Recursive Definitions

Krzysztof Hryniewiecki Warsaw University

Summary. The text contains some schemes which allow elimination of definitions by recursion.

MML Identifier: RECDEF_1.

The papers [5], [1], [3], [2], and [4] provide the notation and terminology for this paper. We follow a convention: n, m, k will denote natural numbers and x, y, z, y_1, y_2 will be arbitrary. The arguments of the notions defined below are the following: D which is a non-empty set; p which is a function from \mathbb{N} into D; n which is an element of \mathbb{N} . Then p(n) is an element of D.

The arguments of the notions defined below are the following: p which is a function from \mathbb{N} into \mathbb{N} ; n which is an element of \mathbb{N} . Then p(n) is a natural number.

In the article we present several logical schemes. The scheme RecEx concerns a constant \mathcal{A} and a ternary predicate \mathcal{P} and states that:

there exists f being a function such that dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every element n of \mathbb{N} holds $\mathcal{P}[n, f(n), f(n+1)]$

provided the parameters satisfy the following conditions:

- for every natural number n for arbitrary x there exists y being any such that $\mathcal{P}[n, x, y]$,
- for every natural number n for arbitrary x, y_1, y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme RecExD deals with a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A} and a ternary predicate \mathcal{P} and states that:

there exists f being a function from N into \mathcal{A} such that $f(0) = \mathcal{B}$ and for every element n of N holds $\mathcal{P}[n, f(n), f(n+1)]$

provided the parameters satisfy the following conditions:

- for every natural number n for every element x of \mathcal{A} there exists y being an element of \mathcal{A} such that $\mathcal{P}[n, x, y]$,
- for every natural number n for all elements x, y_1, y_2 of \mathcal{A} such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 The scheme LambdaRecEx concerns a constant \mathcal{A} and a binary functor \mathcal{F} and states that:

there exists f being a function such that dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every element n of \mathbb{N} for arbitrary x such that x = f(n) holds $f(n+1) = \mathcal{F}(n, x)$ for all values of the parameters.

The scheme LambdaRecExD concerns a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A} and a binary functor \mathcal{F} yielding an element of \mathcal{A} and states that:

there exists f being a function from \mathbb{N} into \mathcal{A} such that $f(0) = \mathcal{B}$ and for every element n of \mathbb{N} for every element x of \mathcal{A} such that x = f(n) holds $f(n+1) = \mathcal{F}(n, x)$

for all values of the parameters.

The scheme RecFuncExR concerns a constant \mathcal{A} that is a real number and a binary functor \mathcal{F} yielding a real number and states that:

there exists f being a function from \mathbb{N} into \mathbb{R} such that $f(0) = \mathcal{A}$ and for every natural number n for every real number x such that x = f(n) holds $f(n+1) = \mathcal{F}(n, x)$

for all values of the parameters.

The scheme RecExN deals with a constant \mathcal{A} that is a natural number and a binary functor \mathcal{F} yielding a natural number and states that:

there exists f being a function from \mathbb{N} into \mathbb{N} such that $f(0) = \mathcal{A}$ and for every natural number n for every natural number x such that x = f(n) holds $f(n+1) = \mathcal{F}(n, x)$

for all values of the parameters.

The scheme FinRecEx deals with a constant \mathcal{A} , a constant \mathcal{B} that is a natural number and a ternary predicate \mathcal{P} and states that:

there exists p being a finite sequence such that len $p = \mathcal{B}$ but $p(1) = \mathcal{A}$ or $\mathcal{B} = 0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{B} - 1$ holds $\mathcal{P}[n, p(n), p(n+1)]$ provided the parameters satisfy the following conditions:

- for every natural number n such that $1 \leq n$ and $n \leq \mathcal{B} 1$ for arbitrary x there exists y being any such that $\mathcal{P}[n, x, y]$,
- for every natural number n such that $1 \leq n$ and $n \leq \mathcal{B} 1$ for arbitrary x, y_1, y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme FinRecExD deals with a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A} , a constant \mathcal{C} that is a natural number and a ternary predicate \mathcal{P} and states that:

there exists p being a finite sequence of elements of \mathcal{A} such that len $p = \mathcal{C}$ but $p(1) = \mathcal{B}$ or $\mathcal{C} = 0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{C} - 1$ holds $\mathcal{P}[n, p(n), p(n+1)]$

