Vectors in Real Linear Space

Wojciech A. Trybulec¹ Warsaw University

Summary. In this article we introduce a notion of real linear space, operations on vectors: addition, multiplication by real number, inverse vector, substraction. The sum of finite sequence of the vectors is also defined. Theorems that belong rather to [1] or [2] are proved.

MML Identifier: RLVECT_1.

The notation and terminology used here have been introduced in the following articles: [7], [4], [5], [3], [6], [2], and [1]. We consider RLS structures which are systems

 \langle vectors, a zero, an addition, a multiplication \rangle

where the vectors is a non-empty set, the zero is an element of the vectors, the addition is a binary operation on the vectors, and the multiplication is a function from $[\mathbb{R}, \text{the vectors}]$ into the vectors. In the sequel V will denote an RLS structure, v will denote an element of the vectors of V, and x will be arbitrary. Let us consider V. A vector of V is an element of the vectors of V.

Next we state a proposition

(1) v is a vector of V.

Let us consider V, x. The predicate $x \in V$ is defined by: $x \in$ the vectors of V.

Next we state two propositions:

(2) $x \in V$ if and only if $x \in$ the vectors of V.

(3) $v \in V$.

Let us consider V. The functor 0_V yielding a vector of V, is defined by: 0_V =the zero of V.

In the sequel v, w will denote vectors of V and a, b will denote real numbers. Let us consider V, v, w. The functor v + w yields a vector of V and is defined by:

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C1

 $v + w = (\text{the addition of } V)(\langle v, w \rangle).$

Let us consider V, v, a. The functor $a \cdot v$ yielding a vector of V, is defined by: $a \cdot v = (\text{the multiplication of } V)(\langle a, v \rangle).$

We now state three propositions:

- (4) 0_V = the zero of V.
- (5) $v + w = (\text{the addition of } V)(\langle v, w \rangle).$
- (6) $a \cdot v = (\text{the multiplication of } V)(\langle a, v \rangle).$

The mode real linear space, which widens to the type an RLS structure, is defined by:

- (i) for all vectors v, w of it holds v + w = w + v,
- (ii) for all vectors u, v, w of it holds (u + v) + w = u + (v + w),
- (iii) for every vector v of it holds $v + 0_{it} = v$,
- (iv) for every vector v of it there exists w being a vector of it such that $v + w = 0_{it}$,
- (v) for every a for all vectors v, w of it holds $a \cdot (v + w) = a \cdot v + a \cdot w$,
- (vi) for all a, b for every vector v of it holds $(a + b) \cdot v = a \cdot v + b \cdot v$,
- (vii) for all a, b for every vector v of it holds $(a \cdot b) \cdot v = a \cdot (b \cdot v)$,
- (viii) for every vector v of it holds $1 \cdot v = v$.

Next we state a proposition

- (7) Suppose that
- (i) for all vectors v, w of V holds v + w = w + v,
- (ii) for all vectors u, v, w of V holds (u+v) + w = u + (v+w),
- (iii) for every vector v of V holds $v + 0_V = v$,
- (iv) for every vector v of V there exists w being a vector of V such that $v + w = 0_V$,
- (v) for every a for all vectors v, w of V holds $a \cdot (v + w) = a \cdot v + a \cdot w$,
- (vi) for all a, b for every vector v of V holds $(a + b) \cdot v = a \cdot v + b \cdot v$,
- (vii) for all a, b for every vector v of V holds $(a \cdot b) \cdot v = a \cdot (b \cdot v)$,
- (viii) for every vector v of V holds $1 \cdot v = v$.

Then V is a real linear space.

We follow the rules: V denotes a real linear space and u, v, v_1, v_2, w denote vectors of V. The following propositions are true:

- $(8) \quad v+w=w+v.$
- (9) (u+v) + w = u + (v+w).
- (10) $v + 0_V = v$ and $0_V + v = v$.
- (11) There exists w such that $v + w = 0_V$.
- (12) $a \cdot (v+w) = a \cdot v + a \cdot w.$
- (13) $(a+b) \cdot v = a \cdot v + b \cdot v.$
- (14) $(a \cdot b) \cdot v = a \cdot (b \cdot v).$
- $(15) \quad 1 \cdot v = v.$

