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The notation and terminology used here are introduced in the following articles:
[4], [1], [3], and [2]. For simplicity we follow the rules: f will be a function, n

will be a natural number, r, p will be real numbers, and x will be arbitrary. We
now state a proposition

(1) x is a natural number if and only if x ∈ � .

The mode sequence of real numbers, which widens to the type a function, is
defined by:

dom it = � and rng it ⊆ � .

In the sequel seq, seq1, seq2, seq3, seq′, seq1′ are sequences of real numbers.
Next we state three propositions:

(2) f is a sequence of real numbers if and only if dom f = � and rng f ⊆ � .

(3) f is a sequence of real numbers if and only if dom f = � and for every x

such that x ∈ � holds f(x) is a real number.

(4) f is a sequence of real numbers if and only if dom f = � and for every n

holds f(n) is a real number.

Let us consider seq, n. Then seq(n) is a real number.

Let us consider seq. The predicate seq is non-zero is defined by:
rng seq ⊆ � \ {0}.

One can prove the following propositions:

(5) seq is non-zero if and only if rng seq ⊆ � \ {0}.

(6) seq is non-zero if and only if for every x such that x ∈ � holds seq(x) 6= 0.
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(7) seq is non-zero if and only if for every n holds seq(n) 6= 0.

(8) For all seq, seq1 such that for every x such that x ∈ � holds seq(x) =
seq1(x) holds seq = seq1.

(9) For all seq, seq1 such that for every n holds seq(n) = seq1(n) holds
seq = seq1.

(10) For every r there exists seq such that rng seq = {r}.

The scheme ExRealSeq concerns a unary functor F yielding a real number and
states that:

there exists seq such that for every n holds seq(n) = F(n)
for all values of the parameter.

We now define two new functors. Let us consider seq1, seq2. The functor
seq1 + seq2 yields a sequence of real numbers and is defined by:

for every n holds (seq1 + seq2)(n) = seq1(n) + seq2(n).
The functor seq1 · seq2 yielding a sequence of real numbers, is defined by:

for every n holds (seq1 · seq2)(n) = seq1(n) · seq2(n).

The following two propositions are true:

(11) seq = seq1 + seq2 if and only if for every n holds seq(n) = seq1(n) +
seq2(n).

(12) seq = seq1 ·seq2 if and only if for every n holds seq(n) = seq1(n)·seq2(n).

Let us consider r, seq. The functor r ·seq yielding a sequence of real numbers,
is defined by:

for every n holds (r · seq)(n) = r · seq(n).

One can prove the following proposition

(13) seq = r · seq1 if and only if for every n holds seq(n) = r · seq1(n).

Let us consider seq. The functor −seq yields a sequence of real numbers and
is defined by:

for every n holds (−seq)(n) = −seq(n).

We now state a proposition

(14) seq = −seq1 if and only if for every n holds seq(n) = −seq1(n).

Let us consider seq1, seq2. The functor seq1 − seq2 yields a sequence of real
numbers and is defined by:

seq1 − seq2 = seq1 + (−seq2).

We now state a proposition

(15) seq = seq1 − seq2 if and only if seq = seq1 + (−seq2).

Let us consider seq. Let us assume that seq is non-zero. The functor seq−1

yielding a sequence of real numbers, is defined by:
for every n holds (seq−1)(n) = (seq(n))−1.

One can prove the following proposition

(16) If seq is non-zero, then seq1 = seq−1 if and only if for every n holds
seq1(n) = (seq(n))−1.

Let us consider seq1, seq. Let us assume that seq is non-zero. The functor
seq1

seq
yields a sequence of real numbers and is defined by:
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seq1

seq
= seq1 · seq

−1.

The following proposition is true

(17) If seq2 is non-zero, then seq = seq1

seq2
if and only if seq = seq1 · seq2

−1.

Let us consider seq. The functor |seq| yielding a sequence of real numbers, is
defined by:

for every n holds |seq|(n) = |seq(n)|.

The following propositions are true:

(18) seq = |seq1| if and only if for every n holds seq(n) = |seq1(n)|.

(19) seq1 + seq2 = seq2 + seq1.

(20) (seq1 + seq2) + seq3 = seq1 + (seq2 + seq3).

