Partial Functions

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. In the article we define partial functions. We also define the following notions related to partial functions and functions themselves: the empty function, the restriction of a function to a partial function from a set into a set, the set of all partial functions from a set into a set, the total functions, the relation of tolerance of two functions and the set of all total functions which are tolerated by a partial function. Some simple propositions related to the introduced notions are proved. In the beginning of this article we prove some auxiliary theorems and schemas related to the articles: [1] and [2].

MML Identifier: PARTFUN1.

The terminology and notation used in this paper are introduced in the following articles: [4], [1], [2], and [3]. We adopt the following convention: x, y, y_{1}, y_{2}, z, z_{1}, z_{2} will be arbitrary, $P, Q, X, X^{\prime}, X_{1}, X_{2}, Y, Y^{\prime}, Y_{1}, Y_{2}, V, Z$ will denote sets, and C, D will denote non-empty sets. One can prove the following propositions:
(1) If $P \subseteq: X_{1}, Y_{1} \ddagger$ and $Q \subseteq: X_{2}, Y_{2} \ddagger$, then $P \cup Q \subseteq: X_{1} \cup X_{2}, Y_{1} \cup Y_{2} \ddagger$.
(2) For all functions f, g such that for every x such that $x \in \operatorname{dom} f \cap \operatorname{dom} g$ holds $f(x)=g(x)$ there exists h being a function such that graph $f \cup$ graph $g=\operatorname{graph} h$.
(3) For all functions f, g, h such that graph $f \cup \operatorname{graph} g=\operatorname{graph} h$ for every x such that $x \in \operatorname{dom} f \cap \operatorname{dom} g$ holds $f(x)=g(x)$.
(4) For arbitrary f such that $f \in Y^{X}$ holds f is a function from X into Y.

In the article we present several logical schemes. The scheme LambdaC deals with a constant \mathcal{A} that is a set, a unary predicate \mathcal{P}, a unary functor \mathcal{F} and a unary functor \mathcal{G} and states that:
there exists f being a function such that $\operatorname{dom} f=\mathcal{A}$ and for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then $f(x)=\mathcal{F}(x)$ but if not $\mathcal{P}[x]$, then $f(x)=\mathcal{G}(x)$ for all values of the parameters.

[^0]The scheme Lambda1C deals with a constant \mathcal{A} that is a set, a constant \mathcal{B} that is a set, a unary predicate \mathcal{P}, a unary functor \mathcal{F} and a unary functor \mathcal{G} and states that:
there exists f being a function from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then $f(x)=\mathcal{F}(x)$ but if not $\mathcal{P}[x]$, then $f(x)=\mathcal{G}(x)$
provided the parameters satisfy the following condition:

- for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then $\mathcal{F}(x) \in \mathcal{B}$ but if not $\mathcal{P}[x]$, then $\mathcal{G}(x) \in \mathcal{B}$.
The constant \square is a function and is defined by:
graph $\square=\emptyset$.
Next we state a number of propositions:
(5) For every function f such that graph $f=\emptyset$ holds $\square=f$.
(6) graph $\square=\emptyset$.
(7) $\square=\emptyset$.
(8) For every function f such that $\operatorname{dom} f=\emptyset$ or $\operatorname{rng} f=\emptyset$ holds $\square=f$.
(9) $\operatorname{dom} \square=\emptyset$.
(10) $\operatorname{rng} \square=\emptyset$.
(11) For every function f holds $f \cdot \square=\square$ and $\square \cdot f=\square$.
(12) $\quad \mathrm{id}_{\emptyset}=\square$.
(13) \square is one-to-one.
(14) $\square^{-1}=\square$.
(15) For every function f holds $f \upharpoonright \emptyset=\square$.

$$
\begin{equation*}
\square \upharpoonright X=\square . \tag{16}
\end{equation*}
$$

For every function f holds $\emptyset \upharpoonright f=\square$.
(18) $Y \upharpoonright \square=\square$.
(19) $\square^{\circ} X=\emptyset$.
(20) $\quad \square^{-1} Y=\emptyset$.
(21) \square is a function from \emptyset into Y.
(22) For every function f from \emptyset into Y holds $f=\square$.