Let us consider V, v. The functor -v yields a vector of V and is defined by: $v + (-v) = 0_V$. Let us consider V, v, w. The functor v - w yields a vector of V and is defined by:

v - w = v + (-w).Next we state a number of propositions: $v + (-v) = 0_V.$ (16)(17)If $v + w = 0_V$, then w = -v. v - w = v + (-w).(18)(19)If $v + w = 0_V$, then v = -w. (20)There exists w such that v + w = u. (21)If $w + v_1 = u$ and $w + v_2 = u$, then $v_1 = v_2$. (22)If v + w = v, then $w = 0_V$. If a = 0 or $v = 0_V$, then $a \cdot v = 0_V$. (23)If $a \cdot v = 0_V$, then a = 0 or $v = 0_V$. (24) $-0_V = 0_V.$ (25) $v - 0_V = v.$ (26) $0_V - v = -v.$ (27)(28) $v - v = 0_V.$ $-v = (-1) \cdot v.$ (29)(30)-(-v) = v.If -v = -w, then v = w. (31)(32)If v = -w, then -v = w. (33)If v = -v, then $v = 0_V$. If $v + v = 0_V$, then $v = 0_V$. (34)If $v - w = 0_V$, then v = w. (35)There exists w such that v - w = u. (36)(37)If $w - v_1 = u$ and $w - v_2 = u$, then $v_1 = v_2$. (38) $a \cdot (-v) = (-a) \cdot v.$ (39) $a \cdot (-v) = -a \cdot v.$ $(-a) \cdot (-v) = a \cdot v.$ (40)v - (u + w) = (v - u) - w.(41)(v+u) - w = v + (u-w).(42)(43)v - (u - w) = (v - u) + w.(44)-(v+w) = (-v) - w.-(v+w) = (-v) + (-w).(45)(-v) - w = (-w) - v.(46)-(v - w) = (-v) + w.(47) $a \cdot (v - w) = a \cdot v - a \cdot w.$ (48) $(a-b) \cdot v = a \cdot v - b \cdot v.$ (49)(50)If $a \neq 0$ and $a \cdot v = a \cdot w$, then v = w. If $v \neq 0_V$ and $a \cdot v = b \cdot v$, then a = b. (51)

For simplicity we adopt the following convention: F, G denote finite sequences of elements of the vectors of V, f denotes a function from \mathbb{N} into the vectors of V, j, k, n denote natural numbers, and p, q denote finite sequences. Let us consider V, f, j. Then f(j) is a vector of V.

Let us consider V, v, u. Then $\langle v, u \rangle$ is a finite sequence of elements of the vectors of V.

Let us consider V, v, u, w. Then $\langle v, u, w \rangle$ is a finite sequence of elements of the vectors of V.

Let us consider V, F. The functor $\sum F$ yields a vector of V and is defined by: there exists f such that $\sum F = f(\operatorname{len} F)$ and $f(0) = 0_V$ and for all j, v such that $j < \operatorname{len} F$ and v = F(j+1) holds f(j+1) = f(j) + v.

The following propositions are true:

- (52) If there exists f such that $u = f(\operatorname{len} F)$ and $f(0) = 0_V$ and for all j, v such that $j < \operatorname{len} F$ and v = F(j+1) holds f(j+1) = f(j) + v, then $u = \sum F$.
- (53) There exists f such that $\sum F = f(\operatorname{len} F)$ and $f(0) = 0_V$ and for all j, v such that $j < \operatorname{len} F$ and v = F(j+1) holds f(j+1) = f(j) + v.
- (54) If $k \in \text{Seg } n$ and len F = n, then F(k) is a vector of V.
- (55) If len F = len G + 1 and $G = F \upharpoonright \text{Seg}(\text{len } G)$ and v = F(len F), then $\sum F = \sum G + v$.
- (56) If len F = len G and for all k, v such that $k \in \text{Seg}(\text{len } F)$ and v = G(k) holds $F(k) = a \cdot v$, then $\sum F = a \cdot \sum G$.
- (57) If len F = len G and for all k, v such that $k \in \text{Seg}(\text{len } F)$ and v = G(k) holds F(k) = -v, then $\sum F = -\sum G$.
- (58) $\sum (F \cap G) = \sum F + \sum G.$
- (59) If rng $F = \operatorname{rng} G$ and F is one-to-one and G is one-to-one, then $\sum F = \sum G$.
- (60) $\sum \varepsilon_{\text{(the vectors of }V)} = 0_V.$
- (61) $\sum \langle v \rangle = v.$
- (62) $\sum \langle v, u \rangle = v + u.$
- (63) $\sum \langle v, u, w \rangle = (v+u) + w.$
- (64) $a \cdot \sum \varepsilon_{\text{(the vectors of } V)} = 0_V.$
- (65) $a \cdot \sum \langle v \rangle = a \cdot v.$
- (66) $a \cdot \sum \langle v, u \rangle = a \cdot v + a \cdot u.$
- (67) $a \cdot \sum \langle v, u, w \rangle = (a \cdot v + a \cdot u) + a \cdot w.$
- (68) $-\sum \varepsilon_{\text{(the vectors of }V)} = 0_V.$
- (69) $-\sum \langle v \rangle = -v.$
- (70) $-\sum \langle v, u \rangle = (-v) u.$
- (71) $-\sum \langle v, u, w \rangle = ((-v) u) w.$
- (72) $\sum \langle v, w \rangle = \sum \langle w, v \rangle.$
- (73) $\sum \langle v, w \rangle = \sum \langle v \rangle + \sum \langle w \rangle.$

