Partial Functions

Czesław Byliński¹ Warsaw University Białystok

Summary. In the article we define partial functions. We also define the following notions related to partial functions and functions themselves: the empty function, the restriction of a function to a partial function from a set into a set, the set of all partial functions from a set into a set, the total functions, the relation of tolerance of two functions and the set of all total functions which are tolerated by a partial function. Some simple propositions related to the introduced notions are proved. In the beginning of this article we prove some auxiliary theorems and schemas related to the articles: [1] and [2].

MML Identifier: PARTFUN1.

The terminology and notation used in this paper are introduced in the following articles: [4], [1], [2], and [3]. We adopt the following convention: $x, y, y_1, y_2, z, z_1, z_2$ will be arbitrary, $P, Q, X, X', X_1, X_2, Y, Y', Y_1, Y_2, V, Z$ will denote sets, and C, D will denote non-empty sets. One can prove the following propositions:

- (1) If $P \subseteq [X_1, Y_1]$ and $Q \subseteq [X_2, Y_2]$, then $P \cup Q \subseteq [X_1 \cup X_2, Y_1 \cup Y_2]$.
- (2) For all functions f, g such that for every x such that $x \in \text{dom } f \cap \text{dom } g$ holds f(x) = g(x) there exists h being a function such that graph $f \cup$ graph g = graph h.
- (3) For all functions f, g, h such that graph $f \cup \operatorname{graph} g = \operatorname{graph} h$ for every x such that $x \in \operatorname{dom} f \cap \operatorname{dom} g$ holds f(x) = g(x).
- (4) For arbitrary f such that $f \in Y^X$ holds f is a function from X into Y.

In the article we present several logical schemes. The scheme LambdaC deals with a constant \mathcal{A} that is a set, a unary predicate \mathcal{P} , a unary functor \mathcal{F} and a unary functor \mathcal{G} and states that:

there exists f being a function such that dom $f = \mathcal{A}$ and for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then $f(x) = \mathcal{F}(x)$ but if not $\mathcal{P}[x]$, then $f(x) = \mathcal{G}(x)$ for all values of the parameters.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C1

The scheme Lambda1C deals with a constant \mathcal{A} that is a set, a constant \mathcal{B} that is a set, a unary predicate \mathcal{P} , a unary functor \mathcal{F} and a unary functor \mathcal{G} and states that:

there exists f being a function from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then $f(x) = \mathcal{F}(x)$ but if not $\mathcal{P}[x]$, then $f(x) = \mathcal{G}(x)$ provided the parameters satisfy the following condition:

• for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then $\mathcal{F}(x) \in \mathcal{B}$ but if not $\mathcal{P}[x]$, then $\mathcal{G}(x) \in \mathcal{B}$.

The constant \Box is a function and is defined by:

 $\operatorname{graph} \Box = \emptyset.$

Next we state a number of propositions:

- (5) For every function f such that graph $f = \emptyset$ holds $\Box = f$.
- (6) graph $\Box = \emptyset$.
- (7) $\Box = \emptyset$.
- (8) For every function f such that dom $f = \emptyset$ or rng $f = \emptyset$ holds $\Box = f$.
- (9) dom $\Box = \emptyset$.
- (10) $\operatorname{rng} \Box = \emptyset.$
- (11) For every function f holds $f \cdot \Box = \Box$ and $\Box \cdot f = \Box$.
- (12) $\operatorname{id}_{\emptyset} = \Box$.
- (13) \square is one-to-one.
- $(14) \quad \Box^{-1} = \Box.$
- (15) For every function f holds $f \upharpoonright \emptyset = \Box$.
- (16) $\Box \upharpoonright X = \Box$.
- (17) For every function f holds $\emptyset \upharpoonright f = \Box$.
- (18) $Y \upharpoonright \Box = \Box$.
- (19) $\square \circ X = \emptyset.$
- (20) $\square^{-1} Y = \emptyset.$
- (21) \Box is a function from \emptyset into Y.
- (22) For every function f from \emptyset into Y holds $f = \Box$.

Let us consider X, Y. The mode partial function from X to Y, which widens to the type a function, is defined by:

dom it $\subseteq X$ and rng it $\subseteq Y$.

