Kuratowski - Zorn Lemma ${ }^{1}$

Wojciech A. Trybulec
Warsaw University

Grzegorz Bancerek
Warsaw University
Białystok

Summary. The goal of this article is to prove Kuratowski - Zorn lemma. We prove it in a number of forms (theorems and schemes). We introduce the following notions: a relation is a quasi (or partial, or linear) order, a relation quasi (or partially, or lineary) orders a set, minimal and maximal element in a relation, inferior and superior element of a relation, a set has lower (or upper) Zorn property w.r.t. a relation. We prove basic theorems concerning those notions and theorems that relate them to the notions introduced in [6]. At the end of the article we prove some theorems that belong rather to [7], [9] or [2].

MML Identifier: ORDERS_2.

The notation and terminology used here are introduced in the following articles: [5], [3], [7], [9], [8], [2], [4], [6], and [1]. For simplicity we follow a convention: R, P are relations, X, X_{1}, X_{2}, Y, Z are sets, O is an order in X, D, D_{1} are nonempty sets, x, y are arbitrary, A is a poset, C is a chain of A, S is a subset of A, and a, b are elements of A. In the article we present several logical schemes. The scheme RelOnDomEx deals with a constant \mathcal{A} that is a non-empty set, a constant \mathcal{B} that is a non-empty set and a binary predicate \mathcal{P} and states that:
there exists R being a relation between \mathcal{A} and \mathcal{B} such that for every element a of \mathcal{A} for every element b of \mathcal{B} holds $\langle a, b\rangle \in R$ if and only if $\mathcal{P}[a, b]$ for all values of the parameters.

The scheme RelOnDomEx1 deals with a constant \mathcal{A} that is a non-empty set and a binary predicate \mathcal{P} and states that:
there exists R being a relation on \mathcal{A} such that for all elements a, b of \mathcal{A} holds $\langle a, b\rangle \in R$ if and only if $\mathcal{P}[a, b]$
for all values of the parameters.
One can prove the following propositions:
(1) $\operatorname{dom} O=X$ and $\operatorname{rng} O=X$.

[^0](2) field $O=X$.

We now define three new predicates. Let us consider R. The predicate R is a quasi order is defined by:
R is pseudo reflexive and R is transitive.
The predicate R is a partial order is defined by:
R is pseudo reflexive and R is transitive and R is antisymmetric. The predicate R is a linear order is defined by:
R is pseudo reflexive and R is transitive and R is antisymmetric and R is connected.

We now state a number of propositions:
(3) $\quad R$ is a quasi order if and only if R is pseudo reflexive and R is transitive.
(4) $\quad R$ is a partial order if and only if R is pseudo reflexive and R is transitive and R is antisymmetric.
(5) $\quad R$ is a linear order if and only if R is pseudo reflexive and R is transitive and R is antisymmetric and R is connected.
(6) If R is a quasi order, then R^{\smile} is a quasi order.
(7) If R is a partial order, then R^{\smile} is a partial order.
(8) If R is a linear order, then R^{\smile} is a linear order.
(9) If R is well ordering relation, then R is a quasi order and R is a partial order and R is a linear order.
(10) If R is a linear order, then R is a quasi order and R is a partial order.
(11) If R is a partial order, then R is a quasi order.
(12) O is a partial order.
(13) O is a quasi order.
(14) If O is connected, then O is a linear order.
(15) If R is a quasi order, then $\left.R\right|^{2} X$ is a quasi order.
(16) If R is a partial order, then $\left.R\right|^{2} X$ is a partial order.
(17) If R is a linear order, then $\left.R\right|^{2} X$ is a linear order.
(18) field $\left(\left.(\right.$ the order of $\left.A)\right|^{2} S\right)=S$.
(19) If (the order of $A)\left.\right|^{2} S$ is a linear order, then S is a chain of A.
(20) (the order of $A)\left.\right|^{2} C$ is a linear order.
(21) \varnothing is a quasi order and \varnothing is a partial order and \varnothing is a linear order and \varnothing is well ordering relation.
(22) \triangle_{X} is a quasi order and \triangle_{X} is a partial order.