Let us consider X, Y. The mode partial function from X to Y, which widens to the type a function, is defined by:
dom it $\subseteq X$ and rng it $\subseteq Y$.
Next we state a number of propositions:
(23) For every function f holds f is a partial function from X to Y if and only if $\operatorname{dom} f \subseteq X$ and $\operatorname{rng} f \subseteq Y$.
(24) For every function f holds f is a partial function from $\operatorname{dom} f$ to $\operatorname{rng} f$.
(25) For every function f such that $\operatorname{rng} f \subseteq Y$ holds f is a partial function from $\operatorname{dom} f$ to Y.
(26) For every partial function f from C to D such that $y \in \operatorname{rng} f$ there exists x being an element of C such that $x \in \operatorname{dom} f$ and $y=f(x)$.
(27) For every partial function f from X to Y such that $x \in \operatorname{dom} f$ holds $f(x) \in Y$.
(28) For every partial function f from X to Y such that $\operatorname{dom} f \subseteq Z$ holds f is a partial function from Z to Y.
(29) For every partial function f from X to Y such that $\operatorname{rng} f \subseteq Z$ holds f is a partial function from X to Z.
(30) For every partial function f from X to Y such that $X \subseteq Z$ holds f is a partial function from Z to Y.
(31) For every partial function f from X to Y such that $Y \subseteq Z$ holds f is a partial function from X to Z.
(32) For every partial function f from X_{1} to Y_{1} such that $X_{1} \subseteq X_{2}$ and $Y_{1} \subseteq Y_{2}$ holds f is a partial function from X_{2} to Y_{2}.
(33) For every function f for every partial function g from X to Y such that graph $f \subseteq$ graph g holds f is a partial function from X to Y.
(34) For all partial functions f_{1}, f_{2} from C to D such that $X=\operatorname{dom} f_{1}$ and $X=\operatorname{dom} f_{2}$ and for every element x of C such that $x \in X$ holds $f_{1}(x)=f_{2}(x)$ holds $f_{1}=f_{2}$.
(35) For all partial functions f_{1}, f_{2} from $: X, Y:$ to Z such that $V=\operatorname{dom} f_{1}$ and $V=\operatorname{dom} f_{2}$ and for all x, y such that $\langle x, y\rangle \in V$ holds $f_{1}(\langle x, y\rangle)=$ $f_{2}(\langle x, y\rangle)$ holds $f_{1}=f_{2}$.
Now we present four schemes. The scheme PartFuncEx concerns a constant \mathcal{A} that is a set, a constant \mathcal{B} that is a set and a binary predicate \mathcal{P} and states that:
there exists f being a partial function from \mathcal{A} to \mathcal{B} such that for every x holds $x \in \operatorname{dom} f$ if and only if $x \in \mathcal{A}$ and there exists y such that $\mathcal{P}[x, y]$ and for every x such that $x \in \operatorname{dom} f$ holds $\mathcal{P}[x, f(x)]$
provided the parameters satisfy the following conditions:

- for all x, y such that $x \in \mathcal{A}$ and $\mathcal{P}[x, y]$ holds $y \in \mathcal{B}$,
- for all x, y_{1}, y_{2} such that $x \in \mathcal{A}$ and $\mathcal{P}\left[x, y_{1}\right]$ and $\mathcal{P}\left[x, y_{2}\right]$ holds $y_{1}=y_{2}$.
The scheme LambdaR concerns a constant \mathcal{A} that is a set, a constant \mathcal{B} that is a set, a unary functor \mathcal{F} and a unary predicate \mathcal{P} and states that:
there exists f being a partial function from \mathcal{A} to \mathcal{B} such that for every x holds $x \in \operatorname{dom} f$ if and only if $x \in \mathcal{A}$ and $\mathcal{P}[x]$ and for every x such that $x \in \operatorname{dom} f$ holds $f(x)=\mathcal{F}(x)$
provided the parameters satisfy the following condition:
- for every x such that $\mathcal{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$.

