Vectors in Real Linear Space

Wojciech A. Trybulec ${ }^{1}$
Warsaw University

Abstract

Summary. In this article we introduce a notion of real linear space, operations on vectors: addition, multiplication by real number, inverse vector, substraction. The sum of finite sequence of the vectors is also defined. Theorems that belong rather to [1] or [2] are proved.

MML Identifier: RLVECT_1.

The notation and terminology used here have been introduced in the following articles: [7], [4], [5], [3], [6], [2], and [1]. We consider RLS structures which are systems

〈 vectors, a zero, an addition, a multiplication 〉
where the vectors is a non-empty set, the zero is an element of the vectors, the addition is a binary operation on the vectors, and the multiplication is a function from $: \mathbb{R}$, the vectors $:$ into the vectors. In the sequel V will denote an RLS structure, v will denote an element of the vectors of V, and x will be arbitrary. Let us consider V. A vector of V is an element of the vectors of V.

Next we state a proposition
(1) $\quad v$ is a vector of V.

Let us consider V, x. The predicate $x \in V$ is defined by:
$x \in$ the vectors of V.
Next we state two propositions:
(2) $x \in V$ if and only if $x \in$ the vectors of V.
(3) $v \in V$.

Let us consider V. The functor 0_{V} yielding a vector of V, is defined by:
$0_{V}=$ the zero of V.
In the sequel v, w will denote vectors of V and a, b will denote real numbers. Let us consider V, v, w. The functor $v+w$ yields a vector of V and is defined by:

[^0]$v+w=($ the addition of $V)(\langle v, w\rangle)$.
Let us consider V, v, a. The functor $a \cdot v$ yielding a vector of V, is defined by: $a \cdot v=($ the multiplication of $V)(\langle a, v\rangle)$.
We now state three propositions:
(4) $0_{V}=$ the zero of V.
(5) $v+w=($ the addition of $V)(\langle v, w\rangle)$.
(6) $a \cdot v=($ the multiplication of $V)(\langle a, v\rangle)$.

The mode real linear space, which widens to the type an RLS structure, is defined by:
(i) for all vectors v, w of it holds $v+w=w+v$,
(ii) for all vectors u, v, w of it holds $(u+v)+w=u+(v+w)$,
(iii) for every vector v of it holds $v+0_{\text {it }}=v$,
(iv) for every vector v of it there exists w being a vector of it such that $v+w=$ $0_{\text {it }}$,
(v) for every a for all vectors v, w of it holds $a \cdot(v+w)=a \cdot v+a \cdot w$,
(vi) for all a, b for every vector v of it holds $(a+b) \cdot v=a \cdot v+b \cdot v$,
(vii) for all a, b for every vector v of it holds $(a \cdot b) \cdot v=a \cdot(b \cdot v)$,
(viii) for every vector v of it holds $1 \cdot v=v$.

Next we state a proposition
(7) Suppose that
(i) for all vectors v, w of V holds $v+w=w+v$,
(ii) for all vectors u, v, w of V holds $(u+v)+w=u+(v+w)$,
(iii) for every vector v of V holds $v+0_{V}=v$,
(iv) for every vector v of V there exists w being a vector of V such that $v+w=0_{V}$,
(v) for every a for all vectors v, w of V holds $a \cdot(v+w)=a \cdot v+a \cdot w$,
(vi) for all a, b for every vector v of V holds $(a+b) \cdot v=a \cdot v+b \cdot v$,
(vii) for all a, b for every vector v of V holds $(a \cdot b) \cdot v=a \cdot(b \cdot v)$,
(viii) for every vector v of V holds $1 \cdot v=v$.

Then V is a real linear space.
We follow the rules: V denotes a real linear space and u, v, v_{1}, v_{2}, w denote vectors of V. The following propositions are true:
(8) $v+w=w+v$.
(9) $(u+v)+w=u+(v+w)$.
(10) $v+0_{V}=v$ and $0_{V}+v=v$.
(11) There exists w such that $v+w=0_{V}$.
(12) $a \cdot(v+w)=a \cdot v+a \cdot w$.
(13) $(a+b) \cdot v=a \cdot v+b \cdot v$.
(14) $(a \cdot b) \cdot v=a \cdot(b \cdot v)$.
(15) $1 \cdot v=v$.

Let us consider V, v. The functor $-v$ yields a vector of V and is defined by: $v+(-v)=0_{V}$.