We now define three new predicates. Let us consider R, X. The predicate R quasi orders X is defined by:
R is reflexive in X and R is transitive in X.
The predicate R partially orders X is defined by:
R is reflexive in X and R is transitive in X and R is antisymmetric in X. The predicate R linearly orders X is defined by:
R is reflexive in X and R is transitive in X and R is antisymmetric in X and R is connected in X.

The following propositions are true:
(23) $\quad R$ quasi orders X if and only if R is reflexive in X and R is transitive in X.
(24) $\quad R$ partially orders X if and only if R is reflexive in X and R is transitive in X and R is antisymmetric in X.
(25) $\quad R$ linearly orders X if and only if R is reflexive in X and R is transitive in X and R is antisymmetric in X and R is connected in X.
(26) If R well orders X, then R quasi orders X and R partially orders X and R linearly orders X.
(27) If R linearly orders X, then R quasi orders X and R partially orders X.
(28) If R partially orders X, then R quasi orders X.
(29) If R is a quasi order, then R quasi orders field R.
(30) If R quasi orders Y and $X \subseteq Y$, then R quasi orders X.
(31) If R quasi orders X, then $\left.R\right|^{2} X$ is a quasi order.
(32) If R is a partial order, then R partially orders field R.
(33) If R partially orders Y and $X \subseteq Y$, then R partially orders X.
(34) If R partially orders X, then $\left.R\right|^{2} X$ is a partial order.
(35) If R is a linear order, then R linearly orders field R.
(36) If R linearly orders Y and $X \subseteq Y$, then R linearly orders X.
(37) If R linearly orders X, then $\left.R\right|^{2} X$ is a linear order.
(38) If R quasi orders X, then R^{\smile} quasi orders X.
(39) If R partially orders X, then R^{\smile} partially orders X.
(40) If R linearly orders X, then R^{\smile} linearly orders X.
(41) O quasi orders X.
(42) O partially orders X.
(43) If R partially orders X, then $\left.R\right|^{2} X$ is an order in X.
(44) If R linearly orders X, then $\left.R\right|^{2} X$ is an order in X.
(45) If R well orders X, then $\left.R\right|^{2} X$ is an order in X.
(46) If the order of A linearly orders S, then S is a chain of A.
(47) the order of A linearly orders C.
(48) \triangle_{X} quasi orders X and \triangle_{X} partially orders X.

We now define two new predicates. Let us consider R, X. The predicate X has the upper Zorn property w.r.t. R is defined by:
for every Y such that $Y \subseteq X$ and $\left.R\right|^{2} Y$ is a linear order there exists x such that $x \in X$ and for every y such that $y \in Y$ holds $\langle y, x\rangle \in R$.
The predicate X has the lower Zorn property w.r.t. R is defined by:
for every Y such that $Y \subseteq X$ and $\left.R\right|^{2} Y$ is a linear order there exists x such that $x \in X$ and for every y such that $y \in Y$ holds $\langle x, y\rangle \in R$.

