Partially Ordered Sets

Wojciech A. Trybulec ${ }^{1}$
Warsaw University

Abstract

Summary. In the beginning of this article we define the choice function of a non-empty set family that does not contain \emptyset as introduced in [5, pages $88-89]$. We define order of a set as a relation being reflexive, antisymmetric and transitive in the set, partially ordered set as structure non-emty set and order of the set, chains, lower and upper cone of a subset, initial segments of element and subset of partially ordered set. Some theorems that belong rather to [4] or [9] are proved.

MML Identifier: ORDERS_1.

The notation and terminology used in this paper have been introduced in the following articles: [6], [2], [3], [7], [9], [8], and [1]. We adopt the following convention: X, Y will denote sets, x, y, y_{1}, y_{2}, z will be arbitrary, and f will denote a function. In the article we present several logical schemes. The scheme FuncExS deals with a constant \mathcal{A} that is a set and a binary predicate \mathcal{P} and states that:
there exists f such that $\operatorname{dom} f=\mathcal{A}$ and for every X such that $X \in \mathcal{A}$ holds $\mathcal{P}[X, f(X)]$
provided the parameters satisfy the following conditions:

- for all X, y_{1}, y_{2} such that $X \in \mathcal{A}$ and $\mathcal{P}\left[X, y_{1}\right]$ and $\mathcal{P}\left[X, y_{2}\right]$ holds $y_{1}=y_{2}$,
- for every X such that $X \in \mathcal{A}$ there exists y such that $\mathcal{P}[X, y]$.

The scheme LambdaS concerns a constant \mathcal{A} that is a set and a unary functor \mathcal{F} and states that:
there exists f such that $\operatorname{dom} f=\mathcal{A}$ and for every X such that $X \in \mathcal{A}$ holds $f(X)=\mathcal{F}(X)$
for all values of the parameters.
In the sequel M will be a non-empty family of sets and F will be a function from M into $\bigcup M$. Let us consider M. Let us assume that $\emptyset \notin M$. The mode choice function of M, which widens to the type a function from M into $\cup M$, is defined by:

[^0]for every X such that $X \in M$ holds $\operatorname{it}(X) \in X$.
The following proposition is true
(1) If $\emptyset \notin M$ and for every X such that $X \in M$ holds $F(X) \in X$, then F is a choice function of M.
In the sequel $C F$ will denote a choice function of M. Next we state a proposition
(2) If $\emptyset \notin M$, then for every X such that $X \in M$ holds $C F(X) \in X$.

In the sequel D, D_{1} will denote non-empty sets. Let us consider D. The functor 2_{+}^{D} yielding a non-empty family of sets, is defined by:
$2_{+}^{D}=2^{D} \backslash\{\emptyset\}$.
Next we state several propositions:
(3) $2_{+}^{D}=2^{D} \backslash\{\emptyset\}$.
(4) $\emptyset \notin 2_{+}^{D}$.
(5) $D_{1} \subseteq D$ if and only if $D_{1} \in 2_{+}^{D}$.
(6) $\quad D_{1}$ is a subset of D if and only if $D_{1} \in 2_{+}^{D}$.
(7) $D \in 2_{+}^{D}$.

In the sequel P denotes a relation and R denotes a relation on X. Let us consider X. The mode order in X, which widens to the type a relation on X, is defined by:
it is reflexive in X and it is antisymmetric in X and it is transitive in X.
We now state a proposition
(8) If R is reflexive in X and R is antisymmetric in X and R is transitive in X, then R is an order in X.
In the sequel O denotes an order in X. We now state several propositions:
(9) $\quad O$ is reflexive in X.
(10) O is antisymmetric in X.
(11) O is transitive in X.
(12) If $x \in X$, then $\langle x, x\rangle \in O$.
(13) If $x \in X$ and $y \in X$ and $\langle x, y\rangle \in O$ and $\langle y, x\rangle \in O$, then $x=y$.
(14) If $x \in X$ and $y \in X$ and $z \in X$ and $\langle x, y\rangle \in O$ and $\langle y, z\rangle \in O$, then $\langle x, z\rangle \in O$.
We consider posets which are systems
〈 a carrier, an order〉
where the carrier is a non-empty set and the order is an order in the carrier. In the sequel A will denote a poset. Let us consider A. An element of A is an element of the carrier of A.

