Recursive Definitions

Krzysztof Hryniewiecki
Warsaw University

Abstract

Summary. The text contains some schemes which allow elimination of defintions by recursion.

MML Identifier: RECDEF_1.

The papers [5], [1], [3], [2], and [4] provide the notation and terminology for this paper. We follow a convention: n, m, k will denote natural numbers and x, y, z, y_{1}, y_{2} will be arbitrary. The arguments of the notions defined below are the following: D which is a non-empty set; p which is a function from \mathbb{N} into $D ; n$ which is an element of \mathbb{N}. Then $p(n)$ is an element of D.

The arguments of the notions defined below are the following: p which is a function from \mathbb{N} into \mathbb{N}; n which is an element of \mathbb{N}. Then $p(n)$ is a natural number.

In the article we present several logical schemes. The scheme RecEx concerns a constant \mathcal{A} and a ternary predicate \mathcal{P} and states that:
there exists f being a function such that $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for every element n of \mathbb{N} holds $\mathcal{P}[n, f(n), f(n+1)]$
provided the parameters satisfy the following conditions:

- for every natural number n for arbitrary x there exists y being any such that $\mathcal{P}[n, x, y]$,
- for every natural number n for arbitrary x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme RecExD deals with a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A} and a ternary predicate \mathcal{P} and states that:
there exists f being a function from \mathbb{N} into \mathcal{A} such that $f(0)=\mathcal{B}$ and for every element n of \mathbb{N} holds $\mathcal{P}[n, f(n), f(n+1)]$
provided the parameters satisfy the following conditions:
- for every natural number n for every element x of \mathcal{A} there exists y being an element of \mathcal{A} such that $\mathcal{P}[n, x, y]$,
- for every natural number n for all elements x, y_{1}, y_{2} of \mathcal{A} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.

The scheme LambdaRecEx concerns a constant \mathcal{A} and a binary functor \mathcal{F} and states that:
there exists f being a function such that $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for every element n of \mathbb{N} for arbitrary x such that $x=f(n)$ holds $f(n+1)=\mathcal{F}(n, x)$ for all values of the parameters.

The scheme LambdaRecExD concerns a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A} and a binary functor \mathcal{F} yielding an element of \mathcal{A} and states that:
there exists f being a function from \mathbb{N} into \mathcal{A} such that $f(0)=\mathcal{B}$ and for every element n of \mathbb{N} for every element x of \mathcal{A} such that $x=f(n)$ holds $f(n+1)=$ $\mathcal{F}(n, x)$
for all values of the parameters.
The scheme RecFuncExR concerns a constant \mathcal{A} that is a real number and a binary functor \mathcal{F} yielding a real number and states that:
there exists f being a function from \mathbb{N} into \mathbb{R} such that $f(0)=\mathcal{A}$ and for every natural number n for every real number x such that $x=f(n)$ holds $f(n+1)=$ $\mathcal{F}(n, x)$
for all values of the parameters.
The scheme $\operatorname{Rec} E x N$ deals with a constant \mathcal{A} that is a natural number and a binary functor \mathcal{F} yielding a natural number and states that:
there exists f being a function from \mathbb{N} into \mathbb{N} such that $f(0)=\mathcal{A}$ and for every natural number n for every natural number x such that $x=f(n)$ holds $f(n+1)=\mathcal{F}(n, x)$ for all values of the parameters.

