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Summary. In the article we define partial functions. We also define
the following notions related to partial functions and functions themselves:
the empty function, the restriction of a function to a partial function from
a set into a set, the set of all partial functions from a set into a set, the
total functions, the relation of tolerance of two functions and the set of
all total functions which are tolerated by a partial function. Some simple
propositions related to the introduced notions are proved. In the beginning
of this article we prove some auxiliary theorems and schemas related to the
articles: [1] and [2].

MML Identifier: PARTFUN1.

The terminology and notation used in this paper are introduced in the following
articles: [4], [1], [2], and [3]. We adopt the following convention: x, y, y1, y2, z,
z1, z2 will be arbitrary, P , Q, X, X ′, X1, X2, Y , Y ′, Y1, Y2, V , Z will denote sets,
and C, D will denote non-empty sets. One can prove the following propositions:

(1) If P ⊆ [: X1, Y1 :] and Q ⊆ [: X2, Y2 :], then P ∪ Q ⊆ [: X1 ∪ X2, Y1 ∪ Y2 :].

(2) For all functions f , g such that for every x such that x ∈ dom f ∩ dom g

holds f(x) = g(x) there exists h being a function such that graph f ∪
graph g = graph h.

(3) For all functions f , g, h such that graph f ∪ graph g = graph h for every
x such that x ∈ dom f ∩ dom g holds f(x) = g(x).

(4) For arbitrary f such that f ∈ Y X holds f is a function from X into Y .

In the article we present several logical schemes. The scheme LambdaC deals
with a constant A that is a set, a unary predicate P , a unary functor F and a
unary functor G and states that:

there exists f being a function such that dom f = A and for every x such that
x ∈ A holds if P[x], then f(x) = F(x) but if not P[x], then f(x) = G(x)
for all values of the parameters.
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The scheme Lambda1C deals with a constant A that is a set, a constant B
that is a set, a unary predicate P , a unary functor F and a unary functor G and
states that:

there exists f being a function from A into B such that for every x such that
x ∈ A holds if P[x], then f(x) = F(x) but if not P[x], then f(x) = G(x)

provided the parameters satisfy the following condition:

• for every x such that x ∈ A holds if P[x], then F(x) ∈ B but if not
P[x], then G(x) ∈ B.

The constant � is a function and is defined by:

graph � = ∅.

Next we state a number of propositions:

(5) For every function f such that graph f = ∅ holds � = f .

(6) graph � = ∅.

(7) � = ∅.

(8) For every function f such that dom f = ∅ or rng f = ∅ holds � = f .

(9) dom � = ∅.

(10) rng � = ∅.

(11) For every function f holds f · � = � and � · f = � .

(12) id∅ = � .

(13) � is one-to-one.

(14) � −1 = � .

(15) For every function f holds f
�
∅ = � .

(16) �
�
X = � .

(17) For every function f holds ∅
�
f = � .

(18) Y
�

� = � .

(19) � ◦ X = ∅.

(20) � −1 Y = ∅.

(21) � is a function from ∅ into Y .

(22) For every function f from ∅ into Y holds f = � .

Let us consider X, Y . The mode partial function from X to Y , which widens
to the type a function, is defined by:

dom it ⊆ X and rng it ⊆ Y .

Next we state a number of propositions:

(23) For every function f holds f is a partial function from X to Y if and
only if dom f ⊆ X and rng f ⊆ Y .

(24) For every function f holds f is a partial function from dom f to rng f .

(25) For every function f such that rng f ⊆ Y holds f is a partial function
from dom f to Y .

(26) For every partial function f from C to D such that y ∈ rng f there exists
x being an element of C such that x ∈ dom f and y = f(x).
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(27) For every partial function f from X to Y such that x ∈ dom f holds
f(x) ∈ Y .

(28) For every partial function f from X to Y such that dom f ⊆ Z holds f

is a partial function from Z to Y .

(29) For every partial function f from X to Y such that rng f ⊆ Z holds f is
a partial function from X to Z.

(30) For every partial function f from X to Y such that X ⊆ Z holds f is a
partial function from Z to Y .

(31) For every partial function f from X to Y such that Y ⊆ Z holds f is a
partial function from X to Z.