Let us consider A. A subset of A is a subset of the carrier of A.
In the sequel a is an element of the carrier of A and S is a subset of the carrier of A. One can prove the following propositions:
a is an element of A.
S is a subset of A.
(17) $\quad x \in$ the carrier of A if and only if x is an element of A.
(18) $\quad X \subseteq$ the carrier of A if and only if X is a subset of A.
(19) If $x \in S$, then x is an element of A.

We follow the rules: $a, a_{1}, a_{2}, a_{3}, b, c$ denote elements of A and S, T denote subsets of A. Let us consider A, a. Then $\{a\}$ is a subset of A.

Let us consider A, a_{1}, a_{2}. Then $\left\{a_{1}, a_{2}\right\}$ is a subset of A.
Let us consider A, S, T. Then $S \cup T$ is a subset of A. Then $S \cap T$ is a subset of A. Then $S \backslash T$ is a subset of A. Then $S \dot{-} T$ is a subset of A.

Let us consider A. The functor \emptyset_{A} yielding a subset of A, is defined by:
$\emptyset_{A}=\emptyset$.
Let us consider A. The functor Ω_{A} yielding a subset of A, is defined by:
$\Omega_{A}=$ the carrier of A.
One can prove the following propositions:
(20) $\emptyset_{A}=\emptyset$.
(21) $\Omega_{A}=$ the carrier of A.

Let us consider A, a_{1}, a_{2}. The predicate $a_{1} \leq a_{2}$ is defined by:
$\left\langle a_{1}, a_{2}\right\rangle \in$ the order of A.
Let us consider A, a_{1}, a_{2}. The predicate $a_{1}<a_{2}$ is defined by:
$a_{1} \leq a_{2}$ and $a_{1} \neq a_{2}$.
One can prove the following propositions:
(22) $\quad a_{1} \leq a_{2}$ if and only if $\left\langle a_{1}, a_{2}\right\rangle \in$ the order of A.
(23) $\quad a_{1}<a_{2}$ if and only if $a_{1} \leq a_{2}$ and $a_{1} \neq a_{2}$.
(24) $a \leq a$.
(25) If $a_{1} \leq a_{2}$ and $a_{2} \leq a_{1}$, then $a_{1}=a_{2}$.
(26) If $a_{1} \leq a_{2}$ and $a_{2} \leq a_{3}$, then $a_{1} \leq a_{3}$.
(27) $a \nless a$.
(28) this conjunction is not true: $a_{1}<a_{2}$ and $a_{2}<a_{1}$.
(29) If $a_{1}<a_{2}$ and $a_{2}<a_{3}$, then $a_{1}<a_{3}$.
(30) If $a_{1} \leq a_{2}$, then $a_{2} \nless a_{1}$.
(31) If $a_{1}<a_{2}$, then $a_{2} \not \leq a_{1}$.
(32) If $a_{1}<a_{2}$ and $a_{2} \leq a_{3}$ or $a_{1} \leq a_{2}$ and $a_{2}<a_{3}$, then $a_{1}<a_{3}$.

Let us consider A. The mode chain of A, which widens to the type a subset of A, is defined by:
the order of A is strongly connected in it .
One can prove the following proposition
(33) If the order of A is strongly connected in S, then S is a chain of A.

In the sequel C will denote a chain of A. One can prove the following propositions:
(34) the order of A is strongly connected in C.
(35) $\quad\{a\}$ is a chain of A.
(36) $\left\{a_{1}, a_{2}\right\}$ is a chain of A if and only if $a_{1} \leq a_{2}$ or $a_{2} \leq a_{1}$.

If $S \subseteq C$, then S is a chain of A.
(38)

There exists C such that $a_{1} \in C$ and $a_{2} \in C$ if and only if $a_{1} \leq a_{2}$ or $a_{2} \leq a_{1}$.
(39) There exists C such that $a_{1} \in C$ and $a_{2} \in C$ if and only if $a_{1}<a_{2}$ if and only if $a_{2} \not \leq a_{1}$.
(40) If the order of A well orders T, then T is a chain of A.