- for every natural number n such that $1 \leq n$ and $n \leq C 1$ for every element x of \mathcal{A} there exists y being an element of \mathcal{A} such that $\mathcal{P}[n, x, y]$,
- for every natural number n such that $1 \le n$ and $n \le C 1$ for all elements x, y_1, y_2 of \mathcal{A} such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds

 $y_1 = y_2.$

The scheme FinRecExR deals with a constant \mathcal{A} that is a real number, a constant \mathcal{B} that is a natural number and a ternary predicate \mathcal{P} and states that:

there exists p being a finite sequence of elements of \mathbb{R} such that $\operatorname{len} p = \mathcal{B}$ but $p(1) = \mathcal{A}$ or $\mathcal{B} = 0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{B} - 1$ holds $\mathcal{P}[n, p(n), p(n+1)]$

provided the parameters satisfy the following conditions:

- for every natural number n such that $1 \le n$ and $n \le \mathcal{B} 1$ for every real number x there exists y being a real number such that $\mathcal{P}[n, x, y]$,
- for every natural number n such that $1 \le n$ and $n \le \mathcal{B}-1$ for all real numbers x, y_1, y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme FinRecExN deals with a constant \mathcal{A} that is a natural number, a constant \mathcal{B} that is a natural number and a ternary predicate \mathcal{P} and states that:

there exists p being a finite sequence of elements of \mathbb{N} such that $\operatorname{len} p = \mathcal{B}$ but $p(1) = \mathcal{A}$ or $\mathcal{B} = 0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{B} - 1$ holds $\mathcal{P}[n, p(n), p(n+1)]$

provided the parameters satisfy the following conditions:

- for every natural number n such that $1 \le n$ and $n \le \mathcal{B} 1$ for every natural number x there exists y being a natural number such that $\mathcal{P}[n, x, y]$,
- for every natural number n such that $1 \leq n$ and $n \leq \mathcal{B} 1$ for all natural numbers x, y_1, y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme SeqBinOpEx deals with a constant \mathcal{A} that is a finite sequence and a ternary predicate \mathcal{P} and states that:

there exists x such that there exists p being a finite sequence such that $x = p(\ln p)$ and $\ln p = \ln A$ and p(1) = A(1) and for every k such that $1 \le k$ and $k \le \ln A - 1$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$.

provided the parameters satisfy the following conditions:

- for all k, x such that $1 \le k$ and $k \le \text{len } \mathcal{A} 1$ there exists y such that $\mathcal{P}[\mathcal{A}(k+1), x, y]$,
- for all k, x, y_1 , y_2 , z such that $1 \le k$ and $k \le \operatorname{len} \mathcal{A} 1$ and $z = \mathcal{A}(k+1)$ and $\mathcal{P}[z, x, y_1]$ and $\mathcal{P}[z, x, y_2]$ holds $y_1 = y_2$.

The scheme LambdaSeqBinOpEx deals with a constant \mathcal{A} that is a finite sequence and a binary functor \mathcal{F} and states that:

there exists x such that there exists p being a finite sequence such that $x = p(\ln p)$ and $\ln p = \ln A$ and p(1) = A(1) and for all k, y, z such that $1 \le k$ and $k \le \ln A - 1$ and y = A(k+1) and z = p(k) holds $p(k+1) = \mathcal{F}(y, z)$. for all values of the parameters.