(21) seq1 · seq2 = seq2 · seq1.

(22) (seq1 · seq2) · seq3 = seq1 · (seq2 · seq3).

(23) (seq1 + seq2) · seq3 = seq1 · seq3 + seq2 · seq3.

(24) seq3 · (seq1 + seq2) = seq3 · seq1 + seq3 · seq2.

(25) −seq = (−1) · seq.

(26) r · (seq1 · seq2) = (r · seq1) · seq2.

(27) r · (seq1 · seq2) = seq1 · (r · seq2).

(28) (seq1 − seq2) · seq3 = seq1 · seq3 − seq2 · seq3.

(29) seq3 · seq1 − seq3 · seq2 = seq3 · (seq1 − seq2).

(30) r · (seq1 + seq2) = r · seq1 + r · seq2.

(31) (r · p) · seq = r · (p · seq).

(32) r · (seq1 − seq2) = r · seq1 − r · seq2.

(33) If seq is non-zero, then r · seq1

seq
= r·seq1

seq
.

(34) seq1 − (seq2 + seq3) = (seq1 − seq2) − seq3.

(35) 1 · seq = seq.

(36) −(−seq) = seq.

(37) seq1 − (−seq2) = seq1 + seq2.

(38) seq1 − (seq2 − seq3) = (seq1 − seq2) + seq3.

(39) seq1 + (seq2 − seq3) = (seq1 + seq2) − seq3.

(40) (−seq1) · seq2 = −seq1 · seq2 and seq1 · (−seq2) = −seq1 · seq2.

(41) If seq is non-zero, then seq−1 is non-zero.

(42) If seq is non-zero, then (seq−1)−1 = seq.

(43) seq is non-zero and seq1 is non-zero if and only if seq · seq1 is non-zero.

(44) If seq is non-zero and seq1 is non-zero, then seq−1 ·seq1
−1 = (seq·seq1)−1.

(45) If seq is non-zero, then seq1

seq
· seq = seq1.

(46) If seq is non-zero and seq1 is non-zero, then seq
′

seq
·

seq
1′

seq1
=

seq
′·seq

1′

seq·seq1
.

(47) If seq is non-zero and seq1 is non-zero, then seq

seq1
is non-zero.

(48) If seq is non-zero and seq1 is non-zero, then seq

seq1

−1 = seq1

seq
.

(49) If seq is non-zero, then seq2 ·
seq1

seq
= seq2·seq1

seq
.
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(50) If seq is non-zero and seq1 is non-zero, then seq2
seq

seq1

= seq2·seq1

seq
.

(51) If seq is non-zero and seq1 is non-zero, then seq2

seq
= seq2·seq1

seq·seq1
.

(52) If r 6= 0 and seq is non-zero, then r · seq is non-zero.

(53) If seq is non-zero, then −seq is non-zero.

(54) If r 6= 0 and seq is non-zero, then (r · seq)−1 = r−1 · seq−1.

(55) If seq is non-zero, then (−seq)−1 = (−1) · seq−1.

(56) If seq is non-zero, then − seq1

seq
= −seq1

seq
and seq1

−seq
= − seq1

seq
.

(57) If seq is non-zero, then seq1

seq
+

seq
1′

seq
=

seq1+seq
1′

seq
and seq1

seq
−

seq
1′

seq
=

seq1−seq
1′

seq
.

(58) If seq is non-zero and seq′ is non-zero, then seq1

seq
+

seq
1′

seq′
=

seq1·seq′+seq
1′
·seq

seq·seq′

and seq1

seq
−

seq
1′

seq′
=

seq1·seq′−seq
1′
·seq

seq·seq′ .

(59) If seq is non-zero and seq′ is non-zero and seq1 is non-zero, then
seq

1′

seq

seq′

seq1

=

seq
1′
·seq1

seq·seq′ .

(60) |seq · seq′| = |seq| · |seq′|.

(61) If seq is non-zero, then |seq| is non-zero.

(62) If seq is non-zero, then |seq|−1 = |seq−1|.

(63) If seq is non-zero, then | seq
′

seq
| = |seq′|

|seq| .

(64) |r · seq| = |r| · |seq|.
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