We now state several propositions:
(49) $\quad X$ has the upper Zorn property w.r.t. R if and only if for every Y such that $Y \subseteq X$ and $\left.R\right|^{2} Y$ is a linear order there exists x such that $x \in X$ and for every y such that $y \in Y$ holds $\langle y, x\rangle \in R$.
(50) X has the lower Zorn property w.r.t. R if and only if for every Y such that $Y \subseteq X$ and $\left.R\right|^{2} Y$ is a linear order there exists x such that $x \in X$ and for every y such that $y \in Y$ holds $\langle x, y\rangle \in R$.
(51) If X has the upper Zorn property w.r.t. R, then $X \neq \emptyset$.
(52) If X has the lower Zorn property w.r.t. R, then $X \neq \emptyset$.
(53) $\quad X$ has the upper Zorn property w.r.t. R if and only if X has the lower Zorn property w.r.t. R^{\smile}.
(54) X has the upper Zorn property w.r.t. R^{\smile} if and only if X has the lower Zorn property w.r.t. R.
We now define four new predicates. Let us consider R, x. The predicate x is maximal in R is defined by:
$x \in$ field R and for no y holds $y \in$ field R and $y \neq x$ and $\langle x, y\rangle \in R$.
The predicate x is minimal in R is defined by:
$x \in$ field R and for no y holds $y \in$ field R and $y \neq x$ and $\langle y, x\rangle \in R$.
The predicate x is superior of R is defined by:
$x \in$ field R and for every y such that $y \in$ field R and $y \neq x$ holds $\langle y, x\rangle \in R$. The predicate x is inferior of R is defined by:
$x \in$ field R and for every y such that $y \in$ field R and $y \neq x$ holds $\langle x, y\rangle \in R$.
Next we state a number of propositions:
x is maximal in R if and only if $x \in$ field R and for no y holds $y \in$ field R and $y \neq x$ and $\langle x, y\rangle \in R$.
x is minimal in R if and only if $x \in$ field R and for no y holds $y \in$ field R and $y \neq x$ and $\langle y, x\rangle \in R$.
(57) $\quad x$ is superior of R if and only if $x \in$ field R and for every y such that $y \in$ field R and $y \neq x$ holds $\langle y, x\rangle \in R$.
(58) $\quad x$ is inferior of R if and only if $x \in$ field R and for every y such that $y \in$ field R and $y \neq x$ holds $\langle x, y\rangle \in R$.
(59) If x is inferior of R and R is antisymmetric, then x is minimal in R.
(60) If x is superior of R and R is antisymmetric, then x is maximal in R.
(61) If x is minimal in R and R is connected, then x is inferior of R.
(62) If x is maximal in R and R is connected, then x is superior of R.
(63) If $x \in X$ and x is superior of R and $X \subseteq$ field R and R is pseudo reflexive, then X has the upper Zorn property w.r.t. R.
(64) If $x \in X$ and x is inferior of R and $X \subseteq$ field R and R is pseudo reflexive, then X has the lower Zorn property w.r.t. R.
(65) $\quad x$ is minimal in R if and only if x is maximal in R^{\smile}.
(66) $\quad x$ is minimal in R^{\smile} if and only if x is maximal in R.
(67) $\quad x$ is inferior of R if and only if x is superior of R^{\smile}.
(68) $\quad x$ is inferior of R^{\smile} if and only if x is superior of R.
(69) a is minimal in the order of A if and only if for every b holds $b \nless a$. a is maximal in the order of A if and only if for every b holds $a \nless b$. a is superior of the order of A if and only if for every b such that $a \neq b$ holds $b<a$.
(72) a is inferior of the order of A if and only if for every b such that $a \neq b$ holds $a<b$.
(73) If for every C there exists a such that for every b such that $b \in C$ holds $b \leq a$, then there exists a such that for every b holds $a \nless b$.
(74) If for every C there exists a such that for every b such that $b \in C$ holds $a \leq b$, then there exists a such that for every b holds $b \nless a$.
We now state several propositions:
(75) For all R, X such that R partially orders X and field $R=X$ and X has the upper Zorn property w.r.t. R there exists x such that x is maximal in R.
(76) For all R, X such that R partially orders X and field $R=X$ and X has the lower Zorn property w.r.t. R there exists x such that x is minimal in R.
(77) Given X. Suppose $X \neq \emptyset$ and for every Z such that $Z \subseteq X$ and for all X_{1}, X_{2} such that $X_{1} \in Z$ and $X_{2} \in Z$ holds $X_{1} \subseteq X_{2}$ or $X_{2} \subseteq X_{1}$ there exists Y such that $Y \in X$ and for every X_{1} such that $X_{1} \in Z$ holds $X_{1} \subseteq Y$. Then there exists Y such that $Y \in X$ and for every Z such that $Z \in X$ and $Z \neq Y$ holds $Y \nsubseteq Z$.
(78) Given X. Suppose $X \neq \emptyset$ and for every Z such that $Z \subseteq X$ and for all X_{1}, X_{2} such that $X_{1} \in Z$ and $X_{2} \in Z$ holds $X_{1} \subseteq X_{2}$ or $X_{2} \subseteq X_{1}$ there exists Y such that $Y \in X$ and for every X_{1} such that $X_{1} \in Z$ holds $Y \subseteq X_{1}$. Then there exists Y such that $Y \in X$ and for every Z such that $Z \in X$ and $Z \neq Y$ holds $Z \nsubseteq Y$.
(79) Given X. Suppose $X \neq \emptyset$ and for every Z such that $Z \neq \emptyset$ and $Z \subseteq X$ and for all X_{1}, X_{2} such that $X_{1} \in Z$ and $X_{2} \in Z$ holds $X_{1} \subseteq X_{2}$ or $X_{2} \subseteq X_{1}$ holds $\cup Z \in X$. Then there exists Y such that $Y \in X$ and for every Z such that $Z \in X$ and $Z \neq Y$ holds $Y \nsubseteq Z$.
(80) Given X. Suppose $X \neq \emptyset$ and for every Z such that $Z \neq \emptyset$ and $Z \subseteq X$ and for all X_{1}, X_{2} such that $X_{1} \in Z$ and $X_{2} \in Z$ holds $X_{1} \subseteq X_{2}$ or $X_{2} \subseteq X_{1}$ holds $\cap Z \in X$. Then there exists Y such that $Y \in X$ and for every Z such that $Z \in X$ and $Z \neq Y$ holds $Z \nsubseteq Y$.
Now we present two schemes. The scheme Zorn_Max concerns a constant \mathcal{A} that is a non-empty set and a binary predicate \mathcal{P} and states that:
there exists x being an element of \mathcal{A} such that for every element y of \mathcal{A} such that $x \neq y$ holds not $\mathcal{P}[x, y]$
provided the parameters satisfy the following conditions:

- for every element x of \mathcal{A} holds $\mathcal{P}[x, x]$,
- for all elements x, y of \mathcal{A} such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, x]$ holds $x=y$,
- for all elements x, y, z of \mathcal{A} such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, z]$ holds $\mathcal{P}[x, z]$,
- for every X such that $X \subseteq \mathcal{A}$ and for all elements x, y of \mathcal{A} such that $x \in X$ and $y \in X$ holds $\mathcal{P}[x, y]$ or $\mathcal{P}[y, x]$ there exists y being an element of \mathcal{A} such that for every element x of \mathcal{A} such that $x \in X$ holds $\mathcal{P}[x, y]$.
The scheme Zorn_Min deals with a constant \mathcal{A} that is a non-empty set and a binary predicate \mathcal{P} and states that:
there exists x being an element of \mathcal{A} such that for every element y of \mathcal{A} such that $x \neq y$ holds not $\mathcal{P}[y, x]$
provided the parameters satisfy the following conditions:
- for every element x of \mathcal{A} holds $\mathcal{P}[x, x]$,
- for all elements x, y of \mathcal{A} such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, x]$ holds $x=y$,
- for all elements x, y, z of \mathcal{A} such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, z]$ holds $\mathcal{P}[x, z]$,
- for every X such that $X \subseteq \mathcal{A}$ and for all elements x, y of \mathcal{A} such that $x \in X$ and $y \in X$ holds $\mathcal{P}[x, y]$ or $\mathcal{P}[y, x]$ there exists y being an element of \mathcal{A} such that for every element x of \mathcal{A} such that $x \in X$ holds $\mathcal{P}[y, x]$.
One can prove the following propositions:
(81) If R partially orders X and field $R=X$, then there exists P such that $R \subseteq P$ and P linearly orders X and field $P=X$.
(82) $\quad R \subseteq$: field R, field R].
(83) If R is pseudo reflexive and $X \subseteq$ field R, then field $\left(\left.R\right|^{2} X\right)=X$.
(84) If R is reflexive in X, then $\left.R\right|^{2} X$ is pseudo reflexive.
(85) If R is transitive in X, then $\left.R\right|^{2} X$ is transitive.
(86) If R is antisymmetric in X, then $\left.R\right|^{2} X$ is antisymmetric.
(87) If R is connected in X, then $\left.R\right|^{2} X$ is connected.
(88) If R is connected in X and $Y \subseteq X$, then R is connected in Y.
(89) If R well orders X and $Y \subseteq X$, then R well orders Y.
(90) If R is connected, then R^{\smile} is connected.
(91) If R is reflexive in X, then R^{\hookrightarrow} is reflexive in X.
(92) If R is transitive in X, then R^{\smile} is transitive in X.
(93) If R is antisymmetric in X, then R^{\hookrightarrow} is antisymmetric in X.
(94) If R is connected in X, then R^{\smile} is connected in X.
(95) $\quad\left(\left.R\right|^{2} X\right)^{\llcorner }=\left.R^{\hookrightarrow}\right|^{2} X$.
(96) $\left.R\right|^{2} \emptyset=\varnothing$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123-129, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[6] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[7] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[8] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[9] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

Received September 19, 1989

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1