The scheme RecUn deals with a constant \mathcal{A} , a constant \mathcal{B} that is a function, a constant \mathcal{C} that is a function and a ternary predicate \mathcal{P} and states that: $\mathcal{B} = \mathcal{C}$

- dom $\mathcal{B} = \mathbb{N}$ and $\mathcal{B}(0) = \mathcal{A}$ and for every *n* holds $\mathcal{P}[n, \mathcal{B}(n), \mathcal{B}(n+1)]$,
- dom $\mathcal{C} = \mathbb{N}$ and $\mathcal{C}(0) = \mathcal{A}$ and for every *n* holds $\mathcal{P}[n, \mathcal{C}(n), \mathcal{C}(n+1)]$,

• for every n for arbitrary x, y_1 , y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme RecUnD deals with a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A} , a ternary predicate \mathcal{P} , a constant \mathcal{C} that is a function from \mathbb{N} into \mathcal{A} and a constant \mathcal{D} that is a function from \mathbb{N} into \mathcal{A} , and states that:

 $\mathcal{C}=\mathcal{D}$

provided the parameters satisfy the following conditions:

- $\mathcal{C}(0) = \mathcal{B}$ and for every *n* holds $\mathcal{P}[n, \mathcal{C}(n), \mathcal{C}(n+1)]$,
- $\mathcal{D}(0) = \mathcal{B}$ and for every *n* holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$,
- for every natural number n for all elements x, y_1, y_2 of \mathcal{A} such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme LambdaRecUn deals with a constant \mathcal{A} , a binary functor \mathcal{F} , a constant \mathcal{B} that is a function and a constant \mathcal{C} that is a function, and states that:

 $\mathcal{B} = \mathcal{C}$

provided the parameters satisfy the following conditions:

- dom $\mathcal{B} = \mathbb{N}$ and $\mathcal{B}(0) = \mathcal{A}$ and for every *n* for arbitrary *y* such that $y = \mathcal{B}(n)$ holds $\mathcal{B}(n+1) = \mathcal{F}(n, y)$,
- dom $\mathcal{C} = \mathbb{N}$ and $\mathcal{C}(0) = \mathcal{A}$ and for every n for arbitrary y such that $y = \mathcal{C}(n)$ holds $\mathcal{C}(n+1) = \mathcal{F}(n, y)$.

The scheme LambdaRecUnD concerns a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A} , a binary functor \mathcal{F} yielding an element of \mathcal{A} , a constant \mathcal{C} that is a function from \mathbb{N} into \mathcal{A} and a constant \mathcal{D} that is a function from \mathbb{N} into \mathcal{A} , and states that:

 $\mathcal{C}=\mathcal{D}$

provided the parameters satisfy the following conditions:

- C(0) = B and for every n for every element y of A such that y = C(n)holds $C(n+1) = \mathcal{F}(n, y)$,
- $\mathcal{D}(0) = \mathcal{B}$ and for every *n* for every element *y* of \mathcal{A} such that $y = \mathcal{D}(n)$ holds $\mathcal{D}(n+1) = \mathcal{F}(n, y)$.

The scheme LambdaRecUnR concerns a constant \mathcal{A} that is a real number, a binary functor \mathcal{F} , a constant \mathcal{B} that is a function from \mathbb{N} into \mathbb{R} and a constant \mathcal{C} that is a function from \mathbb{N} into \mathbb{R} , and states that:

 $\mathcal{B}=\mathcal{C}$

provided the parameters satisfy the following conditions:

- $\mathcal{B}(0) = \mathcal{A}$ and for every *n* for every real number *y* such that $y = \mathcal{B}(n)$ holds $\mathcal{B}(n+1) = \mathcal{F}(n, y)$,
- C(0) = A and for every n for every real number y such that y = C(n) holds $C(n+1) = \mathcal{F}(n, y)$.

The scheme LambdaRecUnN deals with a constant \mathcal{A} that is a natural number, a binary functor \mathcal{F} yielding a natural number, a constant \mathcal{B} that is a function from N into N and a constant \mathcal{C} that is a function from N into N, and states that:

 $\mathcal{B} = \mathcal{C}$

- $\mathcal{B}(0) = \mathcal{A}$ and for all n, m such that $m = \mathcal{B}(n)$ holds $\mathcal{B}(n+1) = \mathcal{F}(n,m)$,
- C(0) = A and for all n, m such that m = C(n) holds $C(n + 1) = \mathcal{F}(n, m)$.

