on X. The predicate F has a unity
is defined by:

there exists x being an element of X such that x is a unity w.r.t. F .
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We now state three propositions:

(21) For every non-empty set X for every binary operation F on X holds F
has a unity if and only if there exists x being an element of X such that x
is a unity w.r.t. F .

(22) For every non-empty set X for every binary operation F on X holds F
has a unity if and only if 1F is a unity w.r.t. F .

(23) For every non-empty set X for every binary operation F on X such
that F has a unity for every element x of X holds F (1F , x) = x and
F (x,1F ) = x.

The arguments of the notions defined below are the following: X which is a
non-empty set; x which is an element of X. Then {x} is an element of Fin X. Let
y be an element of X. Then {x, y} is an element of Fin X. Let z be an element
of X. Then {x, y, z} is an element of Fin X.

Now we present three schemes. The scheme FinSubInd1 concerns a constant
A that is a non-empty set and a unary predicate P and states that:

for every element B of FinA holds P[B]
provided the parameters satisfy the following conditions:

• P[0A],
• for every element B ′ of FinA for every element b of A such that

P[B′] and b /∈ B′ holds P[B′ ∪ {b}].
The scheme FinSubInd2 concerns a constant A that is a non-empty set and a

unary predicate P and states that:
for every element B of FinA such that B 6= ∅ holds P[B]

provided the parameters satisfy the following conditions:
• for every element x of A holds P[{x}],
• for all elements B1, B2 of FinA such that B1 6= ∅ and B2 6= ∅ holds

if P[B1] and P[B2], then P[B1 ∪ B2].
The scheme FinSubInd3 concerns a constant A that is a non-empty set and a

unary predicate P and states that:
for every element B of FinA holds P[B]

provided the parameters satisfy the following conditions:
• P[0A],
• for every element B ′ of FinA for every element b of A such that

P[B′] holds P[B′ ∪ {b}].
The arguments of the notions defined below are the following: X which is a

non-empty family of sets; Y which is a non-empty set; f which is a function from
X into Y ; x which is an element of X. Then f(x) is an element of Y .

In the sequel C will be a non-empty set. The arguments of the notions defined
below are the following: X, Y which are non-empty sets; F which is a binary
operation on Y ; B which is an element of Fin X; f which is a function from X
into Y . Let us assume that B 6= ∅ or F has a unity and F is commutative and
F is associative. The functor F -

∑
B f yielding an element of Y , is defined by:

there exists G being a function from Fin X into Y such that F -
∑

B f = G(B)
and for every element e of Y such that e is a unity w.r.t. F holds G(∅) = e and
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for every element x of X holds G({x}) = f(x) and for every element B ′ of Fin X
such that B′ ⊆ B and B′ 6= ∅ for every element x of X such that x ∈ B \B ′ holds
G(B′ ∪ {x}) = F (G(B ′), f(x)).

One can prove the following propositions:

(24) Let X, Y be non-empty sets. Let F be a binary operation on Y . Let
B be an element of Fin X. Let f be a function from X into Y . Suppose
B 6= ∅ or F has a unity but F is commutative and F is associative. Let IT
be an element of Y . Then IT = F -

∑
B f if and only if there exists G being

a function from Fin X into Y such that IT = G(B) and for every element
e of Y such that e is a unity w.r.t. F holds G(∅) = e and for every element
x of X holds G({x}) = f(x) and for every element B ′ of Fin X such that
B′ ⊆ B and B′ 6= ∅ for every element x of X such that x ∈ B \ B ′ holds
G(B′ ∪ {x}) = F (G(B ′), f(x)).

(25) Let X, Y be non-empty sets. Let F be a binary operation on Y . Let
B be an element of Fin X. Let f be a function from X into Y . Suppose
B 6= ∅ or F has a unity but F is idempotent and F is commutative and F
is associative. Let IT be an element of Y . Then IT = F -

∑
B f if and only

if there exists G being a function from Fin X into Y such that IT = G(B)
and for every element e of Y such that e is a unity w.r.t. F holds G(∅) = e
and for every element x of X holds G({x}) = f(x) and for every element
B′ of Fin X such that B ′ ⊆ B and B′ 6= ∅ for every element x of X such
that x ∈ B holds G(B ′ ∪ {x}) = F (G(B ′), f(x)).

For simplicity we follow the rules: X, Y denote non-empty sets, F denotes a
binary operation on Y , B denotes an element of Fin X, and f denotes a function
from X into Y . Next we state a number of propositions:

(26) If F is commutative and F is associative, then for every element b of X
holds F -

∑
{b} f = f(b).

(27) If F is idempotent and F is commutative and F is associative, then for
all elements a, b of X holds F -

∑
{a,b} f = F (f(a), f(b)).

(28) If F is idempotent and F is commutative and F is associative, then for
all elements a, b, c of X holds F -

∑
{a,b,c} f = F (F (f(a), f(b)), f(c)).

