Subspaces and Cosets of Subspaces in Real Linear Space

Wojciech A. Trybulec ${ }^{1}$
Warsaw University

Abstract

Summary. The following notions are introduced in the article: subspace of a real linear space, zero subspace and improper subspace, coset of a subspace. The relation of a subset of the vectors being linearly closed is also introduced. Basic theorems concerning those notions are proved in the article.

MML Identifier: RLSUB_1.

The papers [4], [2], [6], [3], [1], and [5] provide the terminology and notation for this paper. For simplicity we follow a convention: V, X, Y are real linear spaces, u, v, v_{1}, v_{2} are vectors of V, a is a real number, V_{1}, V_{2}, V_{3} are subsets of the vectors of V, and x be arbitrary. Let us consider V, V_{1}. The predicate V_{1} is linearly closed is defined by:
for all v, u such that $v \in V_{1}$ and $u \in V_{1}$ holds $v+u \in V_{1}$ and for all a, v such that $v \in V_{1}$ holds $a \cdot v \in V_{1}$.

Next we state a number of propositions:
(1) If for all v, u such that $v \in V_{1}$ and $u \in V_{1}$ holds $v+u \in V_{1}$ and for all a, v such that $v \in V_{1}$ holds $a \cdot v \in V_{1}$, then V_{1} is linearly closed.
(2) If V_{1} is linearly closed, then for all v, u such that $v \in V_{1}$ and $u \in V_{1}$ holds $v+u \in V_{1}$.
(3) If V_{1} is linearly closed, then for all a, v such that $v \in V_{1}$ holds $a \cdot v \in V_{1}$.
(4) If $V_{1} \neq \emptyset$ and V_{1} is linearly closed, then $0_{V} \in V_{1}$.
(5) If V_{1} is linearly closed, then for every v such that $v \in V_{1}$ holds $-v \in V_{1}$.
(6) If V_{1} is linearly closed, then for all v, u such that $v \in V_{1}$ and $u \in V_{1}$ holds $v-u \in V_{1}$.
(7) $\left\{0_{V}\right\}$ is linearly closed.
(8) If the vectors of $V=V_{1}$, then V_{1} is linearly closed.

[^0](9) If V_{1} is linearly closed and V_{2} is linearly closed and $V_{3}=\{v+u: v \in$ $\left.V_{1} \wedge u \in V_{2}\right\}$, then V_{3} is linearly closed.
(10) If V_{1} is linearly closed and V_{2} is linearly closed, then $V_{1} \cap V_{2}$ is linearly closed.
Let us consider V. The mode subspace of V, which widens to the type a real linear space, is defined by:
the vectors of it \subseteq the vectors of V and the zero of it $=$ the zero of V and the addition of it $=($ the addition of $V) \upharpoonright$: the vectors of it, the vectors of it $:]$ and the multiplication of it $=($ the multiplication of $V) \upharpoonright: \mathbb{R}$, the vectors of it :].

Next we state a proposition
(11) If the vectors of $X \subseteq$ the vectors of V and the zero of $X=$ the zero of V and the addition of $X=($ the addition of $V) \upharpoonright:$ the vectors of X, the vectors of $X:$ and the multiplication of $X=($ the multiplication of $V) \upharpoonright: \mathbb{R}$, the vectors of $X:$, then X is a subspace of V.
We follow a convention: W, W_{1}, W_{2} will denote subspaces of V and w, w_{1}, w_{2} will denote vectors of W. We now state a number of propositions:
(12) the vectors of $W \subseteq$ the vectors of V.
(13) the zero of $W=$ the zero of V.
(14) the addition of $W=($ the addition of $V) \upharpoonright$: the vectors of W, the vectors of W :].
(15) the multiplication of $W=($ the multiplication of $V) \upharpoonright: \mathbb{R}$, the vectors of W :
(16) If $x \in W_{1}$ and W_{1} is a subspace of W_{2}, then $x \in W_{2}$.
(17) If $x \in W$, then $x \in V$.
(18) w is a vector of V.
(19) $\quad 0_{W}=0_{V}$.
(20) $0_{W_{1}}=0_{W_{2}}$.
(21) If $w_{1}=v$ and $w_{2}=u$, then $w_{1}+w_{2}=v+u$.
(22) If $w=v$, then $a \cdot w=a \cdot v$.
(23) If $w=v$, then $-v=-w$.
(24) If $w_{1}=v$ and $w_{2}=u$, then $w_{1}-w_{2}=v-u$.
(25) $\quad 0_{V} \in W$.
(26) $0_{W_{1}} \in W_{2}$.
(27) $0_{W} \in V$.
(28) If $u \in W$ and $v \in W$, then $u+v \in W$.
(29) If $v \in W$, then $a \cdot v \in W$.
(30) If $v \in W$, then $-v \in W$.
(31) If $u \in W$ and $v \in W$, then $u-v \in W$.

