Operations on Subspaces in Real Linear Space

Wojciech A. Trybulec ${ }^{1}$
Warsaw University

Abstract

Summary. In this article the following operations on subspaces of real linear space are intoduced: sum, intersection and direct sum. Some theorems about those notions are proved. We define linear complement of a subspace. Some theorems about decomposition of a vector onto two subspaces and onto subspace and it's linear complement are proved. We also show that a set of subspaces with operations sum and intersection is a lattice. At the end of the article theorems that belong rather to [7], [6], [5] or [8] are proved.

MML Identifier: RLSUB_2.

The notation and terminology used in this paper are introduced in the following papers: [1], [8], [4], [3], [6], [5], and [2]. For simplicity we adopt the following convention: V is a real linear space, W, W_{1}, W_{2}, W_{3} are subspaces of V, u, u_{1}, u_{2}, v, v_{1}, v_{2} are vectors of V, X, Y are sets, and x be arbitrary. Let us consider V, W_{1}, W_{2}. The functor $W_{1}+W_{2}$ yielding a subspace of V, is defined by:
the vectors of $W_{1}+W_{2}=\left\{v+u: v \in W_{1} \wedge u \in W_{2}\right\}$.
Let us consider V, W_{1}, W_{2}. The functor $W_{1} \cap W_{2}$ yielding a subspace of V, is defined by:
the vectors of $W_{1} \cap W_{2}=$ (the vectors of $\left.W_{1}\right) \cap$ (the vectors of W_{2}).
Next we state a number of propositions:
(1) the vectors of $W_{1}+W_{2}=\left\{v+u: v \in W_{1} \wedge u \in W_{2}\right\}$.
(2) If the vectors of $W=\left\{v+u: v \in W_{1} \wedge u \in W_{2}\right\}$, then $W=W_{1}+W_{2}$.
(3) the vectors of $W_{1} \cap W_{2}=\left(\right.$ the vectors of $\left.W_{1}\right) \cap$ (the vectors of W_{2}).
(4) If the vectors of $W=\left(\right.$ the vectors of $\left.W_{1}\right) \cap$ (the vectors of $\left.W_{2}\right)$, then $W=W_{1} \cap W_{2}$.
(5) $\quad x \in W_{1}+W_{2}$ if and only if there exist v_{1}, v_{2} such that $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $x=v_{1}+v_{2}$.

[^0](6) If $v \in W_{1}$ or $v \in W_{2}$, then $v \in W_{1}+W_{2}$.
(7) $\quad x \in W_{1} \cap W_{2}$ if and only if $x \in W_{1}$ and $x \in W_{2}$.
(8) $W+W=W$.
(9) $W_{1}+W_{2}=W_{2}+W_{1}$.
$W_{1}+\left(W_{2}+W_{3}\right)=\left(W_{1}+W_{2}\right)+W_{3}$.
(11) W_{1} is a subspace of $W_{1}+W_{2}$ and W_{2} is a subspace of $W_{1}+W_{2}$.
(12) W_{1} is a subspace of W_{2} if and only if $W_{1}+W_{2}=W_{2}$.
(13) $\mathbf{0}_{V}+W=W$ and $W+\mathbf{0}_{V}=W$.
(14) $\mathbf{0}_{V}+\Omega_{V}=V$ and $\Omega_{V}+\mathbf{0}_{V}=V$.
(15) $\Omega_{V}+W=V$ and $W+\Omega_{V}=V$.
(16) $\Omega_{V}+\Omega_{V}=V$.
(17) $W \cap W=W$.
(18) $W_{1} \cap W_{2}=W_{2} \cap W_{1}$.
(19) $\quad W_{1} \cap\left(W_{2} \cap W_{3}\right)=\left(W_{1} \cap W_{2}\right) \cap W_{3}$.
(20) $\quad W_{1} \cap W_{2}$ is a subspace of W_{1} and $W_{1} \cap W_{2}$ is a subspace of W_{2}.
(21) $\quad W_{1}$ is a subspace of W_{2} if and only if $W_{1} \cap W_{2}=W_{1}$.
(22) $\mathbf{0}_{V} \cap W=\mathbf{0}_{V}$ and $W \cap \mathbf{0}_{V}=\mathbf{0}_{V}$.
(23) $\quad \mathbf{0}_{V} \cap \Omega_{V}=\mathbf{0}_{V}$ and $\Omega_{V} \cap \mathbf{0}_{V}=\mathbf{0}_{V}$.
(24) $\Omega_{V} \cap W=W$ and $W \cap \Omega_{V}=W$.
(25) $\Omega_{V} \cap \Omega_{V}=V$.
(26) $W_{1} \cap W_{2}$ is a subspace of $W_{1}+W_{2}$.
(27) $W_{1} \cap W_{2}+W_{2}=W_{2}$.
(28) $W_{1} \cap\left(W_{1}+W_{2}\right)=W_{1}$.
(29) $\quad W_{1} \cap W_{2}+W_{2} \cap W_{3}$ is a subspace of $W_{2} \cap\left(W_{1}+W_{3}\right)$.
(30) If W_{1} is a subspace of W_{2}, then $W_{2} \cap\left(W_{1}+W_{3}\right)=W_{1} \cap W_{2}+W_{2} \cap W_{3}$.
(31) $W_{2}+W_{1} \cap W_{3}$ is a subspace of $\left(W_{1}+W_{2}\right) \cap\left(W_{2}+W_{3}\right)$.
(32) If W_{1} is a subspace of W_{2}, then $W_{2}+W_{1} \cap W_{3}=\left(W_{1}+W_{2}\right) \cap\left(W_{2}+W_{3}\right)$.
(33) If W_{1} is a subspace of W_{3}, then $W_{1}+W_{2} \cap W_{3}=\left(W_{1}+W_{2}\right) \cap W_{3}$.
(34) $\quad W_{1}+W_{2}=W_{2}$ if and only if $W_{1} \cap W_{2}=W_{1}$.
(35) If W_{1} is a subspace of W_{2}, then $W_{1}+W_{3}$ is a subspace of $W_{2}+W_{3}$.
(36) There exists W such that the vectors of $W=\left(\right.$ the vectors of $\left.W_{1}\right) \cup($ the vectors of W_{2}) if and only if W_{1} is a subspace of W_{2} or W_{2} is a subspace of W_{1}.
Let us consider V. The functor Subspaces V yielding a non-empty set, is defined by:
for every x holds $x \in$ Subspaces V if and only if x is a subspace of V.
In the sequel D will denote a non-empty set. We now state three propositions:
(37) If for every x holds $x \in D$ if and only if x is a subspace of V, then $D=$ Subspaces V.
(38) $\quad x \in \operatorname{Subspaces} V$ if and only if x is a subspace of V.
(39) $\quad V \in$ Subspaces V.