The scheme PartFuncEx2 concerns a constant \mathcal{A} that is a set, a constant \mathcal{B} that is a set, a constant \mathcal{C} that is a set and a ternary predicate \mathcal{P} and states that:
there exists f being a partial function from : \mathcal{A}, \mathcal{B} : to \mathcal{C} such that for all x, y holds $\langle x, y\rangle \in \operatorname{dom} f$ if and only if $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and there exists z such that $\mathcal{P}[x, y, z]$ and for all x, y such that $\langle x, y\rangle \in \operatorname{dom} f$ holds $\mathcal{P}[x, y, f(\langle x, y\rangle)]$.
provided the parameters satisfy the following conditions:

- for all x, y, z such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y, z]$ holds $z \in \mathcal{C}$,
- for all x, y, z_{1}, z_{2} such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}\left[x, y, z_{1}\right]$ and $\mathcal{P}\left[x, y, z_{2}\right]$ holds $z_{1}=z_{2}$.
The scheme LambdaR2 concerns a constant \mathcal{A} that is a set, a constant \mathcal{B} that is a set, a constant \mathcal{C} that is a set, a binary functor \mathcal{F} and a binary predicate \mathcal{P} and states that:
there exists f being a partial function from $: \mathcal{A}, \mathcal{B}:]$ to \mathcal{C} such that for all x, y holds $\langle x, y\rangle \in \operatorname{dom} f$ if and only if $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$ and for all x, y such that $\langle x, y\rangle \in \operatorname{dom} f$ holds $f(\langle x, y\rangle)=\mathcal{F}(x, y)$ provided the parameters satisfy the following condition:
- for all x, y such that $\mathcal{P}[x, y]$ holds $\mathcal{F}(x, y) \in \mathcal{C}$.

The arguments of the notions defined below are the following: X, Y, V, Z which are objects of the type reserved above; f which is a partial function from X to $Y ; g$ which is a partial function from V to Z. Then $g \cdot f$ is a partial function from X to Z.

One can prove the following propositions:
(36) For every partial function f from X to Y holds $f \cdot \operatorname{id}_{X}=f$.

For every partial function f from C to D such that for all elements x_{1}, x_{2} of C such that $x_{1} \in \operatorname{dom} f$ and $x_{2} \in \operatorname{dom} f$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ holds $x_{1}=x_{2}$ holds f is one-to-one.
(39) For every partial function f from X to Y such that f is one-to-one holds f^{-1} is a partial function from Y to X.
(40) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ but f is one-to-one holds f^{-1} is a partial function from Y to X.
(41) For every function f from X into X such that f is one-to-one holds f^{-1} is a partial function from X to X.
(42) For every function f from X into D such that f is one-to-one holds f^{-1} is a partial function from D to X.
(43) For every partial function f from X to Y holds $f \upharpoonright Z$ is a partial function from Z to Y.
(44) For every partial function f from X to Y holds $f \upharpoonright Z$ is a partial function from X to Y.
(45) For every partial function f from X to Y holds $Z \upharpoonright f$ is a partial function from X to Z.
(46) For every partial function f from X to Y holds $Z \upharpoonright f$ is a partial function from X to Y.
(47) For every function f holds $(Y \upharpoonright f) \upharpoonright X$ is a partial function from X to Y.
(48) For every partial function f from X to Y holds $\left(Y^{\prime} \upharpoonright f\right) \upharpoonright X^{\prime}$ is a partial function from X to Y.
(49) For every partial function f from C to D such that $y \in f^{\circ} X$ there exists x being an element of C such that $x \in \operatorname{dom} f$ and $y=f(x)$.
(50) For every partial function f from X to Y holds $f^{\circ} P \subseteq Y$.

The arguments of the notions defined below are the following: X, Y which are objects of the type reserved above; f which is a partial function from X to $Y ; P$ which is an object of the type reserved above. Then $f^{\circ} P$ is a subset of Y.

We now state two propositions:
(51) For every partial function f from X to Y holds $f^{\circ} X=\operatorname{rng} f$.
(52) For every partial function f from X to Y holds $f^{-1} Q \subseteq X$.

