Real Sequences and Basic Operations on Them

Jarosław Kotowicz Warsaw University Białystok

Summary. Definition of real sequence and operations on sequences (multiplication of sequences and multiplication by a real number, addition, subtraction, division and absolute value of sequence) are given.

MML Identifier: SEQ_1.

The notation and terminology used here are introduced in the following articles: [4], [1], [3], and [2]. For simplicity we follow the rules: f will be a function, n will be a natural number, r, p will be real numbers, and x will be arbitrary. We now state a proposition

(1) x is a natural number if and only if $x \in \mathbb{N}$.

The mode sequence of real numbers, which widens to the type a function, is defined by:

dom it = \mathbb{N} and rng it $\subseteq \mathbb{R}$.

In the sequel seq, seq_1 , seq_2 , seq_3 , seq', $seq_{1'}$ are sequences of real numbers. Next we state three propositions:

- (2) f is a sequence of real numbers if and only if dom $f = \mathbb{N}$ and rng $f \subseteq \mathbb{R}$.
- (3) f is a sequence of real numbers if and only if dom $f = \mathbb{N}$ and for every x such that $x \in \mathbb{N}$ holds f(x) is a real number.
- (4) f is a sequence of real numbers if and only if dom $f = \mathbb{N}$ and for every n holds f(n) is a real number.

Let us consider seq, n. Then seq(n) is a real number.

Let us consider *seq*. The predicate *seq* is non-zero is defined by: rng $seq \subseteq \mathbb{R} \setminus \{0\}$.

One can prove the following propositions:

- (5) seq is non-zero if and only if $\operatorname{rng} seq \subseteq \mathbb{R} \setminus \{0\}$.
- (6) seq is non-zero if and only if for every x such that $x \in \mathbb{N}$ holds $seq(x) \neq 0$.

269

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

JAROSŁAW KOTOWICZ

- (7) seq is non-zero if and only if for every n holds $seq(n) \neq 0$.
- (8) For all seq, seq_1 such that for every x such that $x \in \mathbb{N}$ holds $seq(x) = seq_1(x)$ holds $seq = seq_1$.
- (9) For all seq, seq_1 such that for every n holds $seq(n) = seq_1(n)$ holds $seq = seq_1$.
- (10) For every r there exists seq such that $rng seq = \{r\}$.

The scheme ExRealSeq concerns a unary functor \mathcal{F} yielding a real number and states that:

there exists seq such that for every n holds $seq(n) = \mathcal{F}(n)$ for all values of the parameter.

We now define two new functors. Let us consider seq_1 , seq_2 . The functor $seq_1 + seq_2$ yields a sequence of real numbers and is defined by:

for every n holds $(seq_1 + seq_2)(n) = seq_1(n) + seq_2(n)$.

The functor $seq_1 \cdot seq_2$ yielding a sequence of real numbers, is defined by:

for every *n* holds $(seq_1 \cdot seq_2)(n) = seq_1(n) \cdot seq_2(n)$.

The following two propositions are true:

- (11) $seq = seq_1 + seq_2$ if and only if for every n holds $seq(n) = seq_1(n) + seq_2(n)$.
- (12) $seq = seq_1 \cdot seq_2$ if and only if for every n holds $seq(n) = seq_1(n) \cdot seq_2(n)$.

Let us consider r, seq. The functor $r \cdot seq$ yielding a sequence of real numbers, is defined by:

for every n holds $(r \cdot seq)(n) = r \cdot seq(n)$.

One can prove the following proposition

(13) $seq = r \cdot seq_1$ if and only if for every *n* holds $seq(n) = r \cdot seq_1(n)$.

Let us consider *seq*. The functor -seq yields a sequence of real numbers and is defined by:

for every n holds (-seq)(n) = -seq(n).

We now state a proposition

(14) $seq = -seq_1$ if and only if for every *n* holds $seq(n) = -seq_1(n)$.

Let us consider seq_1 , seq_2 . The functor $seq_1 - seq_2$ yields a sequence of real numbers and is defined by:

 $seq_1 - seq_2 = seq_1 + (-seq_2).$

We now state a proposition

(15) $seq = seq_1 - seq_2$ if and only if $seq = seq_1 + (-seq_2)$.

Let us consider *seq*. Let us assume that *seq* is non-zero. The functor seq^{-1} yielding a sequence of real numbers, is defined by:

for every n holds $(seq^{-1})(n) = (seq(n))^{-1}$.

One can prove the following proposition

(16) If seq is non-zero, then $seq_1 = seq^{-1}$ if and only if for every n holds $seq_1(n) = (seq(n))^{-1}$.

Let us consider seq_1 , seq. Let us assume that seq is non-zero. The functor $\frac{seq_1}{seq}$ yields a sequence of real numbers and is defined by:

 $\frac{seq_1}{seq} = seq_1 \cdot seq^{-1}.$

The following proposition is true

(17) If seq_2 is non-zero, then $seq = \frac{seq_1}{seq_2}$ if and only if $seq = seq_1 \cdot seq_2^{-1}$.

Let us consider seq. The functor |seq| yielding a sequence of real numbers, is defined by:

for every n holds |seq|(n) = |seq(n)|.