(32) For every partial function f from X1 to Y1 such that X1 ⊆ X2 and
Y1 ⊆ Y2 holds f is a partial function from X2 to Y2.

(33) For every function f for every partial function g from X to Y such that
graph f ⊆ graph g holds f is a partial function from X to Y .

(34) For all partial functions f1, f2 from C to D such that X = dom f1

and X = dom f2 and for every element x of C such that x ∈ X holds
f1(x) = f2(x) holds f1 = f2.

(35) For all partial functions f1, f2 from [: X, Y :] to Z such that V = dom f1

and V = dom f2 and for all x, y such that 〈〈x, y〉〉 ∈ V holds f1(〈〈x, y〉〉) =
f2(〈〈x, y〉〉) holds f1 = f2.

Now we present four schemes. The scheme PartFuncEx concerns a constant
A that is a set, a constant B that is a set and a binary predicate P and states
that:

there exists f being a partial function from A to B such that for every x holds
x ∈ dom f if and only if x ∈ A and there exists y such that P[x, y] and for every
x such that x ∈ dom f holds P[x, f(x)]
provided the parameters satisfy the following conditions:

• for all x, y such that x ∈ A and P[x, y] holds y ∈ B,
• for all x, y1, y2 such that x ∈ A and P[x, y1] and P[x, y2] holds

y1 = y2.
The scheme LambdaR concerns a constant A that is a set, a constant B that

is a set, a unary functor F and a unary predicate P and states that:
there exists f being a partial function from A to B such that for every x holds

x ∈ dom f if and only if x ∈ A and P[x] and for every x such that x ∈ dom f

holds f(x) = F(x)
provided the parameters satisfy the following condition:

• for every x such that P[x] holds F(x) ∈ B.
The scheme PartFuncEx2 concerns a constant A that is a set, a constant B

that is a set, a constant C that is a set and a ternary predicate P and states that:
there exists f being a partial function from [:A, B :] to C such that for all x, y

holds 〈〈x, y〉〉 ∈ dom f if and only if x ∈ A and y ∈ B and there exists z such that
P[x, y, z] and for all x, y such that 〈〈x, y〉〉 ∈ dom f holds P[x, y, f(〈〈x, y〉〉)].
provided the parameters satisfy the following conditions:

• for all x, y, z such that x ∈ A and y ∈ B and P[x, y, z] holds z ∈ C,
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• for all x, y, z1, z2 such that x ∈ A and y ∈ B and P[x, y, z1] and
P[x, y, z2] holds z1 = z2.

The scheme LambdaR2 concerns a constant A that is a set, a constant B that
is a set, a constant C that is a set, a binary functor F and a binary predicate P
and states that:

there exists f being a partial function from [:A, B :] to C such that for all x, y

holds 〈〈x, y〉〉 ∈ dom f if and only if x ∈ A and y ∈ B and P[x, y] and for all x, y

such that 〈〈x, y〉〉 ∈ dom f holds f(〈〈x, y〉〉) = F(x, y)
provided the parameters satisfy the following condition:

• for all x, y such that P[x, y] holds F(x, y) ∈ C.
The arguments of the notions defined below are the following: X, Y , V , Z

which are objects of the type reserved above; f which is a partial function from
X to Y ; g which is a partial function from V to Z. Then g ·f is a partial function
from X to Z.

One can prove the following propositions:

(36) For every partial function f from X to Y holds f · idX = f .

(37) For every partial function f from X to Y holds idY ·f = f .

(38) For every partial function f from C to D such that for all elements x1,
x2 of C such that x1 ∈ dom f and x2 ∈ dom f and f(x1) = f(x2) holds
x1 = x2 holds f is one-to-one.

(39) For every partial function f from X to Y such that f is one-to-one holds
f−1 is a partial function from Y to X.

(40) For every function f from X into Y such that if Y = ∅, then X = ∅ but
f is one-to-one holds f−1 is a partial function from Y to X.

(41) For every function f from X into X such that f is one-to-one holds f−1

is a partial function from X to X.

(42) For every function f from X into D such that f is one-to-one holds f−1

is a partial function from D to X.