The arguments of the notions defined below are the following: X, Y which are objects of the type reserved above; f which is a partial function from X to $Y ; Q$ which is an object of the type reserved above. Then $f^{-1} Q$ is a subset of X.

Next we state a number of propositions:
(53) For every partial function f from X to Y holds $f^{-1} Y=\operatorname{dom} f$.
(54) For every partial function f from \emptyset to Y holds $\operatorname{dom} f=\emptyset$ and $\operatorname{rng} f=\emptyset$.
(55) For every function f such that $\operatorname{dom} f=\emptyset$ holds f is a partial function from X to Y.
(56) \square is a partial function from X to Y.
(57) For every partial function f from \emptyset to Y holds $f=\square$.
(58) For every partial function f_{1} from \emptyset to Y_{1} for every partial function f_{2} from \emptyset to Y_{2} holds $f_{1}=f_{2}$.
(59) For every partial function f from \emptyset to Y holds f is one-to-one.
(60) For every partial function f from \emptyset to Y holds $f^{\circ} P=\emptyset$.
(61) For every partial function f from \emptyset to Y holds $f^{-1} Q=\emptyset$.
(62) For every partial function f from X to \emptyset holds $\operatorname{dom} f=\emptyset$ and $\operatorname{rng} f=\emptyset$.
(63) For every function f such that $\operatorname{rng} f=\emptyset$ holds f is a partial function from X to Y.
(64) For every partial function f from X to \emptyset holds $f=\square$.
(65) For every partial function f_{1} from X_{1} to \emptyset for every partial function f_{2} from X_{2} to \emptyset holds $f_{1}=f_{2}$.
(66) For every partial function f from X to \emptyset holds f is one-to-one.
(67) For every partial function f from X to \emptyset holds $f^{\circ} P=\emptyset$.
(68) For every partial function f from X to \emptyset holds $f^{-1} Q=\emptyset$.
(69) For every partial function f from $\{x\}$ to Y holds $\operatorname{rng} f \subseteq\{f(x)\}$.
(70) For every partial function f from $\{x\}$ to Y holds f is one-to-one.
(71) For every partial function f from $\{x\}$ to Y holds $f^{\circ} P \subseteq\{f(x)\}$.
(72) For every function f such that $\operatorname{dom} f=\{x\}$ and $x \in X$ and $f(x) \in Y$ holds f is a partial function from X to Y.
(73) For every partial function f from X to $\{y\}$ such that $x \in \operatorname{dom} f$ holds $f(x)=y$.
(74) For all partial functions f_{1}, f_{2} from X to $\{y\}$ such that $\operatorname{dom} f_{1}=\operatorname{dom} f_{2}$ holds $f_{1}=f_{2}$.

