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Summary. The following notions are introduced in the article: sub-

space of a real linear space, zero subspace and improper subspace, coset

of a subspace. The relation of a subset of the vectors being linearly closed

is also introduced. Basic theorems concerning those notions are proved in

the article.

MML Identifier: RLSUB 1.

The papers [4], [2], [6], [3], [1], and [5] provide the terminology and notation for
this paper. For simplicity we follow a convention: V , X, Y are real linear spaces,
u, v, v1, v2 are vectors of V , a is a real number, V1, V2, V3 are subsets of the
vectors of V , and x be arbitrary. Let us consider V , V1. The predicate V1 is
linearly closed is defined by:

for all v, u such that v ∈ V1 and u ∈ V1 holds v + u ∈ V1 and for all a, v such
that v ∈ V1 holds a · v ∈ V1.

Next we state a number of propositions:

(1) If for all v, u such that v ∈ V1 and u ∈ V1 holds v + u ∈ V1 and for all a,
v such that v ∈ V1 holds a · v ∈ V1, then V1 is linearly closed.

(2) If V1 is linearly closed, then for all v, u such that v ∈ V1 and u ∈ V1

holds v + u ∈ V1.

(3) If V1 is linearly closed, then for all a, v such that v ∈ V1 holds a · v ∈ V1.

(4) If V1 6= ∅ and V1 is linearly closed, then 0V ∈ V1.

(5) If V1 is linearly closed, then for every v such that v ∈ V1 holds −v ∈ V1.

(6) If V1 is linearly closed, then for all v, u such that v ∈ V1 and u ∈ V1

holds v − u ∈ V1.

(7) {0V } is linearly closed.

(8) If the vectors of V = V1, then V1 is linearly closed.
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(9) If V1 is linearly closed and V2 is linearly closed and V3 = {v + u : v ∈
V1 ∧ u ∈ V2}, then V3 is linearly closed.

(10) If V1 is linearly closed and V2 is linearly closed, then V1 ∩ V2 is linearly
closed.

Let us consider V . The mode subspace of V , which widens to the type a real
linear space, is defined by:

the vectors of it ⊆the vectors of V and the zero of it =the zero of V and the
addition of it =(the addition of V )

�
[: the vectors of it, the vectors of it :] and the

multiplication of it =(the multiplication of V )
�
[: � , the vectors of it :].

Next we state a proposition

(11) If the vectors of X ⊆the vectors of V and the zero of X =the zero of
V and the addition of X =(the addition of V )

�
[: the vectors of X, the

vectors of X :] and the multiplication of X =(the multiplication of V )
�
[: � ,

the vectors of X :], then X is a subspace of V .

We follow a convention: W , W1, W2 will denote subspaces of V and w, w1,
w2 will denote vectors of W . We now state a number of propositions:

(12) the vectors of W ⊆the vectors of V .

(13) the zero of W =the zero of V .

(14) the addition of W =(the addition of V )
�
[: the vectors of W, the vectors

of W :].

(15) the multiplication of W =(the multiplication of V )
�

[: � , the vectors of
W :].

(16) If x ∈ W1 and W1 is a subspace of W2, then x ∈ W2.

(17) If x ∈ W , then x ∈ V .

(18) w is a vector of V .

(19) 0W = 0V .

(20) 0W1
= 0W2

.

(21) If w1 = v and w2 = u, then w1 + w2 = v + u.

(22) If w = v, then a · w = a · v.

(23) If w = v, then −v = −w.

(24) If w1 = v and w2 = u, then w1 − w2 = v − u.

(25) 0V ∈ W .

(26) 0W1
∈ W2.

(27) 0W ∈ V .

(28) If u ∈ W and v ∈ W , then u + v ∈ W .

(29) If v ∈ W , then a · v ∈ W .

(30) If v ∈ W , then −v ∈ W .

(31) If u ∈ W and v ∈ W , then u − v ∈ W .

In the sequel D is a non-empty set, d1 is an element of D, A is a binary
operation on D, and M is a function from [: � , D :] into D. We now state a
number of propositions:
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(32) If V1 = D and d1 = 0V and A =(the addition of V )
�

[: V1, V1 :] and
M =(the multiplication of V )

�
[: � , V1 :], then 〈D, d1, A,M〉 is a subspace

of V .

(33) V is a subspace of V .

(34) If V is a subspace of X and X is a subspace of V , then V = X.

(35) If V is a subspace of X and X is a subspace of Y , then V is a subspace
of Y .

(36) If the vectors of W1 ⊆the vectors of W2, then W1 is a subspace of W2.

(37) If for every v such that v ∈ W1 holds v ∈ W2, then W1 is a subspace of
W2.

