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Summary. The text contains some schemes which allow elimination

of defintions by recursion.

MML Identifier: RECDEF 1.

The papers [5], [1], [3], [2], and [4] provide the notation and terminology for this
paper. We follow a convention: n, m, k will denote natural numbers and x, y,
z, y1, y2 will be arbitrary. The arguments of the notions defined below are the
following: D which is a non-empty set; p which is a function from � into D; n

which is an element of � . Then p(n) is an element of D.

The arguments of the notions defined below are the following: p which is a
function from � into � ; n which is an element of � . Then p(n) is a natural
number.

In the article we present several logical schemes. The scheme RecEx concerns
a constant A and a ternary predicate P and states that:

there exists f being a function such that dom f = � and f(0) = A and for
every element n of � holds P[n, f(n), f(n + 1)]
provided the parameters satisfy the following conditions:

• for every natural number n for arbitrary x there exists y being any
such that P[n, x, y],

• for every natural number n for arbitrary x, y1, y2 such that P[n, x, y1]
and P[n, x, y2] holds y1 = y2.

The scheme RecExD deals with a constant A that is a non-empty set, a con-
stant B that is an element of A and a ternary predicate P and states that:

there exists f being a function from � into A such that f(0) = B and for
every element n of � holds P[n, f(n), f(n + 1)]
provided the parameters satisfy the following conditions:

• for every natural number n for every element x of A there exists y

being an element of A such that P[n, x, y],
• for every natural number n for all elements x, y1, y2 of A such that

P[n, x, y1] and P[n, x, y2] holds y1 = y2.
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The scheme LambdaRecEx concerns a constant A and a binary functor F and
states that:

there exists f being a function such that dom f = � and f(0) = A and for
every element n of � for arbitrary x such that x = f(n) holds f(n + 1) = F(n, x)
for all values of the parameters.

The scheme LambdaRecExD concerns a constant A that is a non-empty set, a
constant B that is an element of A and a binary functor F yielding an element
of A and states that:

there exists f being a function from � into A such that f(0) = B and for every
element n of � for every element x of A such that x = f(n) holds f(n + 1) =
F(n, x)
for all values of the parameters.

The scheme RecFuncExR concerns a constant A that is a real number and a
binary functor F yielding a real number and states that:

there exists f being a function from � into � such that f(0) = A and for every
natural number n for every real number x such that x = f(n) holds f(n + 1) =
F(n, x)
for all values of the parameters.

The scheme RecExN deals with a constant A that is a natural number and a
binary functor F yielding a natural number and states that:

there exists f being a function from � into � such that f(0) = A and for
every natural number n for every natural number x such that x = f(n) holds
f(n + 1) = F(n, x)
for all values of the parameters.

The scheme FinRecEx deals with a constant A, a constant B that is a natural
number and a ternary predicate P and states that:

there exists p being a finite sequence such that len p = B but p(1) = A or
B = 0 and for every n such that 1 ≤ n and n ≤ B − 1 holds P[n, p(n), p(n + 1)]
provided the parameters satisfy the following conditions:

• for every natural number n such that 1 ≤ n and n ≤ B − 1 for
arbitrary x there exists y being any such that P[n, x, y],

• for every natural number n such that 1 ≤ n and n ≤ B − 1 for
arbitrary x, y1, y2 such that P[n, x, y1] and P[n, x, y2] holds y1 = y2.

