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Summary. The article contains definitions and same basic proper-
ties of bounded sequences (above and below), convergent sequences and the
limit of sequences. In the article there are some properties of real numbers
useful in the other theorems of this article.
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The terminology and notation used in this paper have been introduced in the
following papers: [1], and [2]. We adopt the following rules: n, m are natural
numbers, r, r1, p, g1, g, g′ are real numbers, and seq, seq′, seq1 are sequences of
real numbers. One can prove the following propositions:

(1) (−1) · (−1) = 1.

(2) g

2
+ g

2
= g and g

4
+ g

4
= g

2
.

(3) If 0 < g, then 0 <
g

2
and 0 <

g

4
.

(4) If 0 < g, then g

2
< g.

(5) If g 6= 0, then r

g·2 + r

g·2 = r

g
.

(6) If 0 < g and 0 < p, then 0 <
g

p
.

(7) If 0 ≤ g and 0 ≤ r and g < g1 and r < r1, then g · r < g1 · r1.

(8) If g = −g′, then −g = g′.

(9) −g < r and r < g if and only if |r| < g.

(10) If 0 < r1 and r1 < r and 0 < g, then g

r
<

g

r1
.

(11) If g 6= 0 and r 6= 0, then |g−1 − r−1| = |g−r|
|g|·|r|.

We now define two new predicates. Let us consider seq. The predicate seq is
bounded above is defined by:

there exists r such that for every n holds seq(n) < r.
The predicate seq is bounded below is defined by:
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there exists r such that for every n holds r < seq(n).

We now state two propositions:

(12) seq is bounded above if and only if there exists r such that for every n

holds seq(n) < r.

(13) seq is bounded below if and only if there exists r such that for every n

holds r < seq(n).

Let us consider seq. The predicate seq is bounded is defined by:
seq is bounded above and seq is bounded below.

Next we state three propositions:

(14) seq is bounded if and only if seq is bounded above and seq is bounded
below.

(15) seq is bounded if and only if there exists r such that 0 < r and for every
n holds |seq(n)| < r.

(16) For every n there exists r such that 0 < r and for every m such that
m ≤ n holds |seq(m)| < r.

Let us consider seq. The predicate seq is convergent is defined by:
there exists g such that for every p such that 0 < p there exists n such that

for every m such that n ≤ m holds |seq(m) − g| < p.

One can prove the following proposition

(17) seq is convergent if and only if there exists g such that for every p such
that 0 < p there exists n such that for every m such that n ≤ m holds
|seq(m) − g| < p.

Let us consider seq. Let us assume that seq is convergent. The functor lim seq

yields a real number and is defined by:
for every p such that 0 < p there exists n such that for every m such that

n ≤ m holds |seq(m) − (lim seq)| < p.

The following propositions are true:

(18) If seq is convergent, then lim seq = g if and only if for every p such
that 0 < p there exists n such that for every m such that n ≤ m holds
|seq(m) − g| < p.

(19) If seq is convergent and seq ′ is convergent, then seq + seq′ is convergent.

(20) If seq is convergent and seq ′ is convergent, then lim(seq+seq ′) = lim seq+
lim seq′.

(21) If seq is convergent, then r · seq is convergent.

(22) If seq is convergent, then lim(r · seq) = r · (lim seq).

(23) If seq is convergent, then −seq is convergent.

(24) If seq is convergent, then lim(−seq) = − lim seq.

(25) If seq is convergent and seq ′ is convergent, then seq− seq′ is convergent.

(26) If seq is convergent and seq ′ is convergent, then lim(seq−seq ′) = lim seq−
lim seq′.

(27) If seq is convergent, then seq is bounded.

(28) If seq is convergent and seq ′ is convergent, then seq · seq′ is convergent.
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(29) If seq is convergent and seq ′ is convergent, then lim(seq·seq ′) = (lim seq)·
(lim seq′).

(30) If seq is convergent, then if lim seq 6= 0, then there exists n such that for

every m such that n ≤ m holds | lim seq|
2

< |seq(m)|.

(31) If seq is convergent and for every n holds 0 ≤ seq(n), then 0 ≤ lim seq.

(32) If seq is convergent and seq ′ is convergent and for every n holds seq(n) ≤
seq′(n), then lim seq ≤ lim seq′.

(33) If seq is convergent and seq ′ is convergent and for every n holds seq(n) ≤
seq1(n) and seq1(n) ≤ seq′(n) and lim seq = lim seq′, then seq1 is conver-
gent.

(34) If seq is convergent and seq ′ is convergent and for every n holds seq(n) ≤
seq1(n) and seq1(n) ≤ seq′(n) and lim seq = lim seq′, then lim seq1 =
lim seq.

(35) If seq is convergent and lim seq 6= 0 and seq is non-zero, then seq−1 is
convergent.

(36) If seq is convergent and lim seq 6= 0 and seq is non-zero, then lim seq−1 =
(lim seq)−1.

(37) If seq′ is convergent and seq is convergent and lim seq 6= 0 and seq is

non-zero, then seq
′

seq
is convergent.

(38) If seq′ is convergent and seq is convergent and lim seq 6= 0 and seq is

non-zero, then lim seq
′

seq
= lim seq

′

lim seq
.

(39) If seq is convergent and seq1 is bounded and lim seq = 0, then seq · seq1

is convergent.

(40) If seq is convergent and seq1 is bounded and lim seq = 0, then lim(seq ·
seq1) = 0.

References

[1] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Math-

ematics, 1(1):35–40, 1990.

[2] Jan Popio lek. Some properties of functions modul and signum. Formalized

Mathematics, 1(2):263–264, 1990.

Received July 4, 1989


