Operations on Subspaces in Real Linear Space

Wojciech A. Trybulec¹ Warsaw University

Summary. In this article the following operations on subspaces of real linear space are intoduced: sum, intersection and direct sum. Some theorems about those notions are proved. We define linear complement of a subspace. Some theorems about decomposition of a vector onto two subspaces and onto subspace and it's linear complement are proved. We also show that a set of subspaces with operations sum and intersection is a lattice. At the end of the article theorems that belong rather to [7], [6], [5] or [8] are proved.

MML Identifier: RLSUB_2.

The notation and terminology used in this paper are introduced in the following papers: [1], [8], [4], [3], [6], [5], and [2]. For simplicity we adopt the following convention: V is a real linear space, W, W_1, W_2, W_3 are subspaces of V, u, u_1, u_2, v, v_1, v_2 are vectors of V, X, Y are sets, and x be arbitrary. Let us consider V, W_1, W_2 . The functor $W_1 + W_2$ yielding a subspace of V, is defined by:

the vectors of $W_1 + W_2 = \{v + u : v \in W_1 \land u \in W_2\}.$

Let us consider V, W_1, W_2 . The functor $W_1 \cap W_2$ yielding a subspace of V, is defined by:

the vectors of $W_1 \cap W_2 =$ (the vectors of W_1) \cap (the vectors of W_2).

Next we state a number of propositions:

- (1) the vectors of $W_1 + W_2 = \{v + u : v \in W_1 \land u \in W_2\}.$
- (2) If the vectors of $W = \{v + u : v \in W_1 \land u \in W_2\}$, then $W = W_1 + W_2$.
- (3) the vectors of $W_1 \cap W_2 = (\text{the vectors of } W_1) \cap (\text{the vectors of } W_2).$
- (4) If the vectors of $W = (\text{the vectors of } W_1) \cap (\text{the vectors of } W_2)$, then $W = W_1 \cap W_2$.
- (5) $x \in W_1 + W_2$ if and only if there exist v_1, v_2 such that $v_1 \in W_1$ and $v_2 \in W_2$ and $x = v_1 + v_2$.

¹Supported by RPBP.III-24.C1

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (6) If $v \in W_1$ or $v \in W_2$, then $v \in W_1 + W_2$.
- (7) $x \in W_1 \cap W_2$ if and only if $x \in W_1$ and $x \in W_2$.
- $(8) \quad W+W=W.$
- $(9) \quad W_1 + W_2 = W_2 + W_1.$
- (10) $W_1 + (W_2 + W_3) = (W_1 + W_2) + W_3.$
- (11) W_1 is a subspace of $W_1 + W_2$ and W_2 is a subspace of $W_1 + W_2$.
- (12) W_1 is a subspace of W_2 if and only if $W_1 + W_2 = W_2$.
- (13) $\mathbf{0}_V + W = W$ and $W + \mathbf{0}_V = W$.
- (14) $\mathbf{0}_V + \Omega_V = V$ and $\Omega_V + \mathbf{0}_V = V$.
- (15) $\Omega_V + W = V$ and $W + \Omega_V = V$.
- (16) $\Omega_V + \Omega_V = V.$
- (17) $W \cap W = W.$
- (18) $W_1 \cap W_2 = W_2 \cap W_1.$
- (19) $W_1 \cap (W_2 \cap W_3) = (W_1 \cap W_2) \cap W_3.$
- (20) $W_1 \cap W_2$ is a subspace of W_1 and $W_1 \cap W_2$ is a subspace of W_2 .
- (21) W_1 is a subspace of W_2 if and only if $W_1 \cap W_2 = W_1$.
- (22) $\mathbf{0}_V \cap W = \mathbf{0}_V$ and $W \cap \mathbf{0}_V = \mathbf{0}_V$.
- (23) $\mathbf{0}_V \cap \Omega_V = \mathbf{0}_V$ and $\Omega_V \cap \mathbf{0}_V = \mathbf{0}_V$.
- (24) $\Omega_V \cap W = W$ and $W \cap \Omega_V = W$.
- (25) $\Omega_V \cap \Omega_V = V.$
- (26) $W_1 \cap W_2$ is a subspace of $W_1 + W_2$.
- (27) $W_1 \cap W_2 + W_2 = W_2.$
- (28) $W_1 \cap (W_1 + W_2) = W_1.$
- (29) $W_1 \cap W_2 + W_2 \cap W_3$ is a subspace of $W_2 \cap (W_1 + W_3)$.
- (30) If W_1 is a subspace of W_2 , then $W_2 \cap (W_1 + W_3) = W_1 \cap W_2 + W_2 \cap W_3$.
- (31) $W_2 + W_1 \cap W_3$ is a subspace of $(W_1 + W_2) \cap (W_2 + W_3)$.
- (32) If W_1 is a subspace of W_2 , then $W_2 + W_1 \cap W_3 = (W_1 + W_2) \cap (W_2 + W_3)$.
- (33) If W_1 is a subspace of W_3 , then $W_1 + W_2 \cap W_3 = (W_1 + W_2) \cap W_3$.
- (34) $W_1 + W_2 = W_2$ if and only if $W_1 \cap W_2 = W_1$.
- (35) If W_1 is a subspace of W_2 , then $W_1 + W_3$ is a subspace of $W_2 + W_3$.
- (36) There exists W such that the vectors of $W = (\text{the vectors of } W_1) \cup (\text{the vectors of } W_2)$ if and only if W_1 is a subspace of W_2 or W_2 is a subspace of W_1 .