The scheme FinRecExD deals with a constant A that is a non-empty set, a
constant B that is an element of A, a constant C that is a natural number and a
ternary predicate P and states that:

there exists p being a finite sequence of elements of A such that len p = C

but p(1) = B or C = 0 and for every n such that 1 ≤ n and n ≤ C − 1 holds
P[n, p(n), p(n + 1)]
provided the parameters satisfy the following conditions:

• for every natural number n such that 1 ≤ n and n ≤ C − 1 for
every element x of A there exists y being an element of A such that
P[n, x, y],

• for every natural number n such that 1 ≤ n and n ≤ C − 1 for all
elements x, y1, y2 of A such that P[n, x, y1] and P[n, x, y2] holds
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y1 = y2.
The scheme FinRecExR deals with a constant A that is a real number, a

constant B that is a natural number and a ternary predicate P and states that:
there exists p being a finite sequence of elements of � such that len p = B

but p(1) = A or B = 0 and for every n such that 1 ≤ n and n ≤ B − 1 holds
P[n, p(n), p(n + 1)]
provided the parameters satisfy the following conditions:

• for every natural number n such that 1 ≤ n and n ≤ B− 1 for every
real number x there exists y being a real number such that P[n, x, y],

• for every natural number n such that 1 ≤ n and n ≤ B−1 for all real
numbers x, y1, y2 such that P[n, x, y1] and P[n, x, y2] holds y1 = y2.

The scheme FinRecExN deals with a constant A that is a natural number, a
constant B that is a natural number and a ternary predicate P and states that:

there exists p being a finite sequence of elements of � such that len p = B

but p(1) = A or B = 0 and for every n such that 1 ≤ n and n ≤ B − 1 holds
P[n, p(n), p(n + 1)]
provided the parameters satisfy the following conditions:

• for every natural number n such that 1 ≤ n and n ≤ B− 1 for every
natural number x there exists y being a natural number such that
P[n, x, y],

• for every natural number n such that 1 ≤ n and n ≤ B − 1 for all
natural numbers x, y1, y2 such that P[n, x, y1] and P[n, x, y2] holds
y1 = y2.

The scheme SeqBinOpEx deals with a constant A that is a finite sequence and
a ternary predicate P and states that:

there exists x such that there exists p being a finite sequence such that x =
p(len p) and len p = lenA and p(1) = A(1) and for every k such that 1 ≤ k and
k ≤ lenA− 1 holds P[A(k + 1), p(k), p(k + 1)].
provided the parameters satisfy the following conditions:

• for all k, x such that 1 ≤ k and k ≤ lenA − 1 there exists y such
that P[A(k + 1), x, y],

• for all k, x, y1, y2, z such that 1 ≤ k and k ≤ lenA − 1 and z =
A(k + 1) and P[z, x, y1] and P[z, x, y2] holds y1 = y2.

The scheme LambdaSeqBinOpEx deals with a constant A that is a finite se-
quence and a binary functor F and states that:

there exists x such that there exists p being a finite sequence such that x =
p(len p) and len p = lenA and p(1) = A(1) and for all k, y, z such that 1 ≤ k and
k ≤ lenA− 1 and y = A(k + 1) and z = p(k) holds p(k + 1) = F(y, z).
for all values of the parameters.

The scheme RecUn deals with a constant A, a constant B that is a function,
a constant C that is a function and a ternary predicate P and states that:

B = C

provided the parameters satisfy the following conditions:
• domB = � and B(0) = A and for every n holds P[n,B(n),B(n+1)],
• dom C = � and C(0) = A and for every n holds P[n, C(n), C(n + 1)],
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• for every n for arbitrary x, y1, y2 such that P[n, x, y1] and P[n, x, y2]
holds y1 = y2.

The scheme RecUnD deals with a constant A that is a non-empty set, a
constant B that is an element of A, a ternary predicate P , a constant C that is
a function from � into A and a constant D that is a function from � into A, and
states that:

C = D

provided the parameters satisfy the following conditions:

• C(0) = B and for every n holds P[n, C(n), C(n + 1)],

• D(0) = B and for every n holds P[n,D(n),D(n + 1)],

• for every natural number n for all elements x, y1, y2 of A such that
P[n, x, y1] and P[n, x, y2] holds y1 = y2.