The scheme FinRecUn deals with a constant \mathcal{A} , a constant \mathcal{B} that is a natural number, a constant \mathcal{C} that is a finite sequence, a constant \mathcal{D} that is a finite sequence and a ternary predicate \mathcal{P} and states that:

$$\mathcal{C} = \mathcal{D}$$

provided the parameters satisfy the following conditions:

- for every n such that $1 \leq n$ and $n \leq \mathcal{B} 1$ for arbitrary x, y_1, y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$,
- len C = B but C(1) = A or B = 0 and for every n such that $1 \le n$ and $n \le B - 1$ holds $\mathcal{P}[n, C(n), C(n+1)]$,
- len $\mathcal{D} = \mathcal{B}$ but $\mathcal{D}(1) = \mathcal{A}$ or $\mathcal{B} = 0$ and for every n such that $1 \le n$ and $n \le \mathcal{B} - 1$ holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$.

The scheme FinRecUnD concerns a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A} , a constant \mathcal{C} that is a natural number, a constant \mathcal{D} that is a finite sequence of elements of \mathcal{A} , a constant \mathcal{E} that is a finite sequence of elements of \mathcal{A} and a ternary predicate \mathcal{P} and states that:

 $\mathcal{D}=\mathcal{E}$

provided the parameters satisfy the following conditions:

- for every n such that $1 \leq n$ and $n \leq C 1$ for all elements x, y_1, y_2 of \mathcal{A} such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$,
- len $\mathcal{D} = \mathcal{C}$ but $\mathcal{D}(1) = \mathcal{B}$ or $\mathcal{C} = 0$ and for every n such that $1 \le n$ and $n \le \mathcal{C} - 1$ holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$,
- len $\mathcal{E} = \mathcal{C}$ but $\mathcal{E}(1) = \mathcal{B}$ or $\mathcal{C} = 0$ and for every n such that $1 \le n$ and $n \le \mathcal{C} - 1$ holds $\mathcal{P}[n, \mathcal{E}(n), \mathcal{E}(n+1)]$.

The scheme FinRecUnR deals with a constant \mathcal{A} that is a real number, a constant \mathcal{B} that is a natural number, a constant \mathcal{C} that is a finite sequence of elements of \mathbb{R} , a constant \mathcal{D} that is a finite sequence of elements of \mathbb{R} and a ternary predicate \mathcal{P} and states that:

$$\mathcal{C}=\mathcal{D}$$

provided the parameters satisfy the following conditions:

- for every n such that $1 \le n$ and $n \le \mathcal{B} 1$ for all real numbers x, y_1, y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$,
- len C = B but C(1) = A or B = 0 and for every n such that $1 \le n$ and $n \le B - 1$ holds $\mathcal{P}[n, C(n), C(n+1)]$,
- len $\mathcal{D} = \mathcal{B}$ but $\mathcal{D}(1) = \mathcal{A}$ or $\mathcal{B} = 0$ and for every n such that $1 \le n$ and $n \le \mathcal{B} - 1$ holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$.

The scheme FinRecUnN concerns a constant \mathcal{A} that is a natural number, a constant \mathcal{B} that is a natural number, a constant \mathcal{C} that is a finite sequence of elements of \mathbb{N} , a constant \mathcal{D} that is a finite sequence of elements of \mathbb{N} and a ternary predicate \mathcal{P} and states that:

 $\mathcal{C}=\mathcal{D}$

- for every n such that $1 \le n$ and $n \le \mathcal{B} 1$ for all natural numbers x, y_1, y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$,
- len C = B but C(1) = A or B = 0 and for every n such that $1 \le n$ and $n \le B - 1$ holds $\mathcal{P}[n, C(n), C(n+1)]$,
- len $\mathcal{D} = \mathcal{B}$ but $\mathcal{D}(1) = \mathcal{A}$ or $\mathcal{B} = 0$ and for every n such that $1 \le n$ and $n \le \mathcal{B} - 1$ holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$.

