Real Sequences and Basic Operations on Them

Jarosław Kotowicz
Warsaw University
Białystok

Abstract

Summary. Definition of real sequence and operations on sequences (multiplication of sequences and multiplication by a real number, addition, subtraction, division and absolute value of sequence) are given.

MML Identifier: SEQ_1.

The notation and terminology used here are introduced in the following articles: [4], [1], [3], and [2]. For simplicity we follow the rules: f will be a function, n will be a natural number, r, p will be real numbers, and x will be arbitrary. We now state a proposition
(1) x is a natural number if and only if $x \in \mathbb{N}$.

The mode sequence of real numbers, which widens to the type a function, is defined by:
dom it $=\mathbb{N}$ and rng it $\subseteq \mathbb{R}$.
In the sequel $s e q, s e q_{1}, s e q_{2}, s e q_{3}, s e q^{\prime}$, $s e q_{1^{\prime}}$ are sequences of real numbers. Next we state three propositions:
(2) $\quad f$ is a sequence of real numbers if and only if $\operatorname{dom} f=\mathbb{N}$ and $\operatorname{rng} f \subseteq \mathbb{R}$.
(3) $\quad f$ is a sequence of real numbers if and only if $\operatorname{dom} f=\mathbb{N}$ and for every x such that $x \in \mathbb{N}$ holds $f(x)$ is a real number.
(4) $\quad f$ is a sequence of real numbers if and only if $\operatorname{dom} f=\mathbb{N}$ and for every n holds $f(n)$ is a real number.
Let us consider seq, n. Then $\operatorname{seq}(n)$ is a real number.
Let us consider seq. The predicate seq is non-zero is defined by:
$\operatorname{rng} s e q \subseteq \mathbb{R} \backslash\{0\}$.
One can prove the following propositions:
(5) seq is non-zero if and only if rng seq $\subseteq \mathbb{R} \backslash\{0\}$.
(6) $s e q$ is non-zero if and only if for every x such that $x \in \mathbb{N}$ holds $\operatorname{seq}(x) \neq 0$.
(7) seq is non-zero if and only if for every n holds $\operatorname{seq}(n) \neq 0$.
(8) For all seq, seq $_{1}$ such that for every x such that $x \in \mathbb{N}$ holds $\operatorname{seq}(x)=$ $s e q_{1}(x)$ holds $s e q=s e q_{1}$.
(9) For all seq, seq such that for every n holds $\operatorname{seq}(n)=\operatorname{seq}_{1}(n)$ holds $s e q=s e q_{1}$.
(10) For every r there exists seq such that rng seq $=\{r\}$.

The scheme ExRealSeq concerns a unary functor \mathcal{F} yielding a real number and states that:
there exists seq such that for every n holds $\operatorname{seq}(n)=\mathcal{F}(n)$ for all values of the parameter.

We now define two new functors. Let us consider $s e q_{1}, s e q_{2}$. The functor $s e q_{1}+s e q_{2}$ yields a sequence of real numbers and is defined by:
for every n holds $\left(\right.$ seq $\left._{1}+s e q_{2}\right)(n)=s e q_{1}(n)+s e q_{2}(n)$.
The functor $s e q_{1} \cdot s e q_{2}$ yielding a sequence of real numbers, is defined by:
for every n holds $\left(s e q_{1} \cdot s e q_{2}\right)(n)=s e q_{1}(n) \cdot s e q_{2}(n)$.
The following two propositions are true:
(11) \quad seq $=s e q_{1}+s e q_{2}$ if and only if for every n holds $\operatorname{seq}(n)=s e q_{1}(n)+$ $s e q_{2}(n)$.
(12) $\quad s e q=s e q_{1} \cdot s e q_{2}$ if and only if for every n holds $\operatorname{seq}(n)=s e q_{1}(n) \cdot s e q_{2}(n)$.

Let us consider r, seq. The functor $r \cdot s e q$ yielding a sequence of real numbers, is defined by:
for every n holds $(r \cdot s e q)(n)=r \cdot \operatorname{seq}(n)$.
One can prove the following proposition

$$
\begin{equation*}
s e q=r \cdot s e q_{1} \text { if and only if for every } n \text { holds } s e q(n)=r \cdot s e q_{1}(n) . \tag{13}
\end{equation*}
$$

Let us consider seq. The functor $-s e q$ yields a sequence of real numbers and is defined by:
for every n holds $(-s e q)(n)=-s e q(n)$.
We now state a proposition
(14) $s e q=-s e q_{1}$ if and only if for every n holds $\operatorname{seq}(n)=-s e q_{1}(n)$.