Let us consider V, W_{1}, W_{2}. The predicate V is the direct sum of W_{1} and W_{2} is defined by:
$V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\mathbf{0}_{V}$.
Let us consider V, W. The mode linear complement of W, which widens to the type a subspace of V, is defined by:
V is the direct sum of it and W.
One can prove the following propositions:
(40) V is the direct sum of W_{1} and W_{2} if and only if $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\mathbf{0}_{V}$.
(41) If V is the direct sum of W_{1} and W_{2}, then W_{1} is a linear complement of W_{2}.
(42) If V is the direct sum of W_{1} and W_{2}, then W_{2} is a linear complement of W_{1}.
In the sequel L denotes a linear complement of W. One can prove the following propositions:
(43) $\quad V$ is the direct sum of L and W and V is the direct sum of W and L.
(44) $W+L=V$ and $L+W=V$.
(45) $W \cap L=\mathbf{0}_{V}$ and $L \cap W=\mathbf{0}_{V}$.
(46) If V is the direct sum of W_{1} and W_{2}, then V is the direct sum of W_{2} and W_{1}.
(47) V is the direct sum of $\mathbf{0}_{V}$ and Ω_{V} and V is the direct sum of Ω_{V} and 0_{V}.
(48) W is a linear complement of L.
(49) $\mathbf{0}_{V}$ is a linear complement of Ω_{V} and Ω_{V} is a linear complement of $\mathbf{0}_{V}$.

In the sequel C is a coset of W, C_{1} is a coset of W_{1}, and C_{2} is a coset of W_{2}. We now state several propositions:
(50) If $C_{1} \cap C_{2} \neq \emptyset$, then $C_{1} \cap C_{2}$ is a coset of $W_{1} \cap W_{2}$.
(51) $\quad V$ is the direct sum of W_{1} and W_{2} if and only if for every C_{1}, C_{2} there exists v such that $C_{1} \cap C_{2}=\{v\}$.
(52) $\quad W_{1}+W_{2}=V$ if and only if for every v there exist v_{1}, v_{2} such that $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $v=v_{1}+v_{2}$.
(53) If V is the direct sum of W_{1} and W_{2} and $v=v_{1}+v_{2}$ and $v=u_{1}+u_{2}$ and $v_{1} \in W_{1}$ and $u_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $u_{2} \in W_{2}$, then $v_{1}=u_{1}$ and $v_{2}=u_{2}$.
(54) Suppose $V=W_{1}+W_{2}$ and there exists v such that for all v_{1}, v_{2}, u_{1}, u_{2} such that $v=v_{1}+v_{2}$ and $v=u_{1}+u_{2}$ and $v_{1} \in W_{1}$ and $u_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $u_{2} \in W_{2}$ holds $v_{1}=u_{1}$ and $v_{2}=u_{2}$. Then V is the direct sum of W_{1} and W_{2}.
In the sequel t will be an element of : the vectors of V, the vectors of V]. Let us consider V, t. Then $t_{\mathbf{1}}$ is a vector of V. Then $t_{\mathbf{2}}$ is a vector of V.