Next we state a number of propositions:

- (23) For every function f holds f is a partial function from X to Y if and only if dom $f \subseteq X$ and rng $f \subseteq Y$.
- (24) For every function f holds f is a partial function from dom f to rng f.
- (25) For every function f such that $\operatorname{rng} f \subseteq Y$ holds f is a partial function from dom f to Y.
- (26) For every partial function f from C to D such that $y \in \operatorname{rng} f$ there exists x being an element of C such that $x \in \operatorname{dom} f$ and y = f(x).

- (27) For every partial function f from X to Y such that $x \in \text{dom } f$ holds $f(x) \in Y$.
- (28) For every partial function f from X to Y such that dom $f \subseteq Z$ holds f is a partial function from Z to Y.
- (29) For every partial function f from X to Y such that rng $f \subseteq Z$ holds f is a partial function from X to Z.
- (30) For every partial function f from X to Y such that $X \subseteq Z$ holds f is a partial function from Z to Y.
- (31) For every partial function f from X to Y such that $Y \subseteq Z$ holds f is a partial function from X to Z.
- (32) For every partial function f from X_1 to Y_1 such that $X_1 \subseteq X_2$ and $Y_1 \subseteq Y_2$ holds f is a partial function from X_2 to Y_2 .
- (33) For every function f for every partial function g from X to Y such that graph $f \subseteq$ graph g holds f is a partial function from X to Y.
- (34) For all partial functions f_1 , f_2 from C to D such that $X = \text{dom } f_1$ and $X = \text{dom } f_2$ and for every element x of C such that $x \in X$ holds $f_1(x) = f_2(x)$ holds $f_1 = f_2$.
- (35) For all partial functions f_1 , f_2 from [X, Y] to Z such that $V = \text{dom } f_1$ and $V = \text{dom } f_2$ and for all x, y such that $\langle x, y \rangle \in V$ holds $f_1(\langle x, y \rangle) = f_2(\langle x, y \rangle)$ holds $f_1 = f_2$.

Now we present four schemes. The scheme PartFuncEx concerns a constant \mathcal{A} that is a set, a constant \mathcal{B} that is a set and a binary predicate \mathcal{P} and states that:

there exists f being a partial function from \mathcal{A} to \mathcal{B} such that for every x holds $x \in \text{dom } f$ if and only if $x \in \mathcal{A}$ and there exists y such that $\mathcal{P}[x, y]$ and for every x such that $x \in \text{dom } f$ holds $\mathcal{P}[x, f(x)]$

provided the parameters satisfy the following conditions:

- for all x, y such that $x \in \mathcal{A}$ and $\mathcal{P}[x, y]$ holds $y \in \mathcal{B}$,
- for all x, y_1, y_2 such that $x \in \mathcal{A}$ and $\mathcal{P}[x, y_1]$ and $\mathcal{P}[x, y_2]$ holds $y_1 = y_2$.

The scheme LambdaR concerns a constant \mathcal{A} that is a set, a constant \mathcal{B} that is a set, a unary functor \mathcal{F} and a unary predicate \mathcal{P} and states that:

there exists f being a partial function from \mathcal{A} to \mathcal{B} such that for every x holds $x \in \text{dom } f$ if and only if $x \in \mathcal{A}$ and $\mathcal{P}[x]$ and for every x such that $x \in \text{dom } f$ holds $f(x) = \mathcal{F}(x)$

provided the parameters satisfy the following condition:

• for every x such that $\mathcal{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$.

The scheme *PartFuncEx2* concerns a constant \mathcal{A} that is a set, a constant \mathcal{B} that is a set, a constant \mathcal{C} that is a set and a ternary predicate \mathcal{P} and states that:

there exists f being a partial function from $[\mathcal{A}, \mathcal{B}]$ to \mathcal{C} such that for all x, yholds $\langle x, y \rangle \in \text{dom } f$ if and only if $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and there exists z such that $\mathcal{P}[x, y, z]$ and for all x, y such that $\langle x, y \rangle \in \text{dom } f$ holds $\mathcal{P}[x, y, f(\langle x, y \rangle)]$. provided the parameters satisfy the following conditions:

• for all x, y, z such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y, z]$ holds $z \in \mathcal{C}$,

• for all x, y, z_1, z_2 such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y, z_1]$ and $\mathcal{P}[x, y, z_2]$ holds $z_1 = z_2$.