(74) $\sum \langle 0_V, 0_V \rangle = 0_V.$ (75) $\sum \langle 0_V, v \rangle = v$ and $\sum \langle v, 0_V \rangle = v$. (76) $\sum \langle v, -v \rangle = 0_V$ and $\sum \langle -v, v \rangle = 0_V$. (77) $\sum \langle v, -w \rangle = v - w$ and $\sum \langle -w, v \rangle = v - w$. $\sum \langle -v, -w \rangle = -(v+w)$ and $\sum \langle -w, -v \rangle = -(v+w)$. (78)(79) $\sum \langle v, v \rangle = 2 \cdot v.$ (80) $\sum \langle -v, -v \rangle = (-2) \cdot v.$ (81) $\sum \langle u, v, w \rangle = (\sum \langle u \rangle + \sum \langle v \rangle) + \sum \langle w \rangle.$ (82) $\sum \langle u, v, w \rangle = \sum \langle u, v \rangle + w.$ (83) $\sum \langle u, v, w \rangle = \sum \langle v, w \rangle + u.$ (84) $\sum \langle u, v, w \rangle = \sum \langle u, w \rangle + v.$ (85) $\sum \langle u, v, w \rangle = \sum \langle u, w, v \rangle.$ (86) $\sum \langle u, v, w \rangle = \sum \langle v, u, w \rangle.$ (87) $\sum \langle u, v, w \rangle = \sum \langle v, w, u \rangle.$ (88) $\sum \langle u, v, w \rangle = \sum \langle w, u, v \rangle.$ (89) $\sum \langle u, v, w \rangle = \sum \langle w, v, u \rangle.$ (90) $\sum \langle 0_V, 0_V, 0_V \rangle = 0_V.$ $\sum \langle 0_V, 0_V, v \rangle = v$ and $\sum \langle 0_V, v, 0_V \rangle = v$ and $\sum \langle v, 0_V, 0_V \rangle = v$. (91)(92) $\sum \langle 0_V, u, v \rangle = u + v$ and $\sum \langle u, v, 0_V \rangle = u + v$ and $\sum \langle u, 0_V, v \rangle = u + v$. $\sum \langle v, v, v \rangle = 3 \cdot v.$ (93)If len F = 0, then $\sum F = 0_V$. (94)If len F = 1, then $\sum F = F(1)$. (95)If len F = 2 and $v_1 = F(1)$ and $v_2 = F(2)$, then $\sum F = v_1 + v_2$. (96)(97)If len F = 3 and $v_1 = F(1)$ and $v_2 = F(2)$ and v = F(3), then $\sum F =$ $(v_1 + v_2) + v$. If j < 1, then j = 0. (98) $1 \leq k$ if and only if $k \neq 0$. (99)k < k + n and k < n + k. (100)(101)k < k + 1 and k < 1 + k. (102)If $k \neq 0$, then n < n + k and n < k + n. (103)k < k + n if and only if $1 \le n$. $\operatorname{Seg} k = \operatorname{Seg}(k+1) \setminus \{k+1\}.$ (104) $p = (p \cap q) \upharpoonright \operatorname{Seg}(\operatorname{len} p).$ (105)

(106) If $\operatorname{rng} p = \operatorname{rng} q$ and p is one-to-one and q is one-to-one, then $\operatorname{len} p = \operatorname{len} q$.

References

 Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.

- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175– 180, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [7] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received July 24, 1989