Let us consider V, v, W_{1}, W_{2}. Let us assume that V is the direct sum of W_{1} and W_{2}. The functor $v \triangleleft\left(W_{1}, W_{2}\right)$ yields an element of : the vectors of V, the vectors of V : and is defined by:
$v=\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{1}+\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{2}}$ and $\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{1} \in W_{1}$ and
$\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{2}} \in W_{2}$.
We now state a number of propositions:
(55) If V is the direct sum of W_{1} and W_{2} and $t_{\mathbf{1}}+t_{\mathbf{2}}=v$ and $t_{\mathbf{1}} \in W_{1}$ and $t_{\mathbf{2}} \in W_{2}$, then $t=v \triangleleft\left(W_{1}, W_{2}\right)$.
(56) If V is the direct sum of W_{1} and W_{2}, then $\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{1}+\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{2}}=v$.
(57) If V is the direct sum of W_{1} and W_{2}, then $\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{1} \in W_{1}$.
(58) If V is the direct sum of W_{1} and W_{2}, then $\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{2}} \in W_{2}$.
(59) If V is the direct sum of W_{1} and W_{2}, then
$\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{\mathbf{1}}=\left(v \triangleleft\left(W_{2}, W_{1}\right)\right)_{\mathbf{2}}$.
(60) If V is the direct sum of W_{1} and W_{2}, then $\left(v \triangleleft\left(W_{1}, W_{2}\right)\right)_{2}=\left(v \triangleleft\left(W_{2}, W_{1}\right)\right)_{1}$.
(61) If $t_{\mathbf{1}}+t_{\mathbf{2}}=v$ and $t_{\mathbf{1}} \in W$ and $t_{\mathbf{2}} \in L$, then $t=v \triangleleft(W, L)$.
(62) $\quad(v \triangleleft(W, L))_{1}+(v \triangleleft(W, L))_{2}=v$.
(63) $\quad(v \triangleleft(W, L))_{1} \in W$ and $(v \triangleleft(W, L))_{2} \in L$.
(64) $\quad(v \triangleleft(W, L))_{\mathbf{1}}=(v \triangleleft(L, W))_{\mathbf{2}}$.
(65) $\quad(v \triangleleft(W, L))_{\mathbf{2}}=(v \triangleleft(L, W))_{\mathbf{1}}$.

In the sequel A_{1}, A_{2} will be elements of Subspaces V. Let us consider V. The functor SubJoin V yields a binary operation on Subspaces V and is defined by:
for all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds
$(\operatorname{SubJoin} V)\left(A_{1}, A_{2}\right)=W_{1}+W_{2}$.
Let us consider V. The functor SubMeet V yielding a binary operation on Subspaces V, is defined by:
for all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds
$($ SubMeet $V)\left(A_{1}, A_{2}\right)=W_{1} \cap W_{2}$.
In the sequel o will be a binary operation on Subspaces V. The following propositions are true:
(66) If $A_{1}=W_{1}$ and $A_{2}=W_{2}$, then SubJoin $V\left(A_{1}, A_{2}\right)=W_{1}+W_{2}$.
(67) If for all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $o\left(A_{1}, A_{2}\right)=W_{1}+W_{2}$, then $o=$ SubJoin V.
(68) If $A_{1}=W_{1}$ and $A_{2}=W_{2}$, then SubMeet $V\left(A_{1}, A_{2}\right)=W_{1} \cap W_{2}$.
(69) If for all $A_{1}, A_{2}, W_{1}, W_{2}$ such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $o\left(A_{1}, A_{2}\right)=W_{1} \cap W_{2}$, then $o=$ SubMeet V.
(70) \langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is a lattice.
(71) \langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is a lower bound lattice.
(72) \langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is an upper bound lattice.
(73) \langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is a bound lattice.
(74) \langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is a modular lattice.

For simplicity we adopt the following convention: l will be a bound lattice, l_{0} will be a lower bound lattice, l_{1} will be an upper bound lattice, a, b will be elements of the carrier of l, a_{0}, b_{0} will be elements of the carrier of l_{0}, and a_{1}, b_{1} will be elements of the carrier of l_{1}. One can prove the following propositions:
(75) \langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is a complemented lattice.
(76) If W_{1} is a subspace of W_{2}, then $W_{1} \cap W_{3}$ is a subspace of $W_{2} \cap W_{3}$.
(77) If $X \subseteq Y$ and $X \neq Y$, then there exists x such that $x \in Y$ and $x \notin X$.
(78) $\quad v=v_{1}+v_{2}$ if and only if $v_{1}=v-v_{2}$.
(79) If for every v holds $v \in W$, then $W=V$.
(80) There exists C such that $v \in C$.
(81) $\quad x \in v+W$ if and only if there exists u such that $u \in W$ and $x=v+u$.
(82) l is a complemented lattice if and only if for every a there exists b such that b is a complement of a.
(83) a is a complement of b if and only if $a \sqcup b=\top_{l}$ and $a \sqcap b=\perp_{l}$.
(84) If for every a_{0} holds $a_{0} \sqcap b_{0}=b_{0}$, then $b_{0}=\perp_{l_{0}}$.
(85) If for every a_{1} holds $a_{1} \sqcup b_{1}=b_{1}$, then $b_{1}=\top_{l_{1}}$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[4] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[5] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
[6] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[7] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[8] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215-222, 1990.

Received September 20, 1989

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1