(38) If the vectors of W1 =the vectors of W2, then W1 = W2.

(39) If for every v holds v ∈ W1 if and only if v ∈ W2, then W1 = W2.

(40) If the vectors of W =the vectors of V , then W = V .

(41) If for every v holds v ∈ W if and only if v ∈ V , then W = V .

(42) If the vectors of W = V1, then V1 is linearly closed.

(43) If V1 6= ∅ and V1 is linearly closed, then there exists W such that V1 =the
vectors of W .

Let us consider V . The functor 0V yielding a subspace of V , is defined by:
the vectors of 0V = {0V }.

Let us consider V . The functor ΩV yielding a subspace of V , is defined by:
ΩV = V .

We now state a number of propositions:

(44) the vectors of 0V = {0V }.

(45) If the vectors of W = {0V }, then W = 0V .

(46) ΩV = V .

(47) ΩV = 0V if and only if V = 0V .

(48) 0W = 0V .

(49) 0W1
= 0W2

.

(50) 0W is a subspace of V .

(51) 0V is a subspace of W .

(52) 0W1
is a subspace of W2.

(53) W is a subspace of ΩV .

(54) V is a subspace of ΩV .

Let us consider V , v, W . The functor v + W yielding a subset of the vectors
of V , is defined by:

v + W = {v + u : u ∈ W}.

Let us consider V , W . The mode coset of W , which widens to the type a
subset of the vectors of V , is defined by:

there exists v such that it = v + W .

In the sequel B, C will be cosets of W . We now state a number of propositions:

(55) v + W = {v + u : u ∈ W}.
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(56) There exists v such that C = v + W .

(57) If V1 = v + W , then V1 is a coset of W .

(58) 0V ∈ v + W if and only if v ∈ W .

(59) v ∈ v + W .

(60) 0V + W =the vectors of W .

(61) v + 0V = {v}.

(62) v + ΩV =the vectors of V .

(63) 0V ∈ v + W if and only if v + W =the vectors of W .

(64) v ∈ W if and only if v + W =the vectors of W .

(65) If v ∈ W , then a · v + W =the vectors of W .

(66) If a 6= 0 and a · v + W =the vectors of W , then v ∈ W .

(67) v ∈ W if and only if (−v) + W =the vectors of W .

(68) u ∈ W if and only if v + W = (v + u) + W .

(69) u ∈ W if and only if v + W = (v − u) + W .

(70) v ∈ u + W if and only if u + W = v + W .

(71) v + W = (−v) + W if and only if v ∈ W .

(72) If u ∈ v1 + W and u ∈ v2 + W , then v1 + W = v2 + W .

(73) If u ∈ v + W and u ∈ (−v) + W , then v ∈ W .

(74) If a 6= 1 and a · v ∈ v + W , then v ∈ W .

(75) If v ∈ W , then a · v ∈ v + W .

(76) −v ∈ v + W if and only if v ∈ W .

(77) u + v ∈ v + W if and only if u ∈ W .

(78) v − u ∈ v + W if and only if u ∈ W .

(79) u ∈ v +W if and only if there exists v1 such that v1 ∈ W and u = v +v1.

(80) u ∈ v +W if and only if there exists v1 such that v1 ∈ W and u = v−v1.

(81) There exists v such that v1 ∈ v + W and v2 ∈ v + W if and only if
v1 − v2 ∈ W .

(82) If v +W = u+W , then there exists v1 such that v1 ∈ W and v +v1 = u.

(83) If v +W = u+W , then there exists v1 such that v1 ∈ W and v−v1 = u.

(84) v + W1 = v + W2 if and only if W1 = W2.

(85) If v + W1 = u + W2, then W1 = W2.

In the sequel C1 denotes a coset of W1 and C2 denotes a coset of W2. We now
state a number of propositions:

(86) C is linearly closed if and only if C =the vectors of W .

(87) If C1 = C2, then W1 = W2.

(88) {v} is a coset of 0V .

(89) If V1 is a coset of 0V , then there exists v such that V1 = {v}.

(90) the vectors of W is a coset of W .

(91) the vectors of V is a coset of ΩV .

(92) If V1 is a coset of ΩV , then V1 =the vectors of V .
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(93) 0V ∈ C if and only if C =the vectors of W .

(94) u ∈ C if and only if C = u + W .

(95) If u ∈ C and v ∈ C, then there exists v1 such that v1 ∈ W and u+v1 = v.

(96) If u ∈ C and v ∈ C, then there exists v1 such that v1 ∈ W and u−v1 = v.

(97) There exists C such that v1 ∈ C and v2 ∈ C if and only if v1 − v2 ∈ W .

(98) If u ∈ B and u ∈ C, then B = C.
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