The scheme LambdaRecUn deals with a constant A, a binary functor F , a
constant B that is a function and a constant C that is a function, and states that:

B = C

provided the parameters satisfy the following conditions:

• domB = � and B(0) = A and for every n for arbitrary y such that
y = B(n) holds B(n + 1) = F(n, y),

• domC = � and C(0) = A and for every n for arbitrary y such that
y = C(n) holds C(n + 1) = F(n, y).

The scheme LambdaRecUnD concerns a constant A that is a non-empty set, a
constant B that is an element of A, a binary functor F yielding an element of A,
a constant C that is a function from � into A and a constant D that is a function
from � into A, and states that:

C = D

provided the parameters satisfy the following conditions:

• C(0) = B and for every n for every element y of A such that y = C(n)
holds C(n + 1) = F(n, y),

• D(0) = B and for every n for every element y of A such that y = D(n)
holds D(n + 1) = F(n, y).

The scheme LambdaRecUnR concerns a constant A that is a real number, a
binary functor F , a constant B that is a function from � into � and a constant
C that is a function from � into � , and states that:

B = C

provided the parameters satisfy the following conditions:

• B(0) = A and for every n for every real number y such that y = B(n)
holds B(n + 1) = F(n, y),

• C(0) = A and for every n for every real number y such that y = C(n)
holds C(n + 1) = F(n, y).

The scheme LambdaRecUnN deals with a constant A that is a natural number,
a binary functor F yielding a natural number, a constant B that is a function
from � into � and a constant C that is a function from � into � , and states that:

B = C

provided the parameters satisfy the following conditions:



Recursive Definitions 325

• B(0) = A and for all n, m such that m = B(n) holds B(n + 1) =
F(n,m),

• C(0) = A and for all n, m such that m = C(n) holds C(n + 1) =
F(n,m).

The scheme FinRecUn deals with a constant A, a constant B that is a natural
number, a constant C that is a finite sequence, a constant D that is a finite
sequence and a ternary predicate P and states that:

C = D

provided the parameters satisfy the following conditions:
• for every n such that 1 ≤ n and n ≤ B − 1 for arbitrary x, y1, y2

such that P[n, x, y1] and P[n, x, y2] holds y1 = y2,
• len C = B but C(1) = A or B = 0 and for every n such that 1 ≤ n

and n ≤ B − 1 holds P[n, C(n), C(n + 1)],
• lenD = B but D(1) = A or B = 0 and for every n such that 1 ≤ n

and n ≤ B − 1 holds P[n,D(n),D(n + 1)].
The scheme FinRecUnD concerns a constant A that is a non-empty set, a

constant B that is an element of A, a constant C that is a natural number, a
constant D that is a finite sequence of elements of A, a constant E that is a finite
sequence of elements of A and a ternary predicate P and states that:

D = E

provided the parameters satisfy the following conditions:
• for every n such that 1 ≤ n and n ≤ C − 1 for all elements x, y1, y2

of A such that P[n, x, y1] and P[n, x, y2] holds y1 = y2,
• lenD = C but D(1) = B or C = 0 and for every n such that 1 ≤ n

and n ≤ C − 1 holds P[n,D(n),D(n + 1)],
• len E = C but E(1) = B or C = 0 and for every n such that 1 ≤ n

and n ≤ C − 1 holds P[n, E(n), E(n + 1)].
The scheme FinRecUnR deals with a constant A that is a real number, a

constant B that is a natural number, a constant C that is a finite sequence of
elements of � , a constant D that is a finite sequence of elements of � and a
ternary predicate P and states that:

C = D

provided the parameters satisfy the following conditions:
• for every n such that 1 ≤ n and n ≤ B − 1 for all real numbers x,

y1, y2 such that P[n, x, y1] and P[n, x, y2] holds y1 = y2,
• len C = B but C(1) = A or B = 0 and for every n such that 1 ≤ n

and n ≤ B − 1 holds P[n, C(n), C(n + 1)],
• lenD = B but D(1) = A or B = 0 and for every n such that 1 ≤ n

and n ≤ B − 1 holds P[n,D(n),D(n + 1)].
The scheme FinRecUnN concerns a constant A that is a natural number, a

constant B that is a natural number, a constant C that is a finite sequence of
elements of � , a constant D that is a finite sequence of elements of � and a
ternary predicate P and states that:

C = D

provided the parameters satisfy the following conditions:
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• for every n such that 1 ≤ n and n ≤ B − 1 for all natural numbers
x, y1, y2 such that P[n, x, y1] and P[n, x, y2] holds y1 = y2,

• len C = B but C(1) = A or B = 0 and for every n such that 1 ≤ n

and n ≤ B − 1 holds P[n, C(n), C(n + 1)],

• lenD = B but D(1) = A or B = 0 and for every n such that 1 ≤ n

and n ≤ B − 1 holds P[n,D(n),D(n + 1)].

The scheme SeqBinOpUn deals with a constant A that is a finite sequence, a
ternary predicate P , a constant B and a constant C and states that:

B = C

provided the parameters satisfy the following conditions:

• for all k, x, y1, y2, z such that 1 ≤ k and k ≤ lenA − 1 and z =
A(k + 1) and P[z, x, y1] and P[z, x, y2] holds y1 = y2,

• there exists p being a finite sequence such that B = p(len p) and
len p = lenA and p(1) = A(1) and for every k such that 1 ≤ k and
k ≤ lenA− 1 holds P[A(k + 1), p(k), p(k + 1)].

• there exists p being a finite sequence such that C = p(len p) and
len p = lenA and p(1) = A(1) and for every k such that 1 ≤ k and
k ≤ lenA− 1 holds P[A(k + 1), p(k), p(k + 1)].

The scheme LambdaSeqBinOpUn concerns a constant A that is a finite se-
quence, a binary functor F , a constant B and a constant C and states that:

B = C

provided the parameters satisfy the following conditions:

• there exists p being a finite sequence such that B = p(len p) and
len p = lenA and p(1) = A(1) and for all k, y, z such that 1 ≤ k and
k ≤ lenA−1 and y = A(k+1) and z = p(k) holds p(k+1) = F(y, z).

• there exists p being a finite sequence such that C = p(len p) and
len p = lenA and p(1) = A(1) and for all k, y, z such that 1 ≤ k and
k ≤ lenA−1 and y = A(k+1) and z = p(k) holds p(k+1) = F(y, z).

The scheme DefRec concerns a constant A, a constant B that is a natural
number and a ternary predicate P and states that:

(i) there exists y being any such that there exists f being a function such that
y = f(B) and dom f = � and f(0) = A and for every n holds P[n, f(n), f(n+1)],

(ii) for arbitrary y1, y2 such that there exists f being a function such that
y1 = f(B) and dom f = � and f(0) = A and for every n holds P[n, f(n), f(n+1)]
and there exists f being a function such that y2 = f(B) and dom f = � and
f(0) = A and for every n holds P[n, f(n), f(n + 1)] holds y1 = y2.

provided the parameters satisfy the following conditions:

• for every n, x there exists y such that P[n, x, y],

• for all n, x, y1, y2 such that P[n, x, y1] and P[n, x, y2] holds y1 = y2.

The scheme LambdaDefRec deals with a constant A, a constant B that is a
natural number and a binary functor F and states that:

(i) there exists y being any such that there exists f being a function such that
y = f(B) and dom f = � and f(0) = A and for all n, x such that x = f(n) holds
f(n + 1) = F(n, x),
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(ii) for arbitrary y1, y2 such that there exists f being a function such that
y1 = f(B) and dom f = � and f(0) = A and for all n, x such that x = f(n)
holds f(n + 1) = F(n, x) and there exists f being a function such that y2 = f(B)
and dom f = � and f(0) = A and for all n, x such that x = f(n) holds f(n+1) =
F(n, x) holds y1 = y2.

for all values of the parameters.