(43) For every partial function f from X to Y holds f
�
Z is a partial function

from Z to Y .

(44) For every partial function f from X to Y holds f
�
Z is a partial function

from X to Y .

(45) For every partial function f from X to Y holds Z
�
f is a partial function

from X to Z.

(46) For every partial function f from X to Y holds Z
�
f is a partial function

from X to Y .

(47) For every function f holds (Y
�
f)

�
X is a partial function from X to

Y .

(48) For every partial function f from X to Y holds (Y ′ �
f)

�
X ′ is a partial

function from X to Y .

(49) For every partial function f from C to D such that y ∈ f ◦X there exists
x being an element of C such that x ∈ dom f and y = f(x).

(50) For every partial function f from X to Y holds f ◦ P ⊆ Y .
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The arguments of the notions defined below are the following: X, Y which
are objects of the type reserved above; f which is a partial function from X to
Y ; P which is an object of the type reserved above. Then f ◦ P is a subset of Y .

We now state two propositions:

(51) For every partial function f from X to Y holds f ◦ X = rng f .

(52) For every partial function f from X to Y holds f −1 Q ⊆ X.

The arguments of the notions defined below are the following: X, Y which
are objects of the type reserved above; f which is a partial function from X to
Y ; Q which is an object of the type reserved above. Then f −1 Q is a subset of
X.

Next we state a number of propositions:

(53) For every partial function f from X to Y holds f −1 Y = dom f .

(54) For every partial function f from ∅ to Y holds dom f = ∅ and rng f = ∅.

(55) For every function f such that dom f = ∅ holds f is a partial function
from X to Y .

(56) � is a partial function from X to Y .

(57) For every partial function f from ∅ to Y holds f = � .

(58) For every partial function f1 from ∅ to Y1 for every partial function f2

from ∅ to Y2 holds f1 = f2.

(59) For every partial function f from ∅ to Y holds f is one-to-one.

(60) For every partial function f from ∅ to Y holds f ◦ P = ∅.

(61) For every partial function f from ∅ to Y holds f −1 Q = ∅.

(62) For every partial function f from X to ∅ holds dom f = ∅ and rng f = ∅.

(63) For every function f such that rng f = ∅ holds f is a partial function
from X to Y .

(64) For every partial function f from X to ∅ holds f = � .

(65) For every partial function f1 from X1 to ∅ for every partial function f2

from X2 to ∅ holds f1 = f2.

(66) For every partial function f from X to ∅ holds f is one-to-one.

(67) For every partial function f from X to ∅ holds f ◦ P = ∅.

(68) For every partial function f from X to ∅ holds f −1 Q = ∅.

(69) For every partial function f from {x} to Y holds rng f ⊆ {f(x)}.

(70) For every partial function f from {x} to Y holds f is one-to-one.

(71) For every partial function f from {x} to Y holds f ◦ P ⊆ {f(x)}.

(72) For every function f such that dom f = {x} and x ∈ X and f(x) ∈ Y

holds f is a partial function from X to Y .

(73) For every partial function f from X to {y} such that x ∈ dom f holds
f(x) = y.

(74) For all partial functions f1, f2 from X to {y} such that dom f1 = dom f2

holds f1 = f2.
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The arguments of the notions defined below are the following: f which is a
function; X, Y which are sets. The functor f �X→̇Y yielding a partial function
from X to Y , is defined by:

f �X→̇Y = (Y
�
f)

�
X.

We now state a number of propositions:

(75) For every function f for all X, Y holds f �X→̇Y = (Y
�
f)

�
X.

(76) For every function f holds graph(f �X→̇Y ) ⊆ graph f .

(77) For every function f holds dom(f �X→̇Y ) ⊆ dom f and rng(f �X→̇Y ) ⊆
rng f .

(78) For every function f holds x ∈ dom(f �X→̇Y ) if and only if x ∈ dom f

and x ∈ X and f(x) ∈ Y .

(79) For every function f such that x ∈ dom f and x ∈ X and f(x) ∈ Y holds
(f �X→̇Y )(x) = f(x).

(80) For every function f such that x ∈ dom(f �X→̇Y ) holds (f �X→̇Y )(x) =
f(x).