The scheme SeqBinOpUn deals with a constant \mathcal{A} that is a finite sequence, a ternary predicate \mathcal{P} , a constant \mathcal{B} and a constant \mathcal{C} and states that:

 $\mathcal{B} = \mathcal{C}$

provided the parameters satisfy the following conditions:

- for all k, x, y_1 , y_2 , z such that $1 \le k$ and $k \le \text{len } \mathcal{A} 1$ and $z = \mathcal{A}(k+1)$ and $\mathcal{P}[z, x, y_1]$ and $\mathcal{P}[z, x, y_2]$ holds $y_1 = y_2$,
- there exists p being a finite sequence such that $\mathcal{B} = p(\operatorname{len} p)$ and $\operatorname{len} p = \operatorname{len} \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A} 1$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)].$
- there exists p being a finite sequence such that $\mathcal{C} = p(\operatorname{len} p)$ and $\operatorname{len} p = \operatorname{len} \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A} 1$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)].$

The scheme LambdaSeqBinOpUn concerns a constant \mathcal{A} that is a finite sequence, a binary functor \mathcal{F} , a constant \mathcal{B} and a constant \mathcal{C} and states that: $\mathcal{B} = \mathcal{C}$

provided the parameters satisfy the following conditions:

- there exists p being a finite sequence such that $\mathcal{B} = p(\operatorname{len} p)$ and $\operatorname{len} p = \operatorname{len} \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for all k, y, z such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A} - 1$ and $y = \mathcal{A}(k+1)$ and z = p(k) holds $p(k+1) = \mathcal{F}(y, z)$.
- there exists p being a finite sequence such that $\mathcal{C} = p(\operatorname{len} p)$ and $\operatorname{len} p = \operatorname{len} \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for all k, y, z such that $1 \le k$ and $k \le \operatorname{len} \mathcal{A} - 1$ and $y = \mathcal{A}(k+1)$ and z = p(k) holds $p(k+1) = \mathcal{F}(y, z)$.

The scheme DefRec concerns a constant \mathcal{A} , a constant \mathcal{B} that is a natural number and a ternary predicate \mathcal{P} and states that:

(i) there exists y being any such that there exists f being a function such that $y = f(\mathcal{B})$ and dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$, (ii) for arbitrary y_1, y_2 such that there exists f being a function such that $y_1 = f(\mathcal{B})$ and dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ and there exists f being a function such that $y_2 = f(\mathcal{B})$ and dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ and there exists f being a function such that $y_2 = f(\mathcal{B})$ and dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ holds $y_1 = y_2$. provided the parameters satisfy the following conditions:

- for every n, x there exists y such that $\mathcal{P}[n, x, y]$,
- for all n, x, y_1, y_2 such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme LambdaDefRec deals with a constant \mathcal{A} , a constant \mathcal{B} that is a natural number and a binary functor \mathcal{F} and states that:

(i) there exists y being any such that there exists f being a function such that $y = f(\mathcal{B})$ and dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for all n, x such that x = f(n) holds $f(n+1) = \mathcal{F}(n, x)$,

(ii) for arbitrary y_1 , y_2 such that there exists f being a function such that $y_1 = f(\mathcal{B})$ and dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for all n, x such that x = f(n) holds $f(n+1) = \mathcal{F}(n, x)$ and there exists f being a function such that $y_2 = f(\mathcal{B})$ and dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for all n, x such that x = f(n) holds $f(n+1) = \mathcal{F}(n, x)$ holds $y_1 = y_2$.

for all values of the parameters.

The scheme DefRecD concerns a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A} , a constant \mathcal{C} that is a natural number and a ternary predicate \mathcal{P} and states that:

(i) there exists y being an element of \mathcal{A} such that there exists f being a function from \mathbb{N} into \mathcal{A} such that $y = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$,

(ii) for all elements y_1, y_2 of \mathcal{A} such that there exists f being a function from \mathbb{N} into \mathcal{A} such that $y_1 = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ and there exists f being a function from \mathbb{N} into \mathcal{A} such that $y_2 = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ holds $y_1 = y_2$.

provided the parameters satisfy the following conditions:

- for every natural number n for every element x of \mathcal{A} there exists y being an element of \mathcal{A} such that $\mathcal{P}[n, x, y]$,
- for every natural number n for all elements x, y_1, y_2 of \mathcal{A} such that $\mathcal{P}[n, x, y_1]$ and $\mathcal{P}[n, x, y_2]$ holds $y_1 = y_2$.