The arguments of the notions defined below are the following: f which is a function; X, Y which are sets. The functor $f_{\mid X \rightarrow Y}$ yielding a partial function from X to Y, is defined by:
$f_{\upharpoonright X \rightarrow Y}=(Y \upharpoonright f) \upharpoonright X$.
We now state a number of propositions:
(75) For every function f for all X, Y holds $f_{\upharpoonright X \rightarrow Y}=(Y \upharpoonright f) \upharpoonright X$.
(76) For every function f holds $\operatorname{graph}\left(f_{\mid X \rightarrow Y}\right) \subseteq \operatorname{graph} f$.
(77) For every function f holds $\operatorname{dom}\left(f_{\left\lceil X \dot{\rightarrow}_{Y}\right.}\right) \subseteq \operatorname{dom} f$ and $\operatorname{rng}\left(f_{\left\lceil X \dot{\rightarrow}_{Y}\right.}\right) \subseteq$ $\operatorname{rng} f$.
(78) For every function f holds $x \in \operatorname{dom}\left(f_{\mid X \rightarrow Y}\right)$ if and only if $x \in \operatorname{dom} f$ and $x \in X$ and $f(x) \in Y$.
(79) For every function f such that $x \in \operatorname{dom} f$ and $x \in X$ and $f(x) \in Y$ holds $\left(f_{\mid X \rightarrow Y}\right)(x)=f(x)$.
(80) For every function f such that $x \in \operatorname{dom}\left(f_{\mid X \rightarrow Y}\right)$ holds $\left(f_{\mid X \rightarrow Y}\right)(x)=$ $f(x)$.
(81) For all functions f, g such that graph $f \subseteq \operatorname{graph} g$ holds graph $\left(f_{\upharpoonright X \rightarrow Y}\right) \subseteq$ $\operatorname{graph}\left(g_{\upharpoonright} \dot{\rightarrow}^{\prime} Y\right)$.
(82) For every function f such that $Z \subseteq X$ holds $\operatorname{graph}\left(f_{\mid Z \dot{\rightarrow} Y}\right) \subseteq \operatorname{graph}\left(f_{\mid X \rightarrow Y}\right)$.
(83) For every function f such that $Z \subseteq Y$ holds $\operatorname{graph}\left(f_{\mid X \dot{\rightarrow}}\right) \subseteq \operatorname{graph}\left(f_{\mid X \rightarrow Y}\right)$.
(84) For every function f such that $X_{1} \subseteq X_{2}$ and $Y_{1} \subseteq Y_{2}$ holds $\operatorname{graph}\left(f_{\mid X_{1} \dot{\rightarrow} Y_{1}}\right) \subseteq \operatorname{graph}\left(f_{\uparrow X_{2} \rightarrow Y_{2}}\right)$.
(85) For every function f such that $\operatorname{dom} f \subseteq X$ and $\operatorname{rng} f \subseteq Y$ holds $f=$ $f_{\mid X \rightarrow Y}$.
(86) For every function f holds $f=f_{\mid \operatorname{dom} f} \dot{\rightarrow} \operatorname{rng} f$.
(87) For every partial function f from X to Y holds $f_{\uparrow X \rightarrow Y}=f$.
(88) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ holds $f_{\mid X \rightarrow Y}=f$.
(89) For every function f from X into X holds $f_{\uparrow X \rightarrow X}=f$.
(90) For every function f from X into D holds $f_{\mid X \rightarrow D}=f$.
(91) $\quad \square_{\mid X \dot{\rightarrow} Y}=\square$.
(92) For all functions f, g holds $\operatorname{graph}\left(\left(g_{\mid Y \dot{\rightarrow} Z}\right) \cdot\left(f_{\mid X \rightarrow Y}\right)\right) \subseteq \operatorname{graph}\left(g \cdot f_{\mid X \rightarrow Z}\right)$.
(93) For all functions f, g such that $\operatorname{rng} f \cap \operatorname{dom} g \subseteq Y$ holds $\left(g_{\upharpoonright Y \rightarrow Z}\right)$. $\left(f_{\lceil X \dot{\rightarrow} Y}\right)=g \cdot f_{\lceil X \dot{\rightarrow}}$.
(94) For every function f such that f is one-to-one holds $f_{\mid X \dot{\rightarrow} Y}$ is one-to-one.
(95) For every function f such that f is one-to-one holds $\left(f_{\upharpoonright X \dot{\rightarrow} Y}\right)^{-1}=$ $f^{-1} \upharpoonright \dot{\rightarrow} X$.
(96) For every function f holds $\left(f_{\mid X \dot{\rightarrow} Y}\right) \upharpoonright Z=f_{\mid X \cap Z \dot{\rightarrow} Y}$.
(97) For every function f holds $Z \upharpoonright\left(f_{\mid X \dot{\rightarrow} Y}\right)=f_{\mid X \dot{\rightarrow}}$ 保Y .