The scheme LambdaR2 concerns a constant \mathcal{A} that is a set, a constant \mathcal{B} that is a set, a constant \mathcal{C} that is a set, a binary functor \mathcal{F} and a binary predicate \mathcal{P} and states that:

there exists f being a partial function from $[\mathcal{A}, \mathcal{B}]$ to \mathcal{C} such that for all x, yholds $\langle x, y \rangle \in \text{dom } f$ if and only if $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$ and for all x, ysuch that $\langle x, y \rangle \in \text{dom } f$ holds $f(\langle x, y \rangle) = \mathcal{F}(x, y)$ provided the parameters satisfy the following condition:

• for all x, y such that $\mathcal{P}[x, y]$ holds $\mathcal{F}(x, y) \in \mathcal{C}$.

The arguments of the notions defined below are the following: X, Y, V, Zwhich are objects of the type reserved above; f which is a partial function from X to Y; g which is a partial function from V to Z. Then $g \cdot f$ is a partial function from X to Z.

One can prove the following propositions:

- (36) For every partial function f from X to Y holds $f \cdot id_X = f$.
- (37) For every partial function f from X to Y holds $\operatorname{id}_Y \cdot f = f$.
- (38) For every partial function f from C to D such that for all elements x_1 , x_2 of C such that $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$ and $f(x_1) = f(x_2)$ holds $x_1 = x_2$ holds f is one-to-one.
- (39) For every partial function f from X to Y such that f is one-to-one holds f^{-1} is a partial function from Y to X.
- (40) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ but f is one-to-one holds f^{-1} is a partial function from Y to X.
- (41) For every function f from X into X such that f is one-to-one holds f^{-1} is a partial function from X to X.
- (42) For every function f from X into D such that f is one-to-one holds f^{-1} is a partial function from D to X.
- (43) For every partial function f from X to Y holds $f \upharpoonright Z$ is a partial function from Z to Y.
- (44) For every partial function f from X to Y holds $f \upharpoonright Z$ is a partial function from X to Y.
- (45) For every partial function f from X to Y holds $Z \upharpoonright f$ is a partial function from X to Z.
- (46) For every partial function f from X to Y holds $Z \upharpoonright f$ is a partial function from X to Y.
- (47) For every function f holds $(Y \upharpoonright f) \upharpoonright X$ is a partial function from X to Y.
- (48) For every partial function f from X to Y holds $(Y' \upharpoonright f) \upharpoonright X'$ is a partial function from X to Y.
- (49) For every partial function f from C to D such that $y \in f^{\circ} X$ there exists x being an element of C such that $x \in \text{dom } f$ and y = f(x).
- (50) For every partial function f from X to Y holds $f \circ P \subseteq Y$.

The arguments of the notions defined below are the following: X, Y which are objects of the type reserved above; f which is a partial function from X to Y; P which is an object of the type reserved above. Then $f \circ P$ is a subset of Y.

We now state two propositions:

- (51) For every partial function f from X to Y holds $f \circ X = \operatorname{rng} f$.
- (52) For every partial function f from X to Y holds $f^{-1} Q \subseteq X$.

The arguments of the notions defined below are the following: X, Y which are objects of the type reserved above; f which is a partial function from X to Y; Q which is an object of the type reserved above. Then $f^{-1}Q$ is a subset of X.

Next we state a number of propositions:

- (53) For every partial function f from X to Y holds $f^{-1} Y = \text{dom } f$.
- (54) For every partial function f from \emptyset to Y holds dom $f = \emptyset$ and rng $f = \emptyset$.
- (55) For every function f such that dom $f = \emptyset$ holds f is a partial function from X to Y.
- (56) \Box is a partial function from X to Y.
- (57) For every partial function f from \emptyset to Y holds $f = \Box$.
- (58) For every partial function f_1 from \emptyset to Y_1 for every partial function f_2 from \emptyset to Y_2 holds $f_1 = f_2$.
- (59) For every partial function f from \emptyset to Y holds f is one-to-one.
- (60) For every partial function f from \emptyset to Y holds $f \circ P = \emptyset$.
- (61) For every partial function f from \emptyset to Y holds $f^{-1}Q = \emptyset$.
- (62) For every partial function f from X to \emptyset holds dom $f = \emptyset$ and rng $f = \emptyset$.
- (63) For every function f such that $\operatorname{rng} f = \emptyset$ holds f is a partial function from X to Y.
- (64) For every partial function f from X to \emptyset holds $f = \Box$.
- (65) For every partial function f_1 from X_1 to \emptyset for every partial function f_2 from X_2 to \emptyset holds $f_1 = f_2$.
- (66) For every partial function f from X to \emptyset holds f is one-to-one.
- (67) For every partial function f from X to \emptyset holds $f \circ P = \emptyset$.
- (68) For every partial function f from X to \emptyset holds $f^{-1}Q = \emptyset$.
- (69) For every partial function f from $\{x\}$ to Y holds rng $f \subseteq \{f(x)\}$.
- (70) For every partial function f from $\{x\}$ to Y holds f is one-to-one.
- (71) For every partial function f from $\{x\}$ to Y holds $f \circ P \subseteq \{f(x)\}$.
- (72) For every function f such that dom $f = \{x\}$ and $x \in X$ and $f(x) \in Y$ holds f is a partial function from X to Y.
- (73) For every partial function f from X to $\{y\}$ such that $x \in \text{dom } f$ holds f(x) = y.
- (74) For all partial functions f_1 , f_2 from X to $\{y\}$ such that dom $f_1 = \text{dom } f_2$ holds $f_1 = f_2$.