In the sequel D is a non-empty set, d_{1} is an element of D, A is a binary operation on D, and M is a function from $: \mathbb{R}, D:$ into D. We now state a number of propositions:
(32) If $V_{1}=D$ and $d_{1}=0_{V}$ and $A=($ the addition of $V) \upharpoonright\left\{V_{1}, V_{1} \vdots\right.$ and $M=($ the multiplication of $V) \upharpoonright: \mathbb{R}, V_{1} \ddagger$, then $\left\langle D, d_{1}, A, M\right\rangle$ is a subspace of V.
(33) V is a subspace of V.
(34) If V is a subspace of X and X is a subspace of V, then $V=X$.
(35) If V is a subspace of X and X is a subspace of Y, then V is a subspace of Y.
(36) If the vectors of $W_{1} \subseteq$ the vectors of W_{2}, then W_{1} is a subspace of W_{2}.
(37) If for every v such that $v \in W_{1}$ holds $v \in W_{2}$, then W_{1} is a subspace of W_{2}.
(38) If the vectors of $W_{1}=$ the vectors of W_{2}, then $W_{1}=W_{2}$.
(39) If for every v holds $v \in W_{1}$ if and only if $v \in W_{2}$, then $W_{1}=W_{2}$.
(40) If the vectors of $W=$ the vectors of V, then $W=V$.
(41) If for every v holds $v \in W$ if and only if $v \in V$, then $W=V$.
(42) If the vectors of $W=V_{1}$, then V_{1} is linearly closed.
(43) If $V_{1} \neq \emptyset$ and V_{1} is linearly closed, then there exists W such that $V_{1}=$ the vectors of W.
Let us consider V. The functor $\mathbf{0}_{V}$ yielding a subspace of V, is defined by: the vectors of $\mathbf{0}_{V}=\left\{0_{V}\right\}$.
Let us consider V. The functor Ω_{V} yielding a subspace of V, is defined by:
$\Omega_{V}=V$.
We now state a number of propositions:
(44) the vectors of $\mathbf{0}_{V}=\left\{0_{V}\right\}$.
(45) If the vectors of $W=\left\{0_{V}\right\}$, then $W=\mathbf{0}_{V}$.
(46) $\Omega_{V}=V$.
(47) $\Omega_{V}=\mathbf{0}_{V}$ if and only if $V=\mathbf{0}_{V}$.
(48) $\mathbf{0}_{W}=\mathbf{0}_{V}$.
(49) $\mathbf{0}_{W_{1}}=\mathbf{0}_{W_{2}}$.
(50) $\mathbf{0}_{W}$ is a subspace of V.
(51) $\quad \mathbf{0}_{V}$ is a subspace of W.
(52) $\quad \mathbf{0}_{W_{1}}$ is a subspace of W_{2}.
(53) W is a subspace of Ω_{V}.
(54) V is a subspace of Ω_{V}.