The arguments of the notions defined below are the following: X, Y which are objects of the type reserved above; f which is a partial function from X to Y. The predicate f is total is defined by:

$$
\operatorname{dom} f=X .
$$

We now state a number of propositions:
(98) For every partial function f from X to Y holds f is total if and only if $\operatorname{dom} f=X$.
(99) For every partial function f from X to Y such that f is total and $Y=\emptyset$ holds $X=\emptyset$.
(100) For every partial function f from X to Y such that $\operatorname{dom} f=X$ holds f is a function from X into Y.
(101) For every partial function f from X to Y such that f is total holds f is a function from X into Y.
(102) For every partial function f from X to Y such that if $Y=\emptyset$, then $X=\emptyset$ but f is a function from X into Y holds f is total.
(103) For every function f from X into Y for every partial function f^{\prime} from X to Y such that if $Y=\emptyset$, then $X=\emptyset$ but $f=f^{\prime}$ holds f^{\prime} is total.
(104) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ holds $f_{\mid X \rightarrow Y}$ is total.
(105) For every function f from X into X holds $f_{\mid X \rightarrow X}$ is total.
(106) For every function f from X into D holds $f_{\mid X \rightarrow D}$ is total.
(107) For every partial function f from X to Y such that if $Y=\emptyset$, then $X=\emptyset$ there exists g being a function from X into Y such that for every x such that $x \in \operatorname{dom} f$ holds $g(x)=f(x)$.
(108) For every partial function f from X to D there exists g being a function from X into D such that for every x such that $x \in \operatorname{dom} f$ holds $g(x)=f(x)$.
(109) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ holds f is a partial function from X to Y.
(110) For every function f from X into X holds f is a partial function from X to X.
(111) For every function f from X into D holds f is a partial function from X to D.
(112) For every partial function f from \emptyset to Y holds f is total.
(113) For every function f such that $f_{\mid X \rightarrow Y}$ is total holds $X \subseteq \operatorname{dom} f$.
(114) If $\square_{\mid X} \rightarrow Y$ is total, then $X=\emptyset$.
(115) For every function f such that $X \subseteq \operatorname{dom} f$ and $\operatorname{rng} f \subseteq Y$ holds $f_{\mid X \rightarrow Y}$ is total.
(116) For every function f such that $f_{\mid X \rightarrow Y}$ is total holds $f^{\circ} X \subseteq Y$.
(117) For every function f such that $X \subseteq \operatorname{dom} f$ and $f^{\circ} X \subseteq Y$ holds $f_{\mid X \rightarrow Y}$ is total.
Let us consider X, Y. The functor $X \dot{\rightarrow} Y$ yielding a non-empty set, is defined by:
$x \in X \dot{\rightarrow} Y$ if and only if there exists f being a function such that $x=f$ and $\operatorname{dom} f \subseteq X$ and $\operatorname{rng} f \subseteq Y$.

We now state a number of propositions:
(118) For every non-empty set F holds $F=X \dot{\rightarrow} Y$ if and only if for every x holds $x \in F$ if and only if there exists f being a function such that $x=f$ and $\operatorname{dom} f \subseteq X$ and $\operatorname{rng} f \subseteq Y$.
(119) For every partial function f from X to Y holds $f \in X \dot{\rightarrow} Y$.
(120) For arbitrary f such that $f \in X \dot{\rightarrow} Y$ holds f is a partial function from X to Y.
(121) For every element f of $X \dot{\rightarrow} Y$ holds f is a partial function from X to Y.
(122) $\emptyset \dot{\rightarrow} Y=\{\square\}$.
(123) $X \dot{\rightarrow} \emptyset=\{\square\}$.
(124) $\quad Y^{X} \subseteq X \dot{\rightarrow} Y$.
(125) If $Z \subseteq X$, then $Z \dot{\rightarrow} Y \subseteq X \dot{\rightarrow} Y$.
(126) $\emptyset \dot{\rightarrow} Y \subseteq X \dot{\rightarrow} Y$.
(127) If $Z \subseteq Y$, then $X \dot{\rightarrow} Z \subseteq X \dot{\rightarrow} Y$.
(128) If $X_{1} \subseteq X_{2}$ and $Y_{1} \subseteq Y_{2}$, then $X_{1} \dot{\rightarrow} Y_{1} \subseteq X_{2} \dot{\rightarrow} Y_{2}$.