The arguments of the notions defined below are the following: f which is a function; X, Y which are sets. The functor $f_{\uparrow X \to Y}$ yielding a partial function from X to Y, is defined by:

 $f_{\restriction X \to Y} = (Y \restriction f) \restriction X.$

We now state a number of propositions:

- (75) For every function f for all X, Y holds $f_{\uparrow X \to Y} = (Y \upharpoonright f) \upharpoonright X$.
- (76) For every function f holds graph $(f_{\uparrow X \to Y}) \subseteq \operatorname{graph} f$.
- (77) For every function f holds $\operatorname{dom}(f_{\uparrow X \to Y}) \subseteq \operatorname{dom} f$ and $\operatorname{rng}(f_{\uparrow X \to Y}) \subseteq \operatorname{rng} f$.
- (78) For every function f holds $x \in \text{dom}(f_{\uparrow X \to Y})$ if and only if $x \in \text{dom} f$ and $x \in X$ and $f(x) \in Y$.
- (79) For every function f such that $x \in \text{dom } f$ and $x \in X$ and $f(x) \in Y$ holds $(f_{\uparrow X \to Y})(x) = f(x).$
- (80) For every function f such that $x \in \text{dom}(f_{\uparrow X \to Y})$ holds $(f_{\uparrow X \to Y})(x) = f(x)$.
- (81) For all functions f, g such that graph $f \subseteq \operatorname{graph} g$ holds $\operatorname{graph}(f_{\uparrow X \to Y}) \subseteq \operatorname{graph}(g_{\uparrow X \to Y})$.
- (82) For every function f such that $Z \subseteq X$ holds graph $(f_{\uparrow Z \to Y}) \subseteq \operatorname{graph}(f_{\uparrow X \to Y})$.
- (83) For every function f such that $Z \subseteq Y$ holds graph $(f_{\uparrow X \to Z}) \subseteq \operatorname{graph}(f_{\uparrow X \to Y})$.
- (84) For every function f such that $X_1 \subseteq X_2$ and $Y_1 \subseteq Y_2$ holds $\operatorname{graph}(f_{\restriction X_1 \to Y_1}) \subseteq \operatorname{graph}(f_{\restriction X_2 \to Y_2})$.
- (85) For every function f such that dom $f \subseteq X$ and rng $f \subseteq Y$ holds $f = f_{\uparrow X \rightarrow Y}$.
- (86) For every function f holds $f = f_{\restriction \text{dom} f \rightarrow \text{rng} f}$.
- (87) For every partial function f from X to Y holds $f_{\uparrow X \to Y} = f$.
- (88) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds $f_{\uparrow X \rightarrow Y} = f$.
- (89) For every function f from X into X holds $f_{\uparrow X \to X} = f$.
- (90) For every function f from X into D holds $f_{\uparrow X \to D} = f$.
- $(91) \qquad \Box_{\uparrow X \to Y} = \Box.$
- (92) For all functions f, g holds $\operatorname{graph}((g_{\uparrow Y \to Z}) \cdot (f_{\uparrow X \to Y})) \subseteq \operatorname{graph}(g \cdot f_{\uparrow X \to Z}).$
- (93) For all functions f, g such that $\operatorname{rng} f \cap \operatorname{dom} g \subseteq Y$ holds $(g_{\restriction Y \to Z}) \cdot (f_{\restriction X \to Y}) = g \cdot f_{\restriction X \to Z}$.
- (94) For every function f such that f is one-to-one holds $f_{\uparrow X \to Y}$ is one-to-one.
- (95) For every function f such that f is one-to-one holds $(f_{\uparrow X \to Y})^{-1} = f^{-1}_{\uparrow Y \to X}$.
- (96) For every function f holds $(f_{\uparrow X \to Y}) \upharpoonright Z = f_{\uparrow X \cap Z \to Y}$.
- (97) For every function f holds $Z \upharpoonright (f_{\upharpoonright X \to Y}) = f_{\upharpoonright X \to Z \cap Y}$.