(81) For all functions f , g such that graph f ⊆ graph g holds graph(f �X→̇Y ) ⊆
graph(g �X→̇Y ).

(82) For every function f such that Z ⊆ X holds

graph(f � Z→̇Y ) ⊆ graph(f �X→̇Y ) .

(83) For every function f such that Z ⊆ Y holds

graph(f �X→̇Z ) ⊆ graph(f �X→̇Y ) .

(84) For every function f such that X1 ⊆ X2 and Y1 ⊆ Y2 holds

graph(f �X1→̇Y1
) ⊆ graph(f �X2→̇Y2

) .

(85) For every function f such that dom f ⊆ X and rng f ⊆ Y holds f =
f �X→̇Y .

(86) For every function f holds f = f � dom f→̇ rng f .

(87) For every partial function f from X to Y holds f �X→̇Y = f .

(88) For every function f from X into Y such that if Y = ∅, then X = ∅
holds f �X→̇Y = f .

(89) For every function f from X into X holds f �X→̇X = f .

(90) For every function f from X into D holds f �X→̇D = f .

(91) ���X→̇Y = � .

(92) For all functions f , g holds graph((g � Y →̇Z )·(f �X→̇Y )) ⊆ graph(g·f �X→̇Z ).

(93) For all functions f , g such that rng f ∩ dom g ⊆ Y holds (g � Y →̇Z ) ·
(f �X→̇Y ) = g · f �X→̇Z .

(94) For every function f such that f is one-to-one holds f �X→̇Y is one-to-one.

(95) For every function f such that f is one-to-one holds (f �X→̇Y )−1 =
f−1 � Y →̇X .

(96) For every function f holds (f �X→̇Y )
�
Z = f �X∩Z→̇Y .

(97) For every function f holds Z
�
(f �X→̇Y ) = f �X→̇Z∩Y .
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The arguments of the notions defined below are the following: X, Y which
are objects of the type reserved above; f which is a partial function from X to
Y . The predicate f is total is defined by:

dom f = X.

We now state a number of propositions:

(98) For every partial function f from X to Y holds f is total if and only if
dom f = X.

(99) For every partial function f from X to Y such that f is total and Y = ∅
holds X = ∅.

(100) For every partial function f from X to Y such that dom f = X holds f

is a function from X into Y .

(101) For every partial function f from X to Y such that f is total holds f is
a function from X into Y .

(102) For every partial function f from X to Y such that if Y = ∅, then X = ∅
but f is a function from X into Y holds f is total.

(103) For every function f from X into Y for every partial function f ′ from X

to Y such that if Y = ∅, then X = ∅ but f = f ′ holds f ′ is total.

(104) For every function f from X into Y such that if Y = ∅, then X = ∅
holds f �X→̇Y is total.

(105) For every function f from X into X holds f �X→̇X is total.

(106) For every function f from X into D holds f �X→̇D is total.

(107) For every partial function f from X to Y such that if Y = ∅, then X = ∅
there exists g being a function from X into Y such that for every x such
that x ∈ dom f holds g(x) = f(x).

(108) For every partial function f from X to D there exists g being a function
from X into D such that for every x such that x ∈ dom f holds g(x) = f(x).

(109) For every function f from X into Y such that if Y = ∅, then X = ∅
holds f is a partial function from X to Y .

(110) For every function f from X into X holds f is a partial function from X

to X.

(111) For every function f from X into D holds f is a partial function from X

to D.

(112) For every partial function f from ∅ to Y holds f is total.

(113) For every function f such that f �X→̇Y is total holds X ⊆ dom f .

(114) If ���X→̇Y is total, then X = ∅.

(115) For every function f such that X ⊆ dom f and rng f ⊆ Y holds f �X→̇Y

is total.

(116) For every function f such that f �X→̇Y is total holds f ◦ X ⊆ Y .

(117) For every function f such that X ⊆ dom f and f ◦ X ⊆ Y holds f �X→̇Y

is total.

Let us consider X, Y . The functor X→̇Y yielding a non-empty set, is defined
by:
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x ∈ X→̇Y if and only if there exists f being a function such that x = f and
dom f ⊆ X and rng f ⊆ Y .