The scheme FinRecEx deals with a constant \mathcal{A}, a constant \mathcal{B} that is a natural number and a ternary predicate \mathcal{P} and states that:
there exists p being a finite sequence such that len $p=\mathcal{B}$ but $p(1)=\mathcal{A}$ or $\mathcal{B}=0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ holds $\mathcal{P}[n, p(n), p(n+1)]$ provided the parameters satisfy the following conditions:

- for every natural number n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ for arbitrary x there exists y being any such that $\mathcal{P}[n, x, y]$,
- for every natural number n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ for arbitrary x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme FinRecExD deals with a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A}, a constant \mathcal{C} that is a natural number and a ternary predicate \mathcal{P} and states that:
there exists p being a finite sequence of elements of \mathcal{A} such that len $p=\mathcal{C}$ but $p(1)=\mathcal{B}$ or $\mathcal{C}=0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{C}-1$ holds $\mathcal{P}[n, p(n), p(n+1)]$
provided the parameters satisfy the following conditions:
- for every natural number n such that $1 \leq n$ and $n \leq \mathcal{C}-1$ for every element x of \mathcal{A} there exists y being an element of \mathcal{A} such that $\mathcal{P}[n, x, y]$,
- for every natural number n such that $1 \leq n$ and $n \leq \mathcal{C}-1$ for all elements x, y_{1}, y_{2} of \mathcal{A} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds
$y_{1}=y_{2}$.
The scheme FinRecExR deals with a constant \mathcal{A} that is a real number, a constant \mathcal{B} that is a natural number and a ternary predicate \mathcal{P} and states that:
there exists p being a finite sequence of elements of \mathbb{R} such that len $p=\mathcal{B}$ but $p(1)=\mathcal{A}$ or $\mathcal{B}=0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ holds $\mathcal{P}[n, p(n), p(n+1)]$
provided the parameters satisfy the following conditions:
- for every natural number n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ for every real number x there exists y being a real number such that $\mathcal{P}[n, x, y]$,
- for every natural number n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ for all real numbers x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme FinRecExN deals with a constant \mathcal{A} that is a natural number, a constant \mathcal{B} that is a natural number and a ternary predicate \mathcal{P} and states that:
there exists p being a finite sequence of elements of \mathbb{N} such that len $p=\mathcal{B}$ but $p(1)=\mathcal{A}$ or $\mathcal{B}=0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ holds $\mathcal{P}[n, p(n), p(n+1)]$
provided the parameters satisfy the following conditions:
- for every natural number n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ for every natural number x there exists y being a natural number such that $\mathcal{P}[n, x, y]$,
- for every natural number n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ for all natural numbers x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme $\operatorname{SeqBinOpEx}$ deals with a constant \mathcal{A} that is a finite sequence and a ternary predicate \mathcal{P} and states that:
there exists x such that there exists p being a finite sequence such that $x=$ $p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$.
provided the parameters satisfy the following conditions:
- for all k, x such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ there exists y such that $\mathcal{P}[\mathcal{A}(k+1), x, y]$,
- for all k, x, y_{1}, y_{2}, z such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ and $z=$ $\mathcal{A}(k+1)$ and $\mathcal{P}\left[z, x, y_{1}\right]$ and $\mathcal{P}\left[z, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme LambdaSeqBinOpEx deals with a constant \mathcal{A} that is a finite sequence and a binary functor \mathcal{F} and states that:
there exists x such that there exists p being a finite sequence such that $x=$ $p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for all k, y, z such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ and $y=\mathcal{A}(k+1)$ and $z=p(k)$ holds $p(k+1)=\mathcal{F}(y, z)$. for all values of the parameters.

The scheme RecUn deals with a constant \mathcal{A}, a constant \mathcal{B} that is a function, a constant \mathcal{C} that is a function and a ternary predicate \mathcal{P} and states that:
$\mathcal{B}=\mathcal{C}$
provided the parameters satisfy the following conditions:

- $\operatorname{dom} \mathcal{B}=\mathbb{N}$ and $\mathcal{B}(0)=\mathcal{A}$ and for every n holds $\mathcal{P}[n, \mathcal{B}(n), \mathcal{B}(n+1)]$,
- $\operatorname{dom} \mathcal{C}=\mathbb{N}$ and $\mathcal{C}(0)=\mathcal{A}$ and for every n holds $\mathcal{P}[n, \mathcal{C}(n), \mathcal{C}(n+1)]$,
- for every n for arbitrary x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme $\operatorname{Rec} U n D$ deals with a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A}, a ternary predicate \mathcal{P}, a constant \mathcal{C} that is a function from \mathbb{N} into \mathcal{A} and a constant \mathcal{D} that is a function from \mathbb{N} into \mathcal{A}, and states that:

$$
\mathcal{C}=\mathcal{D}
$$

provided the parameters satisfy the following conditions:

- $\mathcal{C}(0)=\mathcal{B}$ and for every n holds $\mathcal{P}[n, \mathcal{C}(n), \mathcal{C}(n+1)]$,
- $\mathcal{D}(0)=\mathcal{B}$ and for every n holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$,
- for every natural number n for all elements x, y_{1}, y_{2} of \mathcal{A} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme LambdaRecUn deals with a constant \mathcal{A}, a binary functor \mathcal{F}, a constant \mathcal{B} that is a function and a constant \mathcal{C} that is a function, and states that:
$\mathcal{B}=\mathcal{C}$
provided the parameters satisfy the following conditions:
- $\operatorname{dom} \mathcal{B}=\mathbb{N}$ and $\mathcal{B}(0)=\mathcal{A}$ and for every n for arbitrary y such that $y=\mathcal{B}(n)$ holds $\mathcal{B}(n+1)=\mathcal{F}(n, y)$,
- $\operatorname{dom} \mathcal{C}=\mathbb{N}$ and $\mathcal{C}(0)=\mathcal{A}$ and for every n for arbitrary y such that $y=\mathcal{C}(n)$ holds $\mathcal{C}(n+1)=\mathcal{F}(n, y)$.
The scheme LambdaRecUnD concerns a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A}, a binary functor \mathcal{F} yielding an element of \mathcal{A}, a constant \mathcal{C} that is a function from \mathbb{N} into \mathcal{A} and a constant \mathcal{D} that is a function from \mathbb{N} into \mathcal{A}, and states that:

$$
\mathcal{C}=\mathcal{D}
$$

provided the parameters satisfy the following conditions:

- $\mathcal{C}(0)=\mathcal{B}$ and for every n for every element y of \mathcal{A} such that $y=\mathcal{C}(n)$ holds $\mathcal{C}(n+1)=\mathcal{F}(n, y)$,
- $\mathcal{D}(0)=\mathcal{B}$ and for every n for every element y of \mathcal{A} such that $y=\mathcal{D}(n)$ holds $\mathcal{D}(n+1)=\mathcal{F}(n, y)$.
The scheme LambdaRecUnR concerns a constant \mathcal{A} that is a real number, a binary functor \mathcal{F}, a constant \mathcal{B} that is a function from \mathbb{N} into \mathbb{R} and a constant \mathcal{C} that is a function from \mathbb{N} into \mathbb{R}, and states that:
$\mathcal{B}=\mathcal{C}$
provided the parameters satisfy the following conditions:
- $\mathcal{B}(0)=\mathcal{A}$ and for every n for every real number y such that $y=\mathcal{B}(n)$ holds $\mathcal{B}(n+1)=\mathcal{F}(n, y)$,
- $\mathcal{C}(0)=\mathcal{A}$ and for every n for every real number y such that $y=\mathcal{C}(n)$ holds $\mathcal{C}(n+1)=\mathcal{F}(n, y)$.
The scheme $\operatorname{LambdaRec} U n N$ deals with a constant \mathcal{A} that is a natural number, a binary functor \mathcal{F} yielding a natural number, a constant \mathcal{B} that is a function from \mathbb{N} into \mathbb{N} and a constant \mathcal{C} that is a function from \mathbb{N} into \mathbb{N}, and states that:

$$
\mathcal{B}=\mathcal{C}
$$

provided the parameters satisfy the following conditions:

- $\mathcal{B}(0)=\mathcal{A}$ and for all n, m such that $m=\mathcal{B}(n)$ holds $\mathcal{B}(n+1)=$ $\mathcal{F}(n, m)$,
- $\mathcal{C}(0)=\mathcal{A}$ and for all n, m such that $m=\mathcal{C}(n)$ holds $\mathcal{C}(n+1)=$ $\mathcal{F}(n, m)$.
The scheme FinRecUn deals with a constant \mathcal{A}, a constant \mathcal{B} that is a natural number, a constant \mathcal{C} that is a finite sequence, a constant \mathcal{D} that is a finite sequence and a ternary predicate \mathcal{P} and states that:
$\mathcal{C}=\mathcal{D}$
provided the parameters satisfy the following conditions:
- for every n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ for arbitrary x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$,
- len $\mathcal{C}=\mathcal{B}$ but $\mathcal{C}(1)=\mathcal{A}$ or $\mathcal{B}=0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ holds $\mathcal{P}[n, \mathcal{C}(n), \mathcal{C}(n+1)]$,
- len $\mathcal{D}=\mathcal{B}$ but $\mathcal{D}(1)=\mathcal{A}$ or $\mathcal{B}=0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$.
The scheme FinRec UnD concerns a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A}, a constant \mathcal{C} that is a natural number, a constant \mathcal{D} that is a finite sequence of elements of \mathcal{A}, a constant \mathcal{E} that is a finite sequence of elements of \mathcal{A} and a ternary predicate \mathcal{P} and states that:
$\mathcal{D}=\mathcal{E}$
provided the parameters satisfy the following conditions:
- for every n such that $1 \leq n$ and $n \leq \mathcal{C}-1$ for all elements x, y_{1}, y_{2} of \mathcal{A} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$,
- len $\mathcal{D}=\mathcal{C}$ but $\mathcal{D}(1)=\mathcal{B}$ or $\mathcal{C}=0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{C}-1$ holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$,
- len $\mathcal{E}=\mathcal{C}$ but $\mathcal{E}(1)=\mathcal{B}$ or $\mathcal{C}=0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{C}-1$ holds $\mathcal{P}[n, \mathcal{E}(n), \mathcal{E}(n+1)]$.
The scheme FinRecUnR deals with a constant \mathcal{A} that is a real number, a constant \mathcal{B} that is a natural number, a constant \mathcal{C} that is a finite sequence of elements of \mathbb{R}, a constant \mathcal{D} that is a finite sequence of elements of \mathbb{R} and a ternary predicate \mathcal{P} and states that:

$$
\mathcal{C}=\mathcal{D}
$$

provided the parameters satisfy the following conditions:

- for every n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ for all real numbers x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$,
- len $\mathcal{C}=\mathcal{B}$ but $\mathcal{C}(1)=\mathcal{A}$ or $\mathcal{B}=0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ holds $\mathcal{P}[n, \mathcal{C}(n), \mathcal{C}(n+1)]$,
- len $\mathcal{D}=\mathcal{B}$ but $\mathcal{D}(1)=\mathcal{A}$ or $\mathcal{B}=0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$.
The scheme FinRecUnN concerns a constant \mathcal{A} that is a natural number, a constant \mathcal{B} that is a natural number, a constant \mathcal{C} that is a finite sequence of elements of \mathbb{N}, a constant \mathcal{D} that is a finite sequence of elements of \mathbb{N} and a ternary predicate \mathcal{P} and states that:

$$
\mathcal{C}=\mathcal{D}
$$

provided the parameters satisfy the following conditions:

- for every n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ for all natural numbers x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$,
- len $\mathcal{C}=\mathcal{B}$ but $\mathcal{C}(1)=\mathcal{A}$ or $\mathcal{B}=0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ holds $\mathcal{P}[n, \mathcal{C}(n), \mathcal{C}(n+1)]$,
- len $\mathcal{D}=\mathcal{B}$ but $\mathcal{D}(1)=\mathcal{A}$ or $\mathcal{B}=0$ and for every n such that $1 \leq n$ and $n \leq \mathcal{B}-1$ holds $\mathcal{P}[n, \mathcal{D}(n), \mathcal{D}(n+1)]$.
The scheme $\operatorname{SeqBinOp} U n$ deals with a constant \mathcal{A} that is a finite sequence, a ternary predicate \mathcal{P}, a constant \mathcal{B} and a constant \mathcal{C} and states that:
$\mathcal{B}=\mathcal{C}$
provided the parameters satisfy the following conditions:
- for all k, x, y_{1}, y_{2}, z such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ and $z=$ $\mathcal{A}(k+1)$ and $\mathcal{P}\left[z, x, y_{1}\right]$ and $\mathcal{P}\left[z, x, y_{2}\right]$ holds $y_{1}=y_{2}$,
- there exists p being a finite sequence such that $\mathcal{B}=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$.
- there exists p being a finite sequence such that $\mathcal{C}=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$.
The scheme LambdaSeqBinOpUn concerns a constant \mathcal{A} that is a finite sequence, a binary functor \mathcal{F}, a constant \mathcal{B} and a constant \mathcal{C} and states that:
$\mathcal{B}=\mathcal{C}$
provided the parameters satisfy the following conditions:
- there exists p being a finite sequence such that $\mathcal{B}=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for all k, y, z such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ and $y=\mathcal{A}(k+1)$ and $z=p(k)$ holds $p(k+1)=\mathcal{F}(y, z)$.
- there exists p being a finite sequence such that $\mathcal{C}=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for all k, y, z such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ and $y=\mathcal{A}(k+1)$ and $z=p(k)$ holds $p(k+1)=\mathcal{F}(y, z)$.
The scheme DefRec concerns a constant \mathcal{A}, a constant \mathcal{B} that is a natural number and a ternary predicate \mathcal{P} and states that:
(i) there exists y being any such that there exists f being a function such that $y=f(\mathcal{B})$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$,
(ii) for arbitrary y_{1}, y_{2} such that there exists f being a function such that $y_{1}=f(\mathcal{B})$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ and there exists f being a function such that $y_{2}=f(\mathcal{B})$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ holds $y_{1}=y_{2}$. provided the parameters satisfy the following conditions:
- for every n, x there exists y such that $\mathcal{P}[n, x, y]$,
- for all n, x, y_{1}, y_{2} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.

The scheme LambdaDefRec deals with a constant \mathcal{A}, a constant \mathcal{B} that is a natural number and a binary functor \mathcal{F} and states that:
(i) there exists y being any such that there exists f being a function such that $y=f(\mathcal{B})$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for all n, x such that $x=f(n)$ holds $f(n+1)=\mathcal{F}(n, x)$,
(ii) for arbitrary y_{1}, y_{2} such that there exists f being a function such that $y_{1}=f(\mathcal{B})$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for all n, x such that $x=f(n)$ holds $f(n+1)=\mathcal{F}(n, x)$ and there exists f being a function such that $y_{2}=f(\mathcal{B})$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and for all n, x such that $x=f(n)$ holds $f(n+1)=$ $\mathcal{F}(n, x)$ holds $y_{1}=y_{2}$.
for all values of the parameters.
The scheme $\operatorname{DefRec} D$ concerns a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A}, a constant \mathcal{C} that is a natural number and a ternary predicate \mathcal{P} and states that:
(i) there exists y being an element of \mathcal{A} such that there exists f being a function from \mathbb{N} into \mathcal{A} such that $y=f(\mathcal{C})$ and $f(0)=\mathcal{B}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$,
(ii) for all elements y_{1}, y_{2} of \mathcal{A} such that there exists f being a function from \mathbb{N} into \mathcal{A} such that $y_{1}=f(\mathcal{C})$ and $f(0)=\mathcal{B}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ and there exists f being a function from \mathbb{N} into \mathcal{A} such that $y_{2}=f(\mathcal{C})$ and $f(0)=\mathcal{B}$ and for every n holds $\mathcal{P}[n, f(n), f(n+1)]$ holds $y_{1}=y_{2}$. provided the parameters satisfy the following conditions:

- for every natural number n for every element x of \mathcal{A} there exists y being an element of \mathcal{A} such that $\mathcal{P}[n, x, y]$,
- for every natural number n for all elements x, y_{1}, y_{2} of \mathcal{A} such that $\mathcal{P}\left[n, x, y_{1}\right]$ and $\mathcal{P}\left[n, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme LambdaDefRec D concerns a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is an element of \mathcal{A}, a constant \mathcal{C} that is a natural number and a binary functor \mathcal{F} yielding an element of \mathcal{A} and states that:
(i) there exists y being an element of \mathcal{A} such that there exists f being a function from \mathbb{N} into \mathcal{A} such that $y=f(\mathcal{C})$ and $f(0)=\mathcal{B}$ and for every natural number n for every element x of \mathcal{A} such that $x=f(n)$ holds $f(n+1)=\mathcal{F}(n, x)$, (ii) for all elements y_{1}, y_{2} of \mathcal{A} such that there exists f being a function from \mathbb{N} into \mathcal{A} such that $y_{1}=f(\mathcal{C})$ and $f(0)=\mathcal{B}$ and for every natural number n for every element x of \mathcal{A} such that $x=f(n)$ holds $f(n+1)=\mathcal{F}(n, x)$ and there exists f being a function from \mathbb{N} into \mathcal{A} such that $y_{2}=f(\mathcal{C})$ and $f(0)=\mathcal{B}$ and for every natural number n for every element x of \mathcal{A} such that $x=f(n)$ holds $f(n+1)=\mathcal{F}(n, x)$ holds $y_{1}=y_{2}$.
for all values of the parameters.
The scheme $\operatorname{Seq} \operatorname{Bin} O p \operatorname{Def}$ concerns a constant \mathcal{A} that is a finite sequence and a ternary predicate \mathcal{P} and states that:
(i) there exists x such that there exists p being a finite sequence such that $x=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$,
(ii) for all x, y such that there exists p being a finite sequence such that $x=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$ and there exists p being a finite sequence such that $y=p(\operatorname{len} p)$ and $\operatorname{len} p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for every k such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ holds $\mathcal{P}[\mathcal{A}(k+1), p(k), p(k+1)]$ holds $x=y$.
provided the parameters satisfy the following conditions:
- for all k, y such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ there exists z such that $\mathcal{P}[\mathcal{A}(k+1), y, z]$,
- for all k, x, y_{1}, y_{2}, z such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ and $z=$ $\mathcal{A}(k+1)$ and $\mathcal{P}\left[z, x, y_{1}\right]$ and $\mathcal{P}\left[z, x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme LambdaSeqBinOpDe concerns a constant \mathcal{A} that is a finite sequence and a binary functor \mathcal{F} and states that:
(i) there exists x such that there exists p being a finite sequence such that $x=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for all k, y, z such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ and $y=\mathcal{A}(k+1)$ and $z=p(k)$ holds $p(k+1)=\mathcal{F}(y, z)$,
(ii) for all x, y such that there exists p being a finite sequence such that $x=p(\operatorname{len} p)$ and len $p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for all k, y, z such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ and $y=\mathcal{A}(k+1)$ and $z=p(k)$ holds $p(k+1)=\mathcal{F}(y, z)$ and there exists p being a finite sequence such that $y=p(\operatorname{len} p)$ and $\operatorname{len} p=\operatorname{len} \mathcal{A}$ and $p(1)=\mathcal{A}(1)$ and for all k, y, z such that $1 \leq k$ and $k \leq \operatorname{len} \mathcal{A}-1$ and $y=\mathcal{A}(k+1)$ and $z=p(k)$ holds $p(k+1)=\mathcal{F}(y, z)$ holds $x=y$.
for all values of the parameters.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