The arguments of the notions defined below are the following: X, Y which are objects of the type reserved above; f which is a partial function from X to Y. The predicate f is total is defined by:

dom f = X.

We now state a number of propositions:

- (98) For every partial function f from X to Y holds f is total if and only if dom f = X.
- (99) For every partial function f from X to Y such that f is total and $Y = \emptyset$ holds $X = \emptyset$.
- (100) For every partial function f from X to Y such that dom f = X holds f is a function from X into Y.
- (101) For every partial function f from X to Y such that f is total holds f is a function from X into Y.
- (102) For every partial function f from X to Y such that if $Y = \emptyset$, then $X = \emptyset$ but f is a function from X into Y holds f is total.
- (103) For every function f from X into Y for every partial function f' from X to Y such that if $Y = \emptyset$, then $X = \emptyset$ but f = f' holds f' is total.
- (104) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds $f_{\uparrow X \to Y}$ is total.
- (105) For every function f from X into X holds $f_{\uparrow X \to X}$ is total.
- (106) For every function f from X into D holds $f_{\uparrow X \to D}$ is total.
- (107) For every partial function f from X to Y such that if $Y = \emptyset$, then $X = \emptyset$ there exists g being a function from X into Y such that for every x such that $x \in \text{dom } f$ holds g(x) = f(x).
- (108) For every partial function f from X to D there exists g being a function from X into D such that for every x such that $x \in \text{dom } f$ holds g(x) = f(x).
- (109) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds f is a partial function from X to Y.
- (110) For every function f from X into X holds f is a partial function from X to X.
- (111) For every function f from X into D holds f is a partial function from X to D.
- (112) For every partial function f from \emptyset to Y holds f is total.
- (113) For every function f such that $f_{\uparrow X \to Y}$ is total holds $X \subseteq \text{dom } f$.
- (114) If $\Box_{\uparrow X \to Y}$ is total, then $X = \emptyset$.
- (115) For every function f such that $X \subseteq \text{dom } f$ and $\text{rng } f \subseteq Y$ holds $f_{\uparrow X \to Y}$ is total.
- (116) For every function f such that $f_{\uparrow X \to Y}$ is total holds $f \circ X \subseteq Y$.
- (117) For every function f such that $X \subseteq \text{dom } f$ and $f \circ X \subseteq Y$ holds $f_{\uparrow X \to Y}$ is total.

Let us consider X, Y. The functor $X \rightarrow Y$ yielding a non-empty set, is defined by:

 $x \in X \rightarrow Y$ if and only if there exists f being a function such that x = f and dom $f \subseteq X$ and rng $f \subseteq Y$.

We now state a number of propositions:

- (118) For every non-empty set F holds $F = X \rightarrow Y$ if and only if for every x holds $x \in F$ if and only if there exists f being a function such that x = f and dom $f \subseteq X$ and rng $f \subseteq Y$.
- (119) For every partial function f from X to Y holds $f \in X \rightarrow Y$.
- (120) For arbitrary f such that $f \in X \rightarrow Y$ holds f is a partial function from X to Y.
- (121) For every element f of $X \rightarrow Y$ holds f is a partial function from X to Y.
- $(122) \qquad \emptyset \dot{\to} Y = \{\Box\}.$
- $(123) \quad X \dot{\to} \emptyset = \{\Box\}.$
- (124) $Y^X \subseteq X \rightarrow Y.$
- (125) If $Z \subseteq X$, then $Z \rightarrow Y \subseteq X \rightarrow Y$.
- $(126) \qquad \emptyset \dot{\to} Y \subseteq X \dot{\to} Y.$
- (127) If $Z \subseteq Y$, then $X \rightarrow Z \subseteq X \rightarrow Y$.
- (128) If $X_1 \subseteq X_2$ and $Y_1 \subseteq Y_2$, then $X_1 \rightarrow Y_1 \subseteq X_2 \rightarrow Y_2$.