Let us consider V, v, w. The functor $v-w$ yields a vector of V and is defined by:
$v-w=v+(-w)$.
Next we state a number of propositions:
(16) $v+(-v)=0_{V}$.
(17) If $v+w=0_{V}$, then $w=-v$.
(18) $v-w=v+(-w)$.
(19) If $v+w=0_{V}$, then $v=-w$.
(20) There exists w such that $v+w=u$.
(21) If $w+v_{1}=u$ and $w+v_{2}=u$, then $v_{1}=v_{2}$.
(22) If $v+w=v$, then $w=0_{V}$.
(23) If $a=0$ or $v=0_{V}$, then $a \cdot v=0_{V}$.
(24) If $a \cdot v=0_{V}$, then $a=0$ or $v=0_{V}$.
(25) $\quad-0_{V}=0_{V}$.
(26) $v-0_{V}=v$.
(27) $0_{V}-v=-v$.
(28) $\quad v-v=0_{V}$.
(29) $\quad-v=(-1) \cdot v$.
(30) $-(-v)=v$.
(31) If $-v=-w$, then $v=w$.
(32) If $v=-w$, then $-v=w$.
(33) If $v=-v$, then $v=0_{V}$.
(34) If $v+v=0_{V}$, then $v=0_{V}$.
(35) If $v-w=0_{V}$, then $v=w$.
(36) There exists w such that $v-w=u$.
(37) If $w-v_{1}=u$ and $w-v_{2}=u$, then $v_{1}=v_{2}$.
(38) $a \cdot(-v)=(-a) \cdot v$.
(39) $a \cdot(-v)=-a \cdot v$.
(40) $(-a) \cdot(-v)=a \cdot v$.
(41) $v-(u+w)=(v-u)-w$.
(42) $(v+u)-w=v+(u-w)$.
(43) $v-(u-w)=(v-u)+w$.
(44) $\quad-(v+w)=(-v)-w$.
(45) $\quad-(v+w)=(-v)+(-w)$.
(46) $(-v)-w=(-w)-v$.
(47) $\quad-(v-w)=(-v)+w$.
(48) $a \cdot(v-w)=a \cdot v-a \cdot w$.
(49) $(a-b) \cdot v=a \cdot v-b \cdot v$.
(50) If $a \neq 0$ and $a \cdot v=a \cdot w$, then $v=w$.
(51) If $v \neq 0_{V}$ and $a \cdot v=b \cdot v$, then $a=b$.

For simplicity we adopt the following convention: F, G denote finite sequences of elements of the vectors of V, f denotes a function from \mathbb{N} into the vectors of V, j, k, n denote natural numbers, and p, q denote finite sequences. Let us consider V, f, j. Then $f(j)$ is a vector of V.

Let us consider V, v, u. Then $\langle v, u\rangle$ is a finite sequence of elements of the vectors of V.

Let us consider V, v, u, w. Then $\langle v, u, w\rangle$ is a finite sequence of elements of the vectors of V.

Let us consider V, F. The functor $\sum F$ yields a vector of V and is defined by: there exists f such that $\sum F=f(\operatorname{len} F)$ and $f(0)=0_{V}$ and for all j, v such that $j<$ len F and $v=F(j+1)$ holds $f(j+1)=f(j)+v$.

