Subspaces and Cosets of Subspaces in Real Linear Space

Wojciech A. Trybulec¹ Warsaw University

Summary. The following notions are introduced in the article: subspace of a real linear space, zero subspace and improper subspace, coset of a subspace. The relation of a subset of the vectors being linearly closed is also introduced. Basic theorems concerning those notions are proved in the article.

MML Identifier: RLSUB_1.

The papers [4], [2], [6], [3], [1], and [5] provide the terminology and notation for this paper. For simplicity we follow a convention: V, X, Y are real linear spaces, u, v, v_1, v_2 are vectors of V, a is a real number, V_1, V_2, V_3 are subsets of the vectors of V, and x be arbitrary. Let us consider V, V_1 . The predicate V_1 is linearly closed is defined by:

for all v, u such that $v \in V_1$ and $u \in V_1$ holds $v + u \in V_1$ and for all a, v such that $v \in V_1$ holds $a \cdot v \in V_1$.

Next we state a number of propositions:

- (1) If for all v, u such that $v \in V_1$ and $u \in V_1$ holds $v + u \in V_1$ and for all a, v such that $v \in V_1$ holds $a \cdot v \in V_1$, then V_1 is linearly closed.
- (2) If V_1 is linearly closed, then for all v, u such that $v \in V_1$ and $u \in V_1$ holds $v + u \in V_1$.
- (3) If V_1 is linearly closed, then for all a, v such that $v \in V_1$ holds $a \cdot v \in V_1$.
- (4) If $V_1 \neq \emptyset$ and V_1 is linearly closed, then $0_V \in V_1$.
- (5) If V_1 is linearly closed, then for every v such that $v \in V_1$ holds $-v \in V_1$.
- (6) If V_1 is linearly closed, then for all v, u such that $v \in V_1$ and $u \in V_1$ holds $v u \in V_1$.
- (7) $\{0_V\}$ is linearly closed.
- (8) If the vectors of $V = V_1$, then V_1 is linearly closed.

¹Supported by RPBP.III-24.C1

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

- (9) If V_1 is linearly closed and V_2 is linearly closed and $V_3 = \{v + u : v \in V_1 \land u \in V_2\}$, then V_3 is linearly closed.
- (10) If V_1 is linearly closed and V_2 is linearly closed, then $V_1 \cap V_2$ is linearly closed.

Let us consider V. The mode subspace of V, which widens to the type a real linear space, is defined by:

the vectors of it \subseteq the vectors of V and the zero of it = the zero of V and the addition of it =(the addition of $V) \upharpoonright [$ the vectors of it, the vectors of it] and the multiplication of it =(the multiplication of $V) \upharpoonright [$ \mathbb{R} , the vectors of it].

Next we state a proposition

(11) If the vectors of $X \subseteq$ the vectors of V and the zero of X =the zero of V and the addition of X =(the addition of $V) \upharpoonright$ [: the vectors of X, the vectors of X] and the multiplication of X =(the multiplication of $V) \upharpoonright$ [: \mathbb{R} , the vectors of X], then X is a subspace of V.

We follow a convention: W, W_1, W_2 will denote subspaces of V and w, w_1, w_2 will denote vectors of W. We now state a number of propositions:

- (12) the vectors of $W \subseteq$ the vectors of V.
- (13) the zero of W = the zero of V.
- (14) the addition of $W = (\text{the addition of } V) \upharpoonright [\text{the vectors of } W, \text{the vectors of } W].$
- (15) the multiplication of W = (the multiplication of $V) \upharpoonright [:\mathbb{R},$ the vectors of W].
- (16) If $x \in W_1$ and W_1 is a subspace of W_2 , then $x \in W_2$.
- (17) If $x \in W$, then $x \in V$.
- (18) w is a vector of V.
- (19) $0_W = 0_V.$
- (20) $0_{W_1} = 0_{W_2}$.
- (21) If $w_1 = v$ and $w_2 = u$, then $w_1 + w_2 = v + u$.
- (22) If w = v, then $a \cdot w = a \cdot v$.
- (23) If w = v, then -v = -w.
- (24) If $w_1 = v$ and $w_2 = u$, then $w_1 w_2 = v u$.
- (25) $0_V \in W$.
- (26) $0_{W_1} \in W_2$.
- $(27) \quad 0_W \in V.$
- (28) If $u \in W$ and $v \in W$, then $u + v \in W$.
- (29) If $v \in W$, then $a \cdot v \in W$.
- (30) If $v \in W$, then $-v \in W$.
- (31) If $u \in W$ and $v \in W$, then $u v \in W$.

In the sequel D is a non-empty set, d_1 is an element of D, A is a binary operation on D, and M is a function from $[\mathbb{R}, D]$ into D. We now state a number of propositions:

- (32) If $V_1 = D$ and $d_1 = 0_V$ and $A = (\text{the addition of } V) \upharpoonright [V_1, V_1]$ and $M = (\text{the multiplication of } V) \upharpoonright [\mathbb{R}, V_1]$, then $\langle D, d_1, A, M \rangle$ is a subspace of V.
- (33) V is a subspace of V.
- (34) If V is a subspace of X and X is a subspace of V, then V = X.
- (35) If V is a subspace of X and X is a subspace of Y, then V is a subspace of Y.
- (36) If the vectors of $W_1 \subseteq$ the vectors of W_2 , then W_1 is a subspace of W_2 .
- (37) If for every v such that $v \in W_1$ holds $v \in W_2$, then W_1 is a subspace of W_2 .
- (38) If the vectors of W_1 = the vectors of W_2 , then $W_1 = W_2$.
- (39) If for every v holds $v \in W_1$ if and only if $v \in W_2$, then $W_1 = W_2$.
- (40) If the vectors of W = the vectors of V, then W = V.
- (41) If for every v holds $v \in W$ if and only if $v \in V$, then W = V.
- (42) If the vectors of $W = V_1$, then V_1 is linearly closed.
- (43) If $V_1 \neq \emptyset$ and V_1 is linearly closed, then there exists W such that V_1 =the vectors of W.