Let f, g be functions. The predicate $f \approx g$ is defined by: for every x such that $x \in \text{dom } f \cap \text{dom } g$ holds f(x) = g(x).

The following propositions are true:

- (129) For all functions f, g holds $f \approx g$ if and only if for every x such that $x \in \text{dom } f \cap \text{dom } g$ holds f(x) = g(x).
- (130) For all functions f, g holds $f \approx g$ if and only if there exists h being a function such that graph $f \cup \operatorname{graph} g = \operatorname{graph} h$.
- (131) For all functions f, g holds $f \approx g$ if and only if there exists h being a function such that graph $f \subseteq \operatorname{graph} h$ and $\operatorname{graph} g \subseteq \operatorname{graph} h$.
- (132) For all functions f, g such that dom $f \subseteq \text{dom } g$ holds $f \approx g$ if and only if for every x such that $x \in \text{dom } f$ holds f(x) = g(x).
- (133) For all functions f, g holds $f \approx f$.
- (134) For all functions f, g such that $f \approx g$ holds $g \approx f$.
- (135) For all functions f, g such that graph $f \subseteq \operatorname{graph} g$ holds $f \approx g$.
- (136) For all functions f, g such that dom f = dom g and $f \approx g$ holds f = g.
- (137) For all functions f, g such that f = g holds $f \approx g$.
- (138) For all functions f, g such that dom $f \cap \text{dom } g = \emptyset$ holds $f \approx g$.
- (139) For all functions f, g, h such that graph $f \subseteq \operatorname{graph} h$ and graph $g \subseteq \operatorname{graph} h$ holds $f \approx g$.
- (140) For all partial functions f, g from X to Y for every function h such that $f \approx h$ and graph $g \subseteq$ graph f holds $g \approx h$.
- (141) For every function f holds $\Box \approx f$ and $f \approx \Box$.
- (142) For every function f holds $\Box_{\uparrow X \to Y} \approx f$ and $f \approx \Box_{\uparrow X \to Y}$.
- (143) For all partial functions f, g from X to $\{y\}$ holds $f \approx g$.

- (144) For every function f holds $f \upharpoonright X \approx f$ and $f \upharpoonright X \approx f$.
- (145) For every function f holds $Y \upharpoonright f \approx f$ and $f \approx Y \upharpoonright f$.
- (146) For every function f holds $(Y \upharpoonright f) \upharpoonright X \approx f$ and $f \approx (Y \upharpoonright f) \upharpoonright X$.
- (147) For every function f holds $f_{\uparrow X \to Y} \approx f$ and $f \approx f_{\uparrow X \to Y}$.
- (148) For all partial functions f, g from X to Y such that f is total and g is total and $f \approx g$ holds f = g.
- (149) For all functions f, g from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ but $f \approx g$ holds f = g.
- (150) For all functions f, g from X into X such that $f \approx g$ holds f = g.
- (151) For all functions f, g from X into D such that $f \approx g$ holds f = g.
- (152) For every partial function f from X to Y for every function g from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds $f \approx g$ if and only if for every x such that $x \in \text{dom } f$ holds f(x) = g(x).
- (153) For every partial function f from X to X for every function g from X into X holds $f \approx g$ if and only if for every x such that $x \in \text{dom } f$ holds f(x) = g(x).
- (154) For every partial function f from X to D for every function g from X into D holds $f \approx g$ if and only if for every x such that $x \in \text{dom } f$ holds f(x) = g(x).
- (155) For every partial function f from X to Y such that if $Y = \emptyset$, then $X = \emptyset$ there exists g being a function from X into Y such that $f \approx g$.
- (156) For every partial function f from X to X there exists g being a function from X into X such that $f \approx g$.
- (157) For every partial function f from X to D there exists g being a function from X into D such that $f \approx g$.
- (158) For all partial functions f, g, h from X to Y such that $f \approx h$ and $g \approx h$ and h is total holds $f \approx g$.
- (159) For all partial functions f, g from X to Y for every function h from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ but $f \approx h$ and $g \approx h$ holds $f \approx g$.
- (160) For all partial functions f, g from X to X for every function h from X into X such that $f \approx h$ and $g \approx h$ holds $f \approx g$.
- (161) For all partial functions f, g from X to D for every function h from X into D such that $f \approx h$ and $g \approx h$ holds $f \approx g$.
- (162) For all partial functions f, g from X to Y such that if $Y = \emptyset$, then $X = \emptyset$ but $f \approx g$ there exists h being a partial function from X to Y such that his total and $f \approx h$ and $g \approx h$.
- (163) For all partial functions f, g from X to Y such that if $Y = \emptyset$, then $X = \emptyset$ but $f \approx g$ there exists h being a function from X into Y such that $f \approx h$ and $g \approx h$.