We now state a number of propositions:

(118) For every non-empty set F holds F = X→̇Y if and only if for every x

holds x ∈ F if and only if there exists f being a function such that x = f

and dom f ⊆ X and rng f ⊆ Y .

(119) For every partial function f from X to Y holds f ∈ X→̇Y .

(120) For arbitrary f such that f ∈ X→̇Y holds f is a partial function from
X to Y .

(121) For every element f of X→̇Y holds f is a partial function from X to Y .

(122) ∅→̇Y = { � }.

(123) X→̇∅ = { � }.

(124) Y X ⊆ X→̇Y .

(125) If Z ⊆ X, then Z→̇Y ⊆ X→̇Y .

(126) ∅→̇Y ⊆ X→̇Y .

(127) If Z ⊆ Y , then X→̇Z ⊆ X→̇Y .

(128) If X1 ⊆ X2 and Y1 ⊆ Y2, then X1→̇Y1 ⊆ X2→̇Y2.

Let f , g be functions. The predicate f ≈ g is defined by:
for every x such that x ∈ dom f ∩ dom g holds f(x) = g(x).

The following propositions are true:

(129) For all functions f , g holds f ≈ g if and only if for every x such that
x ∈ dom f ∩ dom g holds f(x) = g(x).

(130) For all functions f , g holds f ≈ g if and only if there exists h being a
function such that graph f ∪ graph g = graph h.

(131) For all functions f , g holds f ≈ g if and only if there exists h being a
function such that graph f ⊆ graph h and graph g ⊆ graph h.

(132) For all functions f , g such that dom f ⊆ dom g holds f ≈ g if and only
if for every x such that x ∈ dom f holds f(x) = g(x).

(133) For all functions f , g holds f ≈ f .

(134) For all functions f , g such that f ≈ g holds g ≈ f .

(135) For all functions f , g such that graph f ⊆ graph g holds f ≈ g.

(136) For all functions f , g such that dom f = dom g and f ≈ g holds f = g.

(137) For all functions f , g such that f = g holds f ≈ g.

(138) For all functions f , g such that dom f ∩ dom g = ∅ holds f ≈ g.

(139) For all functions f , g, h such that graph f ⊆ graph h and graph g ⊆
graph h holds f ≈ g.

(140) For all partial functions f , g from X to Y for every function h such that
f ≈ h and graph g ⊆ graph f holds g ≈ h.

(141) For every function f holds � ≈ f and f ≈ � .

(142) For every function f holds � � X→̇Y ≈ f and f ≈ � � X→̇Y .

(143) For all partial functions f , g from X to {y} holds f ≈ g.
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(144) For every function f holds f
�
X ≈ f and f

�
X ≈ f .

(145) For every function f holds Y
�
f ≈ f and f ≈ Y

�
f .

(146) For every function f holds (Y
�
f)

�
X ≈ f and f ≈ (Y

�
f)

�
X.

(147) For every function f holds f � X→̇Y ≈ f and f ≈ f � X→̇Y .

(148) For all partial functions f , g from X to Y such that f is total and g is
total and f ≈ g holds f = g.

(149) For all functions f , g from X into Y such that if Y = ∅, then X = ∅ but
f ≈ g holds f = g.

(150) For all functions f , g from X into X such that f ≈ g holds f = g.

(151) For all functions f , g from X into D such that f ≈ g holds f = g.

(152) For every partial function f from X to Y for every function g from X

into Y such that if Y = ∅, then X = ∅ holds f ≈ g if and only if for every
x such that x ∈ dom f holds f(x) = g(x).

(153) For every partial function f from X to X for every function g from X

into X holds f ≈ g if and only if for every x such that x ∈ dom f holds
f(x) = g(x).

(154) For every partial function f from X to D for every function g from X

into D holds f ≈ g if and only if for every x such that x ∈ dom f holds
f(x) = g(x).

(155) For every partial function f from X to Y such that if Y = ∅, then X = ∅
there exists g being a function from X into Y such that f ≈ g.

(156) For every partial function f from X to X there exists g being a function
from X into X such that f ≈ g.

(157) For every partial function f from X to D there exists g being a function
from X into D such that f ≈ g.