The following propositions are true:

(18) $seq = |seq_1|$ if and only if for every n holds $seq(n) = |seq_1(n)|$. (19) $seq_1 + seq_2 = seq_2 + seq_1.$ (20) $(seq_1 + seq_2) + seq_3 = seq_1 + (seq_2 + seq_3).$ (21) $seq_1 \cdot seq_2 = seq_2 \cdot seq_1.$ (22) $(seq_1 \cdot seq_2) \cdot seq_3 = seq_1 \cdot (seq_2 \cdot seq_3).$ (23) $(seq_1 + seq_2) \cdot seq_3 = seq_1 \cdot seq_3 + seq_2 \cdot seq_3.$ (24) $seq_3 \cdot (seq_1 + seq_2) = seq_3 \cdot seq_1 + seq_3 \cdot seq_2.$ (25) $-seq = (-1) \cdot seq.$ (26) $r \cdot (seq_1 \cdot seq_2) = (r \cdot seq_1) \cdot seq_2.$ (27) $r \cdot (seq_1 \cdot seq_2) = seq_1 \cdot (r \cdot seq_2).$ (28) $(seq_1 - seq_2) \cdot seq_3 = seq_1 \cdot seq_3 - seq_2 \cdot seq_3.$ (29) $seq_3 \cdot seq_1 - seq_3 \cdot seq_2 = seq_3 \cdot (seq_1 - seq_2).$ (30) $r \cdot (seq_1 + seq_2) = r \cdot seq_1 + r \cdot seq_2.$ (31) $(r \cdot p) \cdot seq = r \cdot (p \cdot seq).$ (32) $r \cdot (seq_1 - seq_2) = r \cdot seq_1 - r \cdot seq_2.$ If seq is non-zero, then $r \cdot \frac{seq_1}{seq} = \frac{r \cdot seq_1}{seq}$. (33)(34) $seq_1 - (seq_2 + seq_3) = (seq_1 - seq_2) - seq_3.$ (35) $1 \cdot seq = seq.$ (36)-(-seq) = seq.(37) $seq_1 - (-seq_2) = seq_1 + seq_2.$ $seq_1 - (seq_2 - seq_3) = (seq_1 - seq_2) + seq_3.$ (38) $seq_1 + (seq_2 - seq_3) = (seq_1 + seq_2) - seq_3.$ (39)(40) $(-seq_1) \cdot seq_2 = -seq_1 \cdot seq_2$ and $seq_1 \cdot (-seq_2) = -seq_1 \cdot seq_2$. If seq is non-zero, then seq^{-1} is non-zero. (41)If seq is non-zero, then $(seq^{-1})^{-1} = seq$. (42)seq is non-zero and seq_1 is non-zero if and only if $seq \cdot seq_1$ is non-zero. (43)If seq is non-zero and seq₁ is non-zero, then $seq^{-1} \cdot seq_1^{-1} = (seq \cdot seq_1)^{-1}$. (44)If seq is non-zero, then $\frac{seq_1}{seq} \cdot seq = seq_1$. (45)If seq is non-zero and seq₁ is non-zero, then $\frac{seq'}{seq} \cdot \frac{seq_{1'}}{seq_1} = \frac{seq' \cdot seq_{1'}}{seq \cdot seq_1}$. If seq is non-zero and seq₁ is non-zero, then $\frac{seq}{seq_1}$ is non-zero. (46)(47)If seq is non-zero and seq_1 is non-zero, then $\frac{seq}{seq_1}^{-1} = \frac{seq_1}{seq_1}$ (48)

(49) If seq is non-zero, then $seq_2 \cdot \frac{seq_1}{seq} = \frac{seq_2 \cdot seq_1}{seq}$.

- If seq is non-zero and seq₁ is non-zero, then $\frac{seq_2}{seq_1} = \frac{seq_2 \cdot seq_1}{seq_1}$. (50)
- If seq is non-zero and seq₁ is non-zero, then $\frac{seq_2}{seq} = \frac{seq_2 \cdot seq_1}{seq \cdot seq_1}$ (51)
- If $r \neq 0$ and seq is non-zero, then $r \cdot seq$ is non-zero. (52)
- (53)If seq is non-zero, then -seq is non-zero.
- If $r \neq 0$ and seq is non-zero, then $(r \cdot seq)^{-1} = r^{-1} \cdot seq^{-1}$. (54)
- If seq is non-zero, then $(-seq)^{-1} = (-1) \cdot seq^{-1}$. (55)
- (56)
- If seq is non-zero, then $-\frac{seq_1}{seq} = \frac{-seq_1}{seq}$ and $\frac{seq_1}{-seq} = -\frac{seq_1}{seq}$. If seq is non-zero, then $\frac{seq_1}{seq} + \frac{seq_{1'}}{seq} = \frac{seq_1+seq_{1'}}{seq}$ and $\frac{seq_1}{seq} \frac{seq_{1'}}{seq} =$ (57) $\tfrac{seq_1 - seq_{1'}}{seq}$

If seq is non-zero and seq' is non-zero, then $\frac{seq_1}{seq} + \frac{seq_{1'}}{seq'} = \frac{seq_1 \cdot seq' + seq_{1'} \cdot seq}{seq \cdot seq'}$ and $\frac{seq_1}{seq} - \frac{seq_{1'}}{seq'} = \frac{seq_1 \cdot seq' - seq_{1'} \cdot seq}{seq \cdot seq'}$. (58)

If seq is non-zero and seq' is non-zero and seq_1 is non-zero, then $\frac{\frac{seq_1}{seq}}{\frac{seq'}{seq'}} = eq_1 \cdot seq_1$ (59) $\frac{seq_{1'} \cdot seq_1}{seq \cdot seq'}$

- (60) $|seq \cdot seq'| = |seq| \cdot |seq'|.$
- If seq is non-zero, then |seq| is non-zero. (61)
- If seq is non-zero, then $|seq|^{-1} = |seq^{-1}|$. (62)
- If seq is non-zero, then $\left|\frac{seq'}{seq}\right| = \frac{|seq'|}{|seq|}$. (63)

 $|r \cdot seq| = |r| \cdot |seq|.$ (64)

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathe-1 *matics*, 1(1):55–65, 1990.
- [2]Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. For-[4]*malized Mathematics*, 1(1):17–23, 1990.

Received July 4, 1989