The arguments of the notions defined below are the following: X, Y which are objects of the type reserved above; f which is a partial function from X to Y. The functor TotFuncs f yields a set and is defined by:

 $x \in \text{TotFuncs } f$ if and only if there exists g being a partial function from X to Y such that g = x and g is total and $f \approx g$.

The following propositions are true:

- (164) For all X, Y for every partial function f from X to Y for every Z holds Z = TotFuncs f if and only if for every x holds $x \in Z$ if and only if there exists g being a partial function from X to Y such that g = x and g is total and $f \approx g$.
- (165) For every partial function f from X to Y for every function g from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ but $f \approx g$ holds $g \in \text{TotFuncs } f$.
- (166) For every partial function f from X to X for every function g from X into X such that $f \approx g$ holds $g \in \text{TotFuncs } f$.
- (167) For every partial function f from X to D for every function g from X into D such that $f \approx g$ holds $g \in \text{TotFuncs } f$.
- (168) For every partial function f from X to Y for arbitrary g such that $g \in$ TotFuncs f holds g is a partial function from X to Y.
- (169) For all partial functions f, g from X to Y such that $g \in \text{TotFuncs } f$ holds g is total.
- (170) For every partial function f from X to Y for arbitrary g such that $g \in$ TotFuncs f holds g is a function from X into Y.
- (171) For every partial function f from X to Y for every function g such that $g \in \text{TotFuncs } f$ holds $f \approx g$ and $g \approx f$.
- (172) For every partial function f from X to \emptyset such that $X \neq \emptyset$ holds TotFuncs $f = \emptyset$.
- (173) For every partial function f from X to Y holds TotFuncs $f \subseteq Y^X$.
- (174) For every partial function f from X to Y holds f is total if and only if TotFuncs $f = \{f\}$.
- (175) For every partial function f from \emptyset to Y holds TotFuncs $f = \{f\}$.
- (176) For every partial function f from \emptyset to Y holds TotFuncs $f = \{\Box\}$.
- (177) TotFuncs($\Box_{\uparrow X \to Y}$) = Y^X .
- (178) For every function f from X into Y such that if $Y = \emptyset$, then $X = \emptyset$ holds TotFuncs $(f_{\uparrow X \to Y}) = \{f\}$.
- (179) For every function f from X into X holds $\operatorname{TotFuncs}(f_{\uparrow X \to X}) = \{f\}.$
- (180) For every function f from X into D holds TotFuncs $(f_{\uparrow X \to D}) = \{f\}$.
- (181) For every partial function f from X to $\{y\}$ for every function g from X into $\{y\}$ holds TotFuncs $f = \{g\}$.
- (182) For all partial functions f, g from X to Y such that graph $g \subseteq$ graph f holds TotFuncs $f \subseteq$ TotFuncs g.
- (183) For all partial functions f, g from X to Y such that dom $g \subseteq \text{dom } f$ and TotFuncs $f \subseteq \text{TotFuncs } g$ holds graph $g \subseteq \text{graph } f$.
- (184) For all partial functions f, g from X to Y such that TotFuncs $f \subseteq$ TotFuncs g and for every y holds $Y \neq \{y\}$ holds graph $g \subseteq$ graph f.

- (185) For all partial functions f, g from X to Y such that TotFuncs $f \cap$ TotFuncs $g \neq \emptyset$ holds $f \approx g$.
- (186) For all partial functions f, g from X to Y such that if $Y = \emptyset$, then $X = \emptyset$ but $f \approx g$ holds TotFuncs $f \cap$ TotFuncs $g \neq \emptyset$.
- (187) For all partial functions f, g from X to Y such that for every y holds $Y \neq \{y\}$ and TotFuncs f = TotFuncs g holds f = g.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [3] Czesław Byliński. Graphs of functions. Formalized Mathematics, 1(1):169– 173, 1990.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received September 18, 1989