The following propositions are true:
(52) If there exists f such that $u=f(\operatorname{len} F)$ and $f(0)=0_{V}$ and for all j, v such that $j<\operatorname{len} F$ and $v=F(j+1)$ holds $f(j+1)=f(j)+v$, then $u=\sum F$.
(53) There exists f such that $\sum F=f(\operatorname{len} F)$ and $f(0)=0_{V}$ and for all j, v such that $j<$ len F and $v=F(j+1)$ holds $f(j+1)=f(j)+v$.
(54) If $k \in \operatorname{Seg} n$ and len $F=n$, then $F(k)$ is a vector of V.
(55) If len $F=\operatorname{len} G+1$ and $G=F \upharpoonright \operatorname{Seg}(\operatorname{len} G)$ and $v=F$ (len $F)$, then $\sum F=\sum G+v$.
(56) If len $F=\operatorname{len} G$ and for all k, v such that $k \in \operatorname{Seg}(\operatorname{len} F)$ and $v=G(k)$ holds $F(k)=a \cdot v$, then $\sum F=a \cdot \sum G$.
(57) If len $F=\operatorname{len} G$ and for all k, v such that $k \in \operatorname{Seg}(\operatorname{len} F)$ and $v=G(k)$ holds $F(k)=-v$, then $\sum F=-\sum G$.
(58) $\quad \sum\left(F^{\frown} G\right)=\sum F+\sum G$.
(59) If $\operatorname{rng} F=\operatorname{rng} G$ and F is one-to-one and G is one-to-one, then $\sum F=$ $\sum G$.
(60) $\quad \sum \varepsilon_{(\text {the vectors of } V)}=0_{V}$.
(61) $\quad \sum\langle v\rangle=v$.
(62) $\quad \sum\langle v, u\rangle=v+u$.
(63) $\quad \sum\langle v, u, w\rangle=(v+u)+w$.
(64) $a \cdot \sum \varepsilon_{(\text {the }}$ vectors of $\left.V\right)=0_{V}$.
(65) $a \cdot \sum\langle v\rangle=a \cdot v$.
(66) $a \cdot \sum\langle v, u\rangle=a \cdot v+a \cdot u$.
(67) $a \cdot \sum\langle v, u, w\rangle=(a \cdot v+a \cdot u)+a \cdot w$.
(68) $-\sum \varepsilon_{(\text {the vectors of } V)}=0_{V}$.
(69) $\quad-\sum\langle v\rangle=-v$.
(70) $-\sum\langle v, u\rangle=(-v)-u$.
(71) $-\sum\langle v, u, w\rangle=((-v)-u)-w$.
(72) $\quad \sum\langle v, w\rangle=\sum\langle w, v\rangle$.
(73) $\quad \sum\langle v, w\rangle=\sum\langle v\rangle+\sum\langle w\rangle$.
(77) $\quad \sum\langle v,-w\rangle=v-w$ and $\sum\langle-w, v\rangle=v-w$.
(79) $\quad \sum\langle v, v\rangle=2 \cdot v$.
(80) $\quad \sum\langle-v,-v\rangle=(-2) \cdot v$.
(81) $\quad \sum\langle u, v, w\rangle=\left(\sum\langle u\rangle+\sum\langle v\rangle\right)+\sum\langle w\rangle$.
(82) $\quad \sum\langle u, v, w\rangle=\sum\langle u, v\rangle+w$.
(83) $\sum\langle u, v, w\rangle=\sum\langle v, w\rangle+u$.
(84) $\sum\langle u, v, w\rangle=\sum\langle u, w\rangle+v$.
(85) $\quad \sum\langle u, v, w\rangle=\sum\langle u, w, v\rangle$.
(86) $\quad \sum\langle u, v, w\rangle=\sum\langle v, u, w\rangle$.
(87) $\quad \sum\langle u, v, w\rangle=\sum\langle v, w, u\rangle$.
(88) $\quad \sum\langle u, v, w\rangle=\sum\langle w, u, v\rangle$.
(89) $\quad \sum\langle u, v, w\rangle=\sum\langle w, v, u\rangle$.
(90) $\sum\left\langle 0_{V}, 0_{V}, 0_{V}\right\rangle=0_{V}$.
(91) $\sum\left\langle 0_{V}, 0_{V}, v\right\rangle=v$ and $\sum\left\langle 0_{V}, v, 0_{V}\right\rangle=v$ and $\sum\left\langle v, 0_{V}, 0_{V}\right\rangle=v$.
(92) $\sum\left\langle 0_{V}, u, v\right\rangle=u+v$ and $\sum\left\langle u, v, 0_{V}\right\rangle=u+v$ and $\sum\left\langle u, 0_{V}, v\right\rangle=u+v$.
(93) $\sum\langle v, v, v\rangle=3 \cdot v$.
(94) If len $F=0$, then $\sum F=0_{V}$.
(95) If len $F=1$, then $\sum F=F(1)$.
(96) If len $F=2$ and $v_{1}=F(1)$ and $v_{2}=F(2)$, then $\sum F=v_{1}+v_{2}$.
(97) If len $F=3$ and $v_{1}=F(1)$ and $v_{2}=F(2)$ and $v=F(3)$, then $\sum F=$ $\left(v_{1}+v_{2}\right)+v$.
(98) If $j<1$, then $j=0$.
(99) $\quad 1 \leq k$ if and only if $k \neq 0$.
(100) $k \leq k+n$ and $k \leq n+k$.
(101) $k<k+1$ and $k<1+k$.
(102) If $k \neq 0$, then $n<n+k$ and $n<k+n$.
(103) $k<k+n$ if and only if $1 \leq n$.
(104) $\operatorname{Seg} k=\operatorname{Seg}(k+1) \backslash\{k+1\}$.
(105) $p=\left(p^{\wedge} q\right) \upharpoonright \operatorname{Seg}(\operatorname{len} p)$.
(106) If $\operatorname{rng} p=\operatorname{rng} q$ and p is one-to-one and q is one-to-one, then len $p=\operatorname{len} q$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received July 24, 1989

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1