Let us consider A, S. The functor UpperCone S yields a subset of A and is defined by:

UpperCone $S=\left\{a_{1}: \bigvee_{a_{2}}\left[a_{2} \in S \Rightarrow a_{2}<a_{1}\right]\right\}$.
Let us consider A, S. The functor LowerCone S yielding a subset of A, is defined by:

LowerCone $S=\left\{a_{1}: \bigvee_{a_{2}}\left[a_{2} \in S \Rightarrow a_{1}<a_{2}\right]\right\}$.
The following propositions are true:
(41) UpperCone $S=\left\{a_{1}: \bigvee_{a_{2}}\left[a_{2} \in S \Rightarrow a_{2}<a_{1}\right]\right\}$.
(42) LowerCone $S=\left\{a_{1}: \bigvee_{a_{2}}\left[a_{2} \in S \Rightarrow a_{1}<a_{2}\right]\right\}$.
(43) UpperCone $\emptyset_{A}=$ the carrier of A.
(44) UpperCone $\Omega_{A}=\emptyset$.
(45) LowerCone $\emptyset_{A}=$ the carrier of A.
(46) LowerCone $\Omega_{A}=\emptyset$.
(47) If $a \in S$, then $a \notin$ UpperCone S.
(48) $a \notin$ UpperCone $\{a\}$.
(49) If $a \in S$, then $a \notin$ LowerCone S.
(50) $\quad a \notin$ LowerCone $\{a\}$.
(51) $c<a$ if and only if $a \in \operatorname{UpperCone}\{c\}$.
(52) $a<c$ if and only if $a \in$ LowerCone $\{c\}$.

Let us consider A, S, a. The functor $\operatorname{InitSegm}(S, a)$ yields a subset of A and is defined by:
$\operatorname{InitSegm}(S, a)=$ LowerCone $\{a\} \cap S$.
Let us consider A, S. The mode initial segment of S, which widens to the type a subset of A, is defined by:
there exists a such that $a \in S$ and it $=\operatorname{InitSegm}(S, a)$ if $S \neq \emptyset$, it $=\emptyset$, otherwise.

The following propositions are true:
(53) $\operatorname{InitSegm}(S, a)=\operatorname{LowerCone}\{a\} \cap S$.
(54) If $S \neq \emptyset$ and there exists a such that $a \in S$ and $T=\operatorname{InitSegm}(S, a)$, then T is an initial segment of S.
(55) If $S=\emptyset$, then T is an initial segment of S if and only if $T=\emptyset$.

In the sequel I will be an initial segment of S and I_{0} will be an initial segment of \emptyset_{A}. One can prove the following propositions:
(56) $\quad x \in \operatorname{InitSegm}(S, a)$ if and only if $x \in \operatorname{LowerCone}\{a\}$ and $x \in S$.
$a \in \operatorname{InitSegm}(S, b)$ if and only if $a<b$ and $a \in S$.
(58) If $S \neq \emptyset$, then there exists a such that $a \in S$ and $I=\operatorname{InitSegm}(S, a)$.
(59) If $a \in T$ and $S=\operatorname{InitSegm}(T, a)$, then S is an initial segment of T.
(60) $\operatorname{Init} \operatorname{Segm}\left(\emptyset_{A}, a\right)=\emptyset$.
(61) $\operatorname{InitSegm}(S, a) \subseteq S$.
(62) $\quad a \notin \operatorname{InitSegm}(S, a)$.
(63) $\quad a_{1} \in S$ and $a_{1}<a_{2}$ if and only if $a_{1} \in \operatorname{InitSegm}\left(S, a_{2}\right)$.
(64) If $a_{1}<a_{2}$, then $\operatorname{InitSegm}\left(S, a_{1}\right) \subseteq \operatorname{InitSegm}\left(S, a_{2}\right)$.
(65) If $S \subseteq T$, then $\operatorname{InitSegm}(S, a) \subseteq \operatorname{InitSegm}(T, a)$.
(66) $\quad I_{0}=\emptyset$.
(67) $\quad I \subseteq S$.
(68) $\quad S \neq \emptyset$ if and only if S is not an initial segment of S.
(69) If $S \neq \emptyset$ or $T \neq \emptyset$ but S is an initial segment of T, then T is not an initial segment of S.
(70) If $a_{1}<a_{2}$ and $a_{1} \in S$ and $a_{2} \in T$ and T is an initial segment of S, then $a_{1} \in T$.
(71) If $a \in S$ and S is an initial segment of T, then
$\operatorname{InitSegm}(S, a)=\operatorname{InitSegm}(T, a)$.
(72) If $S \subseteq T$ and the order of A well orders T and for all a_{1}, a_{2} such that $a_{2} \in S$ and $a_{1}<a_{2}$ holds $a_{1} \in S$, then $S=T$ or S is an initial segment of T.
(73