Let us consider $s e q_{1}, s e q_{2}$. The functor $s e q_{1}-s e q_{2}$ yields a sequence of real numbers and is defined by:
$s e q_{1}-s e q_{2}=s e q_{1}+\left(-s e q_{2}\right)$.
We now state a proposition
(15) $s e q=s e q_{1}-s e q_{2}$ if and only if $s e q=s e q_{1}+\left(-s e q_{2}\right)$.

Let us consider seq. Let us assume that seq is non-zero. The functor $s e q^{-1}$ yielding a sequence of real numbers, is defined by:
for every n holds $\left(s e q^{-1}\right)(n)=(\operatorname{seq}(n))^{-1}$.
One can prove the following proposition
(16) If $s e q$ is non-zero, then $s e q_{1}=s e q^{-1}$ if and only if for every n holds $\operatorname{seq}_{1}(n)=(\operatorname{seq}(n))^{-1}$.
Let us consider seq $_{1}$, seq. Let us assume that seq is non-zero. The functor $\frac{s e q_{1}}{s e q}$ yields a sequence of real numbers and is defined by:

$$
\frac{s e q_{1}}{s e q}=s e q_{1} \cdot s e q^{-1}
$$

The following proposition is true
(17) If $s e q_{2}$ is non-zero, then $s e q=\frac{s e q_{1}}{s e q_{2}}$ if and only if $s e q=s e q_{1} \cdot s e q_{2}{ }^{-1}$.