Let f, g be functions. The predicate $f \approx g$ is defined by:
for every x such that $x \in \operatorname{dom} f \cap \operatorname{dom} g$ holds $f(x)=g(x)$.
The following propositions are true:
(129) For all functions f, g holds $f \approx g$ if and only if for every x such that $x \in \operatorname{dom} f \cap \operatorname{dom} g$ holds $f(x)=g(x)$.
(130) For all functions f, g holds $f \approx g$ if and only if there exists h being a function such that graph $f \cup \operatorname{graph} g=\operatorname{graph} h$.
(131) For all functions f, g holds $f \approx g$ if and only if there exists h being a function such that graph $f \subseteq$ graph h and graph $g \subseteq$ graph h.
(132) For all functions f, g such that $\operatorname{dom} f \subseteq \operatorname{dom} g$ holds $f \approx g$ if and only if for every x such that $x \in \operatorname{dom} f$ holds $f(x)=g(x)$.
(133) For all functions f, g holds $f \approx f$.
(134) For all functions f, g such that $f \approx g$ holds $g \approx f$.
(135) For all functions f, g such that graph $f \subseteq$ graph g holds $f \approx g$.
(136) For all functions f, g such that $\operatorname{dom} f=\operatorname{dom} g$ and $f \approx g$ holds $f=g$.
(137) For all functions f, g such that $f=g$ holds $f \approx g$.
(138) For all functions f, g such that $\operatorname{dom} f \cap \operatorname{dom} g=\emptyset$ holds $f \approx g$.
(139) For all functions f, g, h such that graph $f \subseteq$ graph h and graph $g \subseteq$ graph h holds $f \approx g$.
(140) For all partial functions f, g from X to Y for every function h such that $f \approx h$ and graph $g \subseteq \operatorname{graph} f$ holds $g \approx h$.
(141) For every function f holds $\square \approx f$ and $f \approx \square$.
(142) For every function f holds $\square_{\mid X \dot{\rightarrow}} \approx f$ and $f \approx \square_{\mid X \dot{\rightarrow}}$.
(143) For all partial functions f, g from X to $\{y\}$ holds $f \approx g$.

For every function f holds $f \upharpoonright X \approx f$ and $f \upharpoonright X \approx f$.
For every function f holds $Y \upharpoonright f \approx f$ and $f \approx Y \upharpoonright f$.
For every function f holds $(Y \upharpoonright f) \upharpoonright X \approx f$ and $f \approx(Y \upharpoonright f) \upharpoonright X$.
For every function f holds $f_{\mid X \rightarrow Y} \approx f$ and $f \approx f_{\mid X \rightarrow Y}$.
For all partial functions f, g from X to Y such that f is total and g is total and $f \approx g$ holds $f=g$.
For all functions f, g from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ but $f \approx g$ holds $f=g$.
For all functions f, g from X into X such that $f \approx g$ holds $f=g$.
For all functions f, g from X into D such that $f \approx g$ holds $f=g$.
For every partial function f from X to Y for every function g from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ holds $f \approx g$ if and only if for every x such that $x \in \operatorname{dom} f$ holds $f(x)=g(x)$.
(153) For every partial function f from X to X for every function g from X into X holds $f \approx g$ if and only if for every x such that $x \in \operatorname{dom} f$ holds $f(x)=g(x)$.
(154) For every partial function f from X to D for every function g from X into D holds $f \approx g$ if and only if for every x such that $x \in \operatorname{dom} f$ holds $f(x)=g(x)$.
(155) For every partial function f from X to Y such that if $Y=\emptyset$, then $X=\emptyset$ there exists g being a function from X into Y such that $f \approx g$.
(156) For every partial function f from X to X there exists g being a function from X into X such that $f \approx g$.
(157) For every partial function f from X to D there exists g being a function from X into D such that $f \approx g$.
(158) For all partial functions f, g, h from X to Y such that $f \approx h$ and $g \approx h$ and h is total holds $f \approx g$.
(159) For all partial functions f, g from X to Y for every function h from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ but $f \approx h$ and $g \approx h$ holds $f \approx g$.
(160) For all partial functions f, g from X to X for every function h from X into X such that $f \approx h$ and $g \approx h$ holds $f \approx g$.
(161) For all partial functions f, g from X to D for every function h from X into D such that $f \approx h$ and $g \approx h$ holds $f \approx g$.
(162) For all partial functions f, g from X to Y such that if $Y=\emptyset$, then $X=\emptyset$ but $f \approx g$ there exists h being a partial function from X to Y such that h is total and $f \approx h$ and $g \approx h$.
(163) For all partial functions f, g from X to Y such that if $Y=\emptyset$, then $X=\emptyset$ but $f \approx g$ there exists h being a function from X into Y such that $f \approx h$ and $g \approx h$.
The arguments of the notions defined below are the following: X, Y which are objects of the type reserved above; f which is a partial function from X to Y. The functor TotFuncs f yields a set and is defined by:
$x \in \operatorname{TotFuncs} f$ if and only if there exists g being a partial function from X to Y such that $g=x$ and g is total and $f \approx g$.