Let us consider V. The functor $\mathbf{0}_V$ yielding a subspace of V, is defined by: the vectors of $\mathbf{0}_V = \{\mathbf{0}_V\}$.

Let us consider V. The functor Ω_V yielding a subspace of V, is defined by: $\Omega_V = V$.

We now state a number of propositions:

- (44) the vectors of $\mathbf{0}_V = \{\mathbf{0}_V\}.$
- (45) If the vectors of $W = \{0_V\}$, then $W = \mathbf{0}_V$.
- (46) $\Omega_V = V.$
- (47) $\Omega_V = \mathbf{0}_V$ if and only if $V = \mathbf{0}_V$.
- (48) $\mathbf{0}_W = \mathbf{0}_V.$
- (49) $\mathbf{0}_{W_1} = \mathbf{0}_{W_2}.$
- (50) $\mathbf{0}_W$ is a subspace of V.
- (51) $\mathbf{0}_V$ is a subspace of W.
- (52) $\mathbf{0}_{W_1}$ is a subspace of W_2 .
- (53) W is a subspace of Ω_V .
- (54) V is a subspace of Ω_V .

Let us consider V, v, W. The functor v + W yielding a subset of the vectors of V, is defined by:

 $v + W = \{v + u : u \in W\}.$

Let us consider V, W. The mode coset of W, which widens to the type a subset of the vectors of V, is defined by:

there exists v such that it = v + W.

In the sequel B, C will be cosets of W. We now state a number of propositions: (55) $v + W = \{v + u : u \in W\}.$

There exists v such that C = v + W. (56)If $V_1 = v + W$, then V_1 is a coset of W. (57)(58) $0_V \in v + W$ if and only if $v \in W$. (59) $v \in v + W$. (60) $0_V + W =$ the vectors of W. $v + \mathbf{0}_V = \{v\}.$ (61) $v + \Omega_V$ = the vectors of V. (62)(63) $0_V \in v + W$ if and only if v + W = the vectors of W. (64) $v \in W$ if and only if v + W = the vectors of W. (65)If $v \in W$, then $a \cdot v + W$ = the vectors of W. If $a \neq 0$ and $a \cdot v + W$ = the vectors of W, then $v \in W$. (66)(67) $v \in W$ if and only if (-v) + W = the vectors of W. (68) $u \in W$ if and only if v + W = (v + u) + W. (69) $u \in W$ if and only if v + W = (v - u) + W. (70) $v \in u + W$ if and only if u + W = v + W. v + W = (-v) + W if and only if $v \in W$. (71)If $u \in v_1 + W$ and $u \in v_2 + W$, then $v_1 + W = v_2 + W$. (72)If $u \in v + W$ and $u \in (-v) + W$, then $v \in W$. (73)If $a \neq 1$ and $a \cdot v \in v + W$, then $v \in W$. (74)If $v \in W$, then $a \cdot v \in v + W$. (75)(76) $-v \in v + W$ if and only if $v \in W$. $u + v \in v + W$ if and only if $u \in W$. (77) $v - u \in v + W$ if and only if $u \in W$. (78)(79) $u \in v + W$ if and only if there exists v_1 such that $v_1 \in W$ and $u = v + v_1$. $u \in v + W$ if and only if there exists v_1 such that $v_1 \in W$ and $u = v - v_1$. (80)There exists v such that $v_1 \in v + W$ and $v_2 \in v + W$ if and only if (81) $v_1 - v_2 \in W.$ (82)If v + W = u + W, then there exists v_1 such that $v_1 \in W$ and $v + v_1 = u$. (83)If v + W = u + W, then there exists v_1 such that $v_1 \in W$ and $v - v_1 = u$. (84) $v + W_1 = v + W_2$ if and only if $W_1 = W_2$.

(85) If $v + W_1 = u + W_2$, then $W_1 = W_2$.

In the sequel C_1 denotes a coset of W_1 and C_2 denotes a coset of W_2 . We now state a number of propositions:

- (86) C is linearly closed if and only if C = the vectors of W.
- (87) If $C_1 = C_2$, then $W_1 = W_2$.
- (88) $\{v\}$ is a coset of $\mathbf{0}_V$.
- (89) If V_1 is a coset of $\mathbf{0}_V$, then there exists v such that $V_1 = \{v\}$.
- (90) the vectors of W is a coset of W.
- (91) the vectors of V is a coset of Ω_V .
- (92) If V_1 is a coset of Ω_V , then V_1 = the vectors of V.

300

- (93) $0_V \in C$ if and only if C = the vectors of W.
- (94) $u \in C$ if and only if C = u + W.
- (95) If $u \in C$ and $v \in C$, then there exists v_1 such that $v_1 \in W$ and $u + v_1 = v$.
- (96) If $u \in C$ and $v \in C$, then there exists v_1 such that $v_1 \in W$ and $u v_1 = v$.
- (97) There exists C such that $v_1 \in C$ and $v_2 \in C$ if and only if $v_1 v_2 \in W$.
- (98) If $u \in B$ and $u \in C$, then B = C.

References

- Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175– 180, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [3] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1):115–122, 1990.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [5] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [6] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received July 24, 1989