The scheme DefRecD concerns a constant A that is a non-empty set, a constant
B that is an element of A, a constant C that is a natural number and a ternary
predicate P and states that:

(i) there exists y being an element of A such that there exists f being a
function from � into A such that y = f(C) and f(0) = B and for every n holds
P[n, f(n), f(n + 1)],

(ii) for all elements y1, y2 of A such that there exists f being a function from �
into A such that y1 = f(C) and f(0) = B and for every n holds P[n, f(n), f(n+1)]
and there exists f being a function from � into A such that y2 = f(C) and
f(0) = B and for every n holds P[n, f(n), f(n + 1)] holds y1 = y2.

provided the parameters satisfy the following conditions:

• for every natural number n for every element x of A there exists y

being an element of A such that P[n, x, y],

• for every natural number n for all elements x, y1, y2 of A such that
P[n, x, y1] and P[n, x, y2] holds y1 = y2.

The scheme LambdaDefRecD concerns a constant A that is a non-empty set,
a constant B that is an element of A, a constant C that is a natural number and
a binary functor F yielding an element of A and states that:

(i) there exists y being an element of A such that there exists f being a
function from � into A such that y = f(C) and f(0) = B and for every natural
number n for every element x of A such that x = f(n) holds f(n + 1) = F(n, x),

(ii) for all elements y1, y2 of A such that there exists f being a function from
� into A such that y1 = f(C) and f(0) = B and for every natural number n for
every element x of A such that x = f(n) holds f(n + 1) = F(n, x) and there
exists f being a function from � into A such that y2 = f(C) and f(0) = B and
for every natural number n for every element x of A such that x = f(n) holds
f(n + 1) = F(n, x) holds y1 = y2.

for all values of the parameters.

The scheme SeqBinOpDef concerns a constant A that is a finite sequence and
a ternary predicate P and states that:

(i) there exists x such that there exists p being a finite sequence such that
x = p(len p) and len p = lenA and p(1) = A(1) and for every k such that 1 ≤ k

and k ≤ lenA− 1 holds P[A(k + 1), p(k), p(k + 1)],

(ii) for all x, y such that there exists p being a finite sequence such that
x = p(len p) and len p = lenA and p(1) = A(1) and for every k such that 1 ≤ k

and k ≤ lenA − 1 holds P[A(k + 1), p(k), p(k + 1)] and there exists p being a
finite sequence such that y = p(len p) and len p = lenA and p(1) = A(1) and for
every k such that 1 ≤ k and k ≤ lenA− 1 holds P[A(k + 1), p(k), p(k + 1)] holds
x = y.
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provided the parameters satisfy the following conditions:
• for all k, y such that 1 ≤ k and k ≤ lenA − 1 there exists z such

that P[A(k + 1), y, z],
• for all k, x, y1, y2, z such that 1 ≤ k and k ≤ lenA − 1 and z =

A(k + 1) and P[z, x, y1] and P[z, x, y2] holds y1 = y2.
The scheme LambdaSeqBinOpDe concerns a constant A that is a finite se-

quence and a binary functor F and states that:
(i) there exists x such that there exists p being a finite sequence such that
x = p(len p) and len p = lenA and p(1) = A(1) and for all k, y, z such that 1 ≤ k

and k ≤ lenA− 1 and y = A(k + 1) and z = p(k) holds p(k + 1) = F(y, z),
(ii) for all x, y such that there exists p being a finite sequence such that
x = p(len p) and len p = lenA and p(1) = A(1) and for all k, y, z such that 1 ≤ k

and k ≤ lenA− 1 and y = A(k + 1) and z = p(k) holds p(k + 1) = F(y, z) and
there exists p being a finite sequence such that y = p(len p) and len p = lenA and
p(1) = A(1) and for all k, y, z such that 1 ≤ k and k ≤ lenA−1 and y = A(k+1)
and z = p(k) holds p(k + 1) = F(y, z) holds x = y.
for all values of the parameters.
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