The following propositions are true:
(164) For all X, Y for every partial function f from X to Y for every Z holds $Z=$ TotFuncs f if and only if for every x holds $x \in Z$ if and only if there exists g being a partial function from X to Y such that $g=x$ and g is total and $f \approx g$.
(165) For every partial function f from X to Y for every function g from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ but $f \approx g$ holds $g \in$ TotFuncs f.
(166) For every partial function f from X to X for every function g from X into X such that $f \approx g$ holds $g \in \operatorname{TotFuncs} f$.
(167) For every partial function f from X to D for every function g from X into D such that $f \approx g$ holds $g \in \operatorname{TotFuncs} f$.
(168) For every partial function f from X to Y for arbitrary g such that $g \in$ TotFuncs f holds g is a partial function from X to Y.
(169) For all partial functions f, g from X to Y such that $g \in$ TotFuncs f holds g is total.
(170) For every partial function f from X to Y for arbitrary g such that $g \in$ TotFuncs f holds g is a function from X into Y.
(171) For every partial function f from X to Y for every function g such that $g \in$ TotFuncs f holds $f \approx g$ and $g \approx f$.
(172) For every partial function f from X to \emptyset such that $X \neq \emptyset$ holds TotFuncs $f=\emptyset$.
(173) For every partial function f from X to Y holds TotFuncs $f \subseteq Y^{X}$.
(174) For every partial function f from X to Y holds f is total if and only if TotFuncs $f=\{f\}$.
(175) For every partial function f from \emptyset to Y holds TotFuncs $f=\{f\}$.
(176) For every partial function f from \emptyset to Y holds TotFuncs $f=\{\square\}$.
(177) $\operatorname{TotFuncs}\left(\square_{\mid X} \rightarrow Y\right)=Y^{X}$.
(178) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ holds TotFuncs $\left(f_{\mid X \dot{\rightarrow} Y}\right)=\{f\}$.
(179) For every function f from X into X holds $\operatorname{TotFuncs}\left(f_{\mid X \rightarrow X}\right)=\{f\}$.
(181) For every partial function f from X to $\{y\}$ for every function g from X into $\{y\}$ holds TotFuncs $f=\{g\}$.
(182) For all partial functions f, g from X to Y such that graph $g \subseteq \operatorname{graph} f$ holds TotFuncs $f \subseteq$ TotFuncs g.
(183) For all partial functions f, g from X to Y such that $\operatorname{dom} g \subseteq \operatorname{dom} f$ and TotFuncs $f \subseteq$ TotFuncs g holds graph $g \subseteq$ graph f.
(184) For all partial functions f, g from X to Y such that TotFuncs $f \subseteq$ TotFuncs g and for every y holds $Y \neq\{y\}$ holds graph $g \subseteq \operatorname{graph} f$.
(185) For all partial functions f, g from X to Y such that TotFuncs $f \cap$ TotFuncs $g \neq \emptyset$ holds $f \approx g$.
(186) For all partial functions f, g from X to Y such that if $Y=\emptyset$, then $X=\emptyset$ but $f \approx g$ holds TotFuncs $f \cap$ TotFuncs $g \neq \emptyset$.
(187) For all partial functions f, g from X to Y such that for every y holds $Y \neq\{y\}$ and TotFuncs $f=$ TotFuncs g holds $f=g$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Czesław Byliński. Graphs of functions. Formalized Mathematics, 1(1):169173, 1990.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1