Let us consider seq. The functor \mid seq| yielding a sequence of real numbers, is defined by:
for every n holds \mid seq $|(n)=|\operatorname{seq}(n)|$.
The following propositions are true:
(18) $\quad s e q=\left|s e q_{1}\right|$ if and only if for every n holds $\operatorname{seq}(n)=\left|s e q_{1}(n)\right|$.
(19) $\quad s e q_{1}+s e q_{2}=s e q_{2}+s e q_{1}$.
(20) $\quad\left(s e q_{1}+s e q_{2}\right)+s e q_{3}=s e q_{1}+\left(s e q_{2}+s e q_{3}\right)$.
(21) $s e q_{1} \cdot s e q_{2}=s e q_{2} \cdot s e q_{1}$.
(22) $\quad\left(s e q_{1} \cdot s e q_{2}\right) \cdot s e q_{3}=s e q_{1} \cdot\left(s e q_{2} \cdot s e q_{3}\right)$.
(23) $\quad\left(s e q_{1}+s e q_{2}\right) \cdot s e q_{3}=s e q_{1} \cdot s e q_{3}+s e q_{2} \cdot s e q_{3}$.
(24) $s e q_{3} \cdot\left(s e q_{1}+s e q_{2}\right)=s e q_{3} \cdot s e q_{1}+s e q_{3} \cdot s e q_{2}$.
(25) $\quad-s e q=(-1) \cdot s e q$.
(26) $r \cdot\left(s e q_{1} \cdot s e q_{2}\right)=\left(r \cdot s e q_{1}\right) \cdot s e q_{2}$.
(27) $\quad r \cdot\left(s e q_{1} \cdot s e q_{2}\right)=s e q_{1} \cdot\left(r \cdot s e q_{2}\right)$.
(28) $\quad\left(s e q_{1}-s e q_{2}\right) \cdot s e q_{3}=s e q_{1} \cdot s e q_{3}-s e q_{2} \cdot s e q_{3}$.
(29) $s e q_{3} \cdot s e q_{1}-s e q_{3} \cdot s e q_{2}=s e q_{3} \cdot\left(s e q_{1}-s e q_{2}\right)$.
(30) $r \cdot\left(s e q_{1}+s e q_{2}\right)=r \cdot s e q_{1}+r \cdot s e q_{2}$.
(31) $(r \cdot p) \cdot s e q=r \cdot(p \cdot s e q)$.
(32) $r \cdot\left(s e q_{1}-s e q_{2}\right)=r \cdot s e q_{1}-r \cdot s e q_{2}$.
(33) If seq is non-zero, then $r \cdot \frac{s e q_{1}}{s e q}=\frac{r \cdot s e q_{1}}{s e q}$.
(34) $s e q_{1}-\left(s e q_{2}+s e q_{3}\right)=\left(s e q_{1}-s e q_{2}\right)-s e q_{3}$.
(35) $1 \cdot s e q=s e q$.
(36) $\quad-(-s e q)=s e q$.
(37) $s e q_{1}-\left(-s e q_{2}\right)=s e q_{1}+s e q_{2}$.
(38) $s e q_{1}-\left(s e q_{2}-s e q_{3}\right)=\left(s e q_{1}-s e q_{2}\right)+s e q_{3}$.
(39) $s e q_{1}+\left(s e q_{2}-s e q_{3}\right)=\left(s e q_{1}+s e q_{2}\right)-s e q_{3}$.
(40) $\quad\left(-s e q_{1}\right) \cdot s e q_{2}=-s e q_{1} \cdot s e q_{2}$ and $s e q_{1} \cdot\left(-s e q_{2}\right)=-s e q_{1} \cdot s e q_{2}$.
(41) If seq is non-zero, then $s e q^{-1}$ is non-zero.
(42) If $s e q$ is non-zero, then $\left(s e q^{-1}\right)^{-1}=s e q$.
(43) seq is non-zero and $s e q_{1}$ is non-zero if and only if $s e q \cdot s e q_{1}$ is non-zero.
(44) If $s e q$ is non-zero and $s e q_{1}$ is non-zero, then $s e q^{-1} \cdot s e q_{1}^{-1}=\left(s e q \cdot s e q_{1}\right)^{-1}$.
(45) If seq is non-zero, then $\frac{s e q_{1}}{s e q} \cdot s e q=s e q_{1}$.
(46) If $s e q$ is non-zero and $s e q_{1}$ is non-zero, then $\frac{s e q^{\prime}}{s e q} \cdot \frac{s e q_{1^{\prime}}}{s e q_{1}}=\frac{s e q^{\prime} \cdot s e q_{1^{\prime}}}{s e q \cdot s e q_{1}}$.
(47) If $s e q$ is non-zero and $s e q_{1}$ is non-zero, then $\frac{s e q}{s e q_{1}}$ is non-zero.
(48) If seq is non-zero and $s e q_{1}$ is non-zero, then $\frac{s e q}{s e q_{1}}-1=\frac{s e q_{1}}{s e q}$.
(49) If $s e q$ is non-zero, then $s e q_{2} \cdot \frac{s e q_{1}}{s e q}=\frac{s e q_{2} \cdot s e q_{1}}{s e q}$.
(50) If $s e q$ is non-zero and $s e q_{1}$ is non-zero, then $\frac{s e q_{2}}{\frac{s e q_{1}}{s e q_{1}}}=\frac{s e q_{2} \cdot s e q_{1}}{s e q}$.
(53) If seq is non-zero, then -seq is non-zero.
(54) If $r \neq 0$ and seq is non-zero, then $(r \cdot s e q)^{-1}=r^{-1} \cdot s e q^{-1}$.
(55) If $s e q$ is non-zero, then $(-s e q)^{-1}=(-1) \cdot s e q^{-1}$.
(56) If $s e q$ is non-zero, then $-\frac{s e q_{1}}{s e q}=\frac{-s e q_{1}}{s e q}$ and $\frac{s e q_{1}}{-s e q}=-\frac{s e q_{1}}{s e q}$.
(57) If $s e q$ is non-zero, then $\frac{s e q_{1}}{s e q}+\frac{s e q_{1}}{s e q}=\frac{s e q_{1}+s e q_{1}}{s e q}$ and $\frac{s e q_{1}}{s e q}-\frac{s e q_{1}}{s e q}=$ $\frac{s e q_{1}-s e q_{1}}{s e q}$.
(58) If $s e q$ is non-zero and $s e q^{\prime}$ is non-zero, then $\frac{s e q_{1}}{s e q}+\frac{s e q_{1}{ }^{\prime}}{s e q^{\prime}}=\frac{s e q_{1} \cdot s e q^{\prime}+s e q_{1} \cdot s e q}{s e q \cdot s e q^{\prime}}$ and $\frac{s e q_{1}}{s e q}-\frac{s e q_{1}^{\prime}}{s e q^{\prime}}=\frac{s e q_{1} \cdot s e q^{\prime}-s e q_{1} \cdot s e q}{s e q \cdot s e q^{\prime}}$.
(59) If $s e q$ is non-zero and $s e q^{\prime}$ is non-zero and $s e q_{1}$ is non-zero, then $\frac{\frac{s e q_{1}{ }^{\prime}}{s e q^{\prime}}}{\frac{s e q^{\prime}}{s e q_{1}}}=$ $\frac{s e q_{1} \cdot s e q_{1}}{s e q \cdot s e q^{\prime}}$.
(60) $\quad\left|s e q \cdot s e q^{\prime}\right|=|s e q| \cdot\left|s e q^{\prime}\right|$.
(61) If seq is non-zero, then $|s e q|$ is non-zero.
(62) If seq is non-zero, then $|s e q|^{-1}=\left|s e q^{-1}\right|$.
(63) If seq is non-zero, then $\left|\frac{s e q^{\prime}}{s e q}\right|=\frac{\left|s e q^{\prime}\right|}{|s e q|}$.
(64) $\quad|r \cdot s e q|=|r| \cdot|s e q|$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[4] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received July 4, 1989