The scheme LambdaDefRecD concerns a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A} , a constant \mathcal{C} that is a natural number and a binary functor \mathcal{F} yielding an element of \mathcal{A} and states that:

(i) there exists y being an element of \mathcal{A} such that there exists f being a function from \mathbb{N} into \mathcal{A} such that $y = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every natural number n for every element x of \mathcal{A} such that x = f(n) holds $f(n+1) = \mathcal{F}(n,x)$, (ii) for all elements y_1, y_2 of \mathcal{A} such that there exists f being a function from \mathbb{N} into \mathcal{A} such that $y_1 = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every natural number n for every element x of \mathcal{A} such that x = f(n) holds $f(n+1) = \mathcal{F}(n,x)$ and there exists f being a function from \mathbb{N} into \mathcal{A} such that $y_2 = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every natural number n for every natural number n for every element x of \mathcal{A} such that $y_2 = f(\mathcal{C})$ and $f(0) = \mathcal{B}$ and for every natural number n for every element x of \mathcal{A} such that x = f(n) holds $f(n+1) = \mathcal{F}(n,x)$ holds $y_1 = y_2$.

for all values of the parameters.

The scheme SeqBinOpDef concerns a constant \mathcal{A} that is a finite sequence and a ternary predicate \mathcal{P} and states that:

(i) there exists x such that there exists p being a finite sequence such that $x = p(\ln p)$ and $\ln p = \ln A$ and p(1) = A(1) and for every k such that $1 \le k$ and $k \le \ln A - 1$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$,

(ii) for all x, y such that there exists p being a finite sequence such that $x = p(\ln p)$ and $\ln p = \ln A$ and p(1) = A(1) and for every k such that $1 \le k$ and $k \le \ln A - 1$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$ and there exists p being a finite sequence such that $y = p(\ln p)$ and $\ln p = \ln A$ and $p(1) = \mathcal{A}(1)$ and for every k such that $1 \le k$ and $k \le \ln A - 1$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$ holds x = y.

provided the parameters satisfy the following conditions:

- for all k, y such that $1 \le k$ and $k \le \text{len } \mathcal{A} 1$ there exists z such that $\mathcal{P}[\mathcal{A}(k+1), y, z]$,
- for all k, x, y_1 , y_2 , z such that $1 \le k$ and $k \le \text{len } \mathcal{A} 1$ and $z = \mathcal{A}(k+1)$ and $\mathcal{P}[z, x, y_1]$ and $\mathcal{P}[z, x, y_2]$ holds $y_1 = y_2$.

The scheme LambdaSeqBinOpDe concerns a constant \mathcal{A} that is a finite sequence and a binary functor \mathcal{F} and states that:

(i) there exists x such that there exists p being a finite sequence such that $x = p(\ln p)$ and $\ln p = \ln A$ and p(1) = A(1) and for all k, y, z such that $1 \le k$ and $k \le \ln A - 1$ and y = A(k+1) and z = p(k) holds $p(k+1) = \mathcal{F}(y, z)$,

(ii) for all x, y such that there exists p being a finite sequence such that $x = p(\operatorname{len} p)$ and $\operatorname{len} p = \operatorname{len} \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for all k, y, z such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A} - 1$ and $y = \mathcal{A}(k+1)$ and z = p(k) holds $p(k+1) = \mathcal{F}(y, z)$ and there exists p being a finite sequence such that $y = p(\operatorname{len} p)$ and $\operatorname{len} p = \operatorname{len} \mathcal{A}$ and $p(1) = \mathcal{A}(1)$ and for all k, y, z such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A} - 1$ and $y = \mathcal{A}(k+1)$ and z = p(k) holds $p(k+1) = \mathcal{F}(y, z)$ holds x = y. for all values of the parameters.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [5] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received September 4, 1989