(158) For all partial functions f , g, h from X to Y such that f ≈ h and g ≈ h

and h is total holds f ≈ g.

(159) For all partial functions f , g from X to Y for every function h from X

into Y such that if Y = ∅, then X = ∅ but f ≈ h and g ≈ h holds f ≈ g.

(160) For all partial functions f , g from X to X for every function h from X

into X such that f ≈ h and g ≈ h holds f ≈ g.

(161) For all partial functions f , g from X to D for every function h from X

into D such that f ≈ h and g ≈ h holds f ≈ g.

(162) For all partial functions f , g from X to Y such that if Y = ∅, then X = ∅
but f ≈ g there exists h being a partial function from X to Y such that h

is total and f ≈ h and g ≈ h.

(163) For all partial functions f , g from X to Y such that if Y = ∅, then X = ∅
but f ≈ g there exists h being a function from X into Y such that f ≈ h

and g ≈ h.

The arguments of the notions defined below are the following: X, Y which
are objects of the type reserved above; f which is a partial function from X to
Y . The functor TotFuncs f yields a set and is defined by:
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x ∈ TotFuncs f if and only if there exists g being a partial function from X

to Y such that g = x and g is total and f ≈ g.

The following propositions are true:

(164) For all X, Y for every partial function f from X to Y for every Z holds
Z = TotFuncs f if and only if for every x holds x ∈ Z if and only if there
exists g being a partial function from X to Y such that g = x and g is
total and f ≈ g.

(165) For every partial function f from X to Y for every function g from X

into Y such that if Y = ∅, then X = ∅ but f ≈ g holds g ∈ TotFuncs f .

(166) For every partial function f from X to X for every function g from X

into X such that f ≈ g holds g ∈ TotFuncs f .

(167) For every partial function f from X to D for every function g from X

into D such that f ≈ g holds g ∈ TotFuncs f .

(168) For every partial function f from X to Y for arbitrary g such that g ∈
TotFuncs f holds g is a partial function from X to Y .

(169) For all partial functions f , g from X to Y such that g ∈ TotFuncs f holds
g is total.

(170) For every partial function f from X to Y for arbitrary g such that g ∈
TotFuncs f holds g is a function from X into Y .

(171) For every partial function f from X to Y for every function g such that
g ∈ TotFuncs f holds f ≈ g and g ≈ f .

(172) For every partial function f from X to ∅ such that X 6= ∅ holds

TotFuncs f = ∅ .

(173) For every partial function f from X to Y holds TotFuncs f ⊆ Y X .

(174) For every partial function f from X to Y holds f is total if and only if
TotFuncs f = {f}.

(175) For every partial function f from ∅ to Y holds TotFuncs f = {f}.

(176) For every partial function f from ∅ to Y holds TotFuncs f = { � }.

(177) TotFuncs( ���X→̇Y ) = Y X .

(178) For every function f from X into Y such that if Y = ∅, then X = ∅
holds TotFuncs(f �X→̇Y ) = {f}.

(179) For every function f from X into X holds TotFuncs(f �X→̇X ) = {f}.

(180) For every function f from X into D holds TotFuncs(f �X→̇D ) = {f}.

(181) For every partial function f from X to {y} for every function g from X

into {y} holds TotFuncs f = {g}.

(182) For all partial functions f , g from X to Y such that graph g ⊆ graph f

holds TotFuncs f ⊆ TotFuncs g.

(183) For all partial functions f , g from X to Y such that dom g ⊆ dom f and
TotFuncs f ⊆ TotFuncs g holds graph g ⊆ graph f .

(184) For all partial functions f , g from X to Y such that TotFuncs f ⊆
TotFuncs g and for every y holds Y 6= {y} holds graph g ⊆ graph f .
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(185) For all partial functions f , g from X to Y such that TotFuncs f ∩
TotFuncs g 6= ∅ holds f ≈ g.

(186) For all partial functions f , g from X to Y such that if Y = ∅, then X = ∅
but f ≈ g holds TotFuncs f ∩ TotFuncs g 6= ∅.

(187) For all partial functions f , g from X to Y such that for every y holds
Y 6= {y} and TotFuncs f = TotFuncs g holds f = g.
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