Let us consider V, v, W. The functor $v+W$ yielding a subset of the vectors of V, is defined by:
$v+W=\{v+u: u \in W\}$.
Let us consider V, W. The mode coset of W, which widens to the type a subset of the vectors of V, is defined by:
there exists v such that it $=v+W$.
In the sequel B, C will be cosets of W. We now state a number of propositions:

$$
\begin{equation*}
v+W=\{v+u: u \in W\} . \tag{55}
\end{equation*}
$$

(56) There exists v such that $C=v+W$.
(57) If $V_{1}=v+W$, then V_{1} is a coset of W.
(58) $0_{V} \in v+W$ if and only if $v \in W$.
(59) $\quad v \in v+W$.
(60) $0_{V}+W=$ the vectors of W.
(61) $v+\mathbf{0}_{V}=\{v\}$.
(62) $v+\Omega_{V}=$ the vectors of V.
(63) $0_{V} \in v+W$ if and only if $v+W=$ the vectors of W.
(64) $v \in W$ if and only if $v+W=$ the vectors of W.
(65) If $v \in W$, then $a \cdot v+W=$ the vectors of W.
(66) If $a \neq 0$ and $a \cdot v+W=$ the vectors of W, then $v \in W$.
(67) $\quad v \in W$ if and only if $(-v)+W=$ the vectors of W.
(68) $\quad u \in W$ if and only if $v+W=(v+u)+W$.
(69) $u \in W$ if and only if $v+W=(v-u)+W$.
(70) $v \in u+W$ if and only if $u+W=v+W$.
(71) $v+W=(-v)+W$ if and only if $v \in W$.
(72) If $u \in v_{1}+W$ and $u \in v_{2}+W$, then $v_{1}+W=v_{2}+W$.
(73) If $u \in v+W$ and $u \in(-v)+W$, then $v \in W$.
(74) If $a \neq 1$ and $a \cdot v \in v+W$, then $v \in W$.
(75) If $v \in W$, then $a \cdot v \in v+W$.
(76) $-v \in v+W$ if and only if $v \in W$.
(77) $u+v \in v+W$ if and only if $u \in W$.
(78) $v-u \in v+W$ if and only if $u \in W$.
(79) $u \in v+W$ if and only if there exists v_{1} such that $v_{1} \in W$ and $u=v+v_{1}$.
(80) $u \in v+W$ if and only if there exists v_{1} such that $v_{1} \in W$ and $u=v-v_{1}$.
(81) There exists v such that $v_{1} \in v+W$ and $v_{2} \in v+W$ if and only if $v_{1}-v_{2} \in W$.
(82) If $v+W=u+W$, then there exists v_{1} such that $v_{1} \in W$ and $v+v_{1}=u$.
(83) If $v+W=u+W$, then there exists v_{1} such that $v_{1} \in W$ and $v-v_{1}=u$.
(84) $v+W_{1}=v+W_{2}$ if and only if $W_{1}=W_{2}$.
(85) If $v+W_{1}=u+W_{2}$, then $W_{1}=W_{2}$.

In the sequel C_{1} denotes a coset of W_{1} and C_{2} denotes a coset of W_{2}. We now state a number of propositions:
(86) $\quad C$ is linearly closed if and only if $C=$ the vectors of W.
(87) If $C_{1}=C_{2}$, then $W_{1}=W_{2}$.
(88) $\{v\}$ is a coset of $\mathbf{0}_{V}$.
(89) If V_{1} is a coset of $\mathbf{0}_{V}$, then there exists v such that $V_{1}=\{v\}$.
(90) the vectors of W is a coset of W.
(91) the vectors of V is a coset of Ω_{V}.
(92) If V_{1} is a coset of Ω_{V}, then $V_{1}=$ the vectors of V.
(93) $\quad 0_{V} \in C$ if and only if $C=$ the vectors of W.
(94) $u \in C$ if and only if $C=u+W$.
(95) If $u \in C$ and $v \in C$, then there exists v_{1} such that $v_{1} \in W$ and $u+v_{1}=v$.
(96) If $u \in C$ and $v \in C$, then there exists v_{1} such that $v_{1} \in W$ and $u-v_{1}=v$.
(97) There exists C such that $v_{1} \in C$ and $v_{2} \in C$ if and only if $v_{1}-v_{2} \in W$.
(98) If $u \in B$ and $u \in C$, then $B=C$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[5] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[6] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received July 24, 1989

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1