(29) If F is idempotent and F is commutative and F is associative and B 6= ∅,
then for every element x of X holds F -

∑
B∪{x} f = F (F -

∑
B f, f(x)).

(30) If F is idempotent and F is commutative and F is associative, then
for all elements B1, B2 of Fin X such that B1 6= ∅ and B2 6= ∅ holds
F -

∑
B1∪B2

f = F (F -
∑

B1
f, F -

∑
B2

f).

(31) If F is commutative and F is associative and F is idempotent, then for
every element x of X such that x ∈ B holds F (f(x), F -

∑
B f) = F -

∑
B f .

(32) If F is commutative and F is associative and F is idempotent, then
for all elements B, C of Fin X such that B 6= ∅ and B ⊆ C holds
F (F -

∑
B f, F -

∑
C f) = F -

∑
C f .

(33) If B 6= ∅ and F is commutative and F is associative and F is idempotent,
then for every element a of Y such that for every element b of X such that
b ∈ B holds f(b) = a holds F -

∑
B f = a.
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(34) If F is commutative and F is associative and F is idempotent, then for
every element a of Y such that f ◦ B = {a} holds F -

∑
B f = a.

(35) If F is commutative and F is associative and F is idempotent, then for
all functions f , g from X into Y for all elements A, B of Fin X such that
A 6= ∅ and f ◦ A = g ◦ B holds F -

∑
A f = F -

∑
B g.

(36) Let F , G be binary operations on Y . Then if F is idempotent and F is
commutative and F is associative and G is distributive w.r.t. F , then for
every element B of Fin X such that B 6= ∅ for every function f from X
into Y for every element a of Y holds G(a, F -

∑
B f) = F -

∑
B(G◦(a, f)).

(37) Let F , G be binary operations on Y . Then if F is idempotent and F is
commutative and F is associative and G is distributive w.r.t. F , then for
every element B of Fin X such that B 6= ∅ for every function f from X
into Y for every element a of Y holds G(F -

∑
B f, a) = F -

∑
B(G◦(f, a)).

The arguments of the notions defined below are the following: A, X, Y which
are non-empty sets; f which is a function from X into Y ; g which is a function
from Y into A. Then g · f is a function from X into A.

The arguments of the notions defined below are the following: X, Y which
are non-empty sets; f which is a function from X into Y ; A which is an element
of Fin X. Then f ◦ A is an element of Fin Y .

The following propositions are true:

(38) Let A, X, Y be non-empty sets. Then for every binary operation F on
A such that F is idempotent and F is commutative and F is associative
for every element B of Fin X such that B 6= ∅ for every function f from X
into Y for every function g from Y into A holds F -

∑
f◦B g = F -

∑
B(g ·f).

(39) Suppose F is commutative and F is associative and F is idempotent.
Let Z be a non-empty set. Let G be a binary operation on Z. Suppose
G is commutative and G is associative and G is idempotent. Let f be a
function from X into Y . Then for every function g from Y into Z such
that for all elements x, y of Y holds g(F (x, y)) = G(g(x), g(y)) for every
element B of Fin X such that B 6= ∅ holds g(F -

∑
B f) = G-

∑
B(g · f).

(40) If F is commutative and F is associative and F has a unity, then for
every f holds F -

∑
0X

f = 1F .

(41) If F is idempotent and F is commutative and
F

is associative and F has a unity, then for every element x of X holds
F -

∑
B∪{x} f = F (F -

∑
B f, f(x)).

(42) If F is idempotent and F is commutative and F is associative and F
has a unity, then for all elements B1, B2 of Fin X holds F -

∑
B1∪B2

f =
F (F -

∑
B1

f, F -
∑

B2
f).

(43) If F is commutative and F is associative and F is idempotent and F has
a unity, then for all functions f , g from X into Y for all elements A, B of
Fin X such that f ◦ A = g ◦ B holds F -

∑
A f = F -

∑
B g.

(44) For all non-empty sets A, X, Y for every binary operation F on A such
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that F is idempotent and F is commutative and F is associative and F
has a unity for every element B of Fin X for every function f from X into
Y for every function g from Y into A holds F -

∑
f◦B g = F -

∑
B(g · f).

(45) Suppose F is commutative and F is associative and F is idempotent and
F has a unity. Let Z be a non-empty set. Let G be a binary operation on
Z. Suppose G is commutative and G is associative and G is idempotent
and G has a unity. Let f be a function from X into Y . Let g be a
function from Y into Z. Then if g(1F ) = 1G and for all elements x, y of Y
holds g(F (x, y)) = G(g(x), g(y)), then for every element B of Fin X holds
g(F -

∑
B f) = G-

∑
B(g · f).

The arguments of the notions defined below are the following: A which is a
set; x which is an element of Fin A. The functor @x yielding an element of Fin A
qua a non-empty set, is defined by:

@x = x.

The following proposition is true

(46) For every set A for every element x of Fin A holds @x = x.

Let A be a set. The functor FinUnionA yields a binary operation on Fin A
and is defined by:

for all elements x, y of Fin A holds (FinUnionA)(x, y) = @(x ∪ y).