Let us consider V. The functor Subspaces V yielding a non-empty set, is defined by:

for every x holds $x \in \text{Subspaces } V$ if and only if x is a subspace of V.

In the sequel D will denote a non-empty set. We now state three propositions:

- (37) If for every x holds $x \in D$ if and only if x is a subspace of V, then D = Subspaces V.
- (38) $x \in \text{Subspaces } V \text{ if and only if } x \text{ is a subspace of } V.$

(39) $V \in \text{Subspaces } V$.

Let us consider V, W_1, W_2 . The predicate V is the direct sum of W_1 and W_2 is defined by:

 $V = W_1 + W_2$ and $W_1 \cap W_2 = \mathbf{0}_V$.

Let us consider V, W. The mode linear complement of W, which widens to the type a subspace of V, is defined by:

V is the direct sum of it and W.

One can prove the following propositions:

- (40) V is the direct sum of W_1 and W_2 if and only if $V = W_1 + W_2$ and $W_1 \cap W_2 = \mathbf{0}_V$.
- (41) If V is the direct sum of W_1 and W_2 , then W_1 is a linear complement of W_2 .
- (42) If V is the direct sum of W_1 and W_2 , then W_2 is a linear complement of W_1 .

In the sequel L denotes a linear complement of W. One can prove the following propositions:

- (43) V is the direct sum of L and W and V is the direct sum of W and L.
- (44) W + L = V and L + W = V.
- (45) $W \cap L = \mathbf{0}_V$ and $L \cap W = \mathbf{0}_V$.
- (46) If V is the direct sum of W_1 and W_2 , then V is the direct sum of W_2 and W_1 .
- (47) V is the direct sum of $\mathbf{0}_V$ and Ω_V and V is the direct sum of Ω_V and $\mathbf{0}_V$.
- (48) W is a linear complement of L.
- (49) $\mathbf{0}_V$ is a linear complement of Ω_V and Ω_V is a linear complement of $\mathbf{0}_V$.

In the sequel C is a coset of W, C_1 is a coset of W_1 , and C_2 is a coset of W_2 . We now state several propositions:

- (50) If $C_1 \cap C_2 \neq \emptyset$, then $C_1 \cap C_2$ is a coset of $W_1 \cap W_2$.
- (51) V is the direct sum of W_1 and W_2 if and only if for every C_1 , C_2 there exists v such that $C_1 \cap C_2 = \{v\}$.
- (52) $W_1 + W_2 = V$ if and only if for every v there exist v_1 , v_2 such that $v_1 \in W_1$ and $v_2 \in W_2$ and $v = v_1 + v_2$.
- (53) If V is the direct sum of W_1 and W_2 and $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$, then $v_1 = u_1$ and $v_2 = u_2$.
- (54) Suppose $V = W_1 + W_2$ and there exists v such that for all v_1, v_2, u_1, u_2 such that $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$ holds $v_1 = u_1$ and $v_2 = u_2$. Then V is the direct sum of W_1 and W_2 .

In the sequel t will be an element of [the vectors of V, the vectors of V]. Let us consider V, t. Then t_1 is a vector of V. Then t_2 is a vector of V.

Let us consider V, v, W_1, W_2 . Let us assume that V is the direct sum of W_1 and W_2 . The functor $v \triangleleft (W_1, W_2)$ yields an element of [the vectors of V, the vectors of V] and is defined by:

 $v = (v \triangleleft (W_1, W_2))_1 + (v \triangleleft (W_1, W_2))_2$ and $(v \triangleleft (W_1, W_2))_1 \in W_1$ and $(v \triangleleft (W_1, W_2))_2 \in W_2$.