In the sequel A will denote a set and x, y will denote elements of Fin A. One
can prove the following propositions:

(47) For every binary operation IT on Fin A holds IT = FinUnionA if and
only if for all elements x, y of Fin A holds IT (x, y) = @(x ∪ y).

(48) FinUnionA(x, y) = x ∪ y.

(49) FinUnionA is idempotent.

(50) FinUnionA is commutative.

(51) FinUnionA is associative.

(52) @0A is a unity w.r.t. FinUnionA.

(53) FinUnionA has a unity.

(54) 1FinUnionA
is a unity w.r.t. FinUnionA.

(55) 1FinUnionA
= ∅.

For simplicity we adopt the following rules: X, Y are non-empty sets, A is
a set, f is a function from X into Fin A, and i, j, k are elements of X. The
arguments of the notions defined below are the following: X which is a non-empty
set; A which is a set; B which is an element of Fin X; f which is a function from
X into Fin A. The functor FinUnion(B, f) yields an element of Fin A and is
defined by:

FinUnion(B, f) = FinUnionA -
∑

B f .

The following propositions are true:

(56) FinUnion({i}, f) = f(i).

(57) FinUnion({i, j}, f) = f(i) ∪ f(j).

(58) FinUnion({i, j, k}, f) = (f(i) ∪ f(j)) ∪ f(k).
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(59) FinUnion(0X , f) = ∅.

(60) For every element B of Fin X holds

FinUnion(B ∪ {i}, f) = FinUnion(B, f) ∪ f(i) .

(61) For every element B of Fin X holds FinUnion(B, f) =
⋃

(f ◦ B).

(62) For all elements B1, B2 of Fin X holds

FinUnion(B1 ∪ B2, f) = FinUnion(B1, f) ∪ FinUnion(B2, f) .

(63) For every element B of Fin X for every function f from X into Y for every
function g from Y into Fin A holds FinUnion(f ◦B, g) = FinUnion(B, g ·f).

(64) Let A, X be non-empty sets. Let Y be a set. Let G be a binary op-
eration on A. Suppose G is commutative and G is associative and G is
idempotent. Let B be an element of Fin X. Then if B 6= ∅, then for every
function f from X into Fin Y for every function g from Fin Y into A such
that for all elements x, y of Fin Y holds g(x ∪ y) = G(g(x), g(y)) holds
g(FinUnion(B, f)) = G-

∑
B(g · f).

(65) Let Z be a non-empty set. Let Y be a set. Let G be a binary operation
on Z. Suppose G is commutative and G is associative and G is idempotent
and G has a unity. Let f be a function from X into Fin Y . Let g be a
function from Fin Y into Z. Then if g(0Y ) = 1G and for all elements x, y
of Fin Y holds g(x∪ y) = G(g(x), g(y)), then for every element B of Fin X
holds g(FinUnion(B, f)) = G-

∑
B(g · f).

Let A be a set. The functor singletonA yielding a function from A into Fin A,
is defined by:

for arbitrary x such that x ∈ A holds (singletonA)(x) = {x}.

The following propositions are true:

(66) For every set A for every function f from A into Fin A holds f =
singletonA if and only if for arbitrary x such that x ∈ A holds f(x) = {x}.

(67) For every non-empty set A for every function f from A into Fin A holds
f = singletonA if and only if for every element x of A holds f(x) = {x}.

(68) For arbitrary x for every element y of X holds x ∈ singletonX(y) if and
only if x = y.

(69) For all elements x, y, z of X such that x ∈ singletonX(z) and y ∈
singletonX(z) holds x = y.

(70) For every element B of Fin X for arbitrary x holds x ∈ FinUnion(B, f)
if and only if there exists i being an element of X such that i ∈ B and
x ∈ f(i).

(71) For every element B of Fin X holds FinUnion(B, singletonX) = B.

The arguments of the notions defined below are the following: X, Y which
are non-empty families of sets; g which is a function from X into Y ; x which is
an element of X. Then g(x) is an element of Y .

Next we state a proposition

(72) Let Y , Z be sets. Let f be a function from X into Fin Y . Let g be a
function from Fin Y into Fin Z. Then if g(0Y ) = 0Z and for all elements x,
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y of Fin Y holds g(x ∪ y) = g(x) ∪ g(y), then for every element B of Fin X
holds g(FinUnion(B, f)) = FinUnion(B, g · f).
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[2] Czes law Byliński. Functions from a set to a set. Formalized Mathematics,
1(1):153–164, 1990.

[3] Andrzej Trybulec. Binary operations applied to functions. Formalized Math-

ematics, 1(2):329–334, 1990.

[4] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34,
1990.

[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics,
1(1):9–11, 1990.

[6] Andrzej Trybulec and Agata Darmochwa l. Boolean domains. Formalized

Mathematics, 1(1):187–190, 1990.

[7] Zinaida Trybulec and Halina Świe
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