We now state a number of propositions:

- (55) If V is the direct sum of W_1 and W_2 and $t_1 + t_2 = v$ and $t_1 \in W_1$ and $t_2 \in W_2$, then $t = v \triangleleft (W_1, W_2)$.
- (56) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_{\mathbf{1}} + (v \triangleleft (W_1, W_2))_{\mathbf{2}} = v$.
- (57) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_1 \in W_1$.
- (58) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_2 \in W_2$.
- (59) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_{\mathbf{1}} = (v \triangleleft (W_2, W_1))_{\mathbf{2}}$.
- (60) If V is the direct sum of W_1 and W_2 , then $(v \triangleleft (W_1, W_2))_2 = (v \triangleleft (W_2, W_1))_1$.
- (61) If $t_1 + t_2 = v$ and $t_1 \in W$ and $t_2 \in L$, then $t = v \triangleleft (W, L)$.
- (62) $(v \triangleleft (W,L))_{\mathbf{1}} + (v \triangleleft (W,L))_{\mathbf{2}} = v.$
- (63) $(v \triangleleft (W, L))_{\mathbf{1}} \in W \text{ and } (v \triangleleft (W, L))_{\mathbf{2}} \in L.$
- $(64) \quad (v \triangleleft (W,L))_{\mathbf{1}} = (v \triangleleft (L,W))_{\mathbf{2}}.$
- $(65) \quad (v \triangleleft (W,L))_{\mathbf{2}} = (v \triangleleft (L,W))_{\mathbf{1}}.$

In the sequel A_1 , A_2 will be elements of Subspaces V. Let us consider V. The functor SubJoin V yields a binary operation on Subspaces V and is defined by:

for all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds

 $(\text{SubJoin } V)(A_1, A_2) = W_1 + W_2$.

Let us consider V. The functor SubMeet V yielding a binary operation on Subspaces V, is defined by:

for all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubMeet V) $(A_1, A_2) = W_1 \cap W_2$.

In the sequel o will be a binary operation on Subspaces V. The following propositions are true:

- (66) If $A_1 = W_1$ and $A_2 = W_2$, then SubJoin $V(A_1, A_2) = W_1 + W_2$.
- (67) If for all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds $o(A_1, A_2) = W_1 + W_2$, then o = SubJoin V.
- (68) If $A_1 = W_1$ and $A_2 = W_2$, then SubMeet $V(A_1, A_2) = W_1 \cap W_2$.
- (69) If for all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds $o(A_1, A_2) = W_1 \cap W_2$, then o = SubMeet V.
- (70) $\langle \text{Subspaces } V, \text{SubJoin } V, \text{SubMeet } V \rangle$ is a lattice.
- (71) $\langle \text{Subspaces } V, \text{SubJoin } V, \text{SubMeet } V \rangle$ is a lower bound lattice.
- (72) $\langle \text{Subspaces } V, \text{SubJoin } V, \text{SubMeet } V \rangle$ is an upper bound lattice.
- (73) $\langle \text{Subspaces } V, \text{SubJoin } V, \text{SubMeet } V \rangle$ is a bound lattice.
- (74) $\langle \text{Subspaces } V, \text{SubJoin } V, \text{SubMeet } V \rangle$ is a modular lattice.

For simplicity we adopt the following convention: l will be a bound lattice, l_0 will be a lower bound lattice, l_1 will be an upper bound lattice, a, b will be elements of the carrier of l, a_0 , b_0 will be elements of the carrier of l_0 , and a_1 , b_1 will be elements of the carrier of l_1 . One can prove the following propositions:

- (75) $\langle \text{Subspaces } V, \text{SubJoin } V, \text{SubMeet } V \rangle$ is a complemented lattice.
- (76) If W_1 is a subspace of W_2 , then $W_1 \cap W_3$ is a subspace of $W_2 \cap W_3$.
- (77) If $X \subseteq Y$ and $X \neq Y$, then there exists x such that $x \in Y$ and $x \notin X$.
- (78) $v = v_1 + v_2$ if and only if $v_1 = v v_2$.
- (79) If for every v holds $v \in W$, then W = V.
- (80) There exists C such that $v \in C$.
- (81) $x \in v + W$ if and only if there exists u such that $u \in W$ and x = v + u.
- (82) l is a complemented lattice if and only if for every a there exists b such that b is a complement of a.
- (83) a is a complement of b if and only if $a \sqcup b = \top_l$ and $a \sqcap b = \bot_l$.
- (84) If for every a_0 holds $a_0 \sqcap b_0 = b_0$, then $b_0 = \perp_{l_0}$.
- (85) If for every a_1 holds $a_1 \sqcup b_1 = b_1$, then $b_1 = \top_{l_1}$.

References

- Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175– 180, 1990.
- [2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [4] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [5] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297–301, 1990.
- [6] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [7] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [8] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–222, 1990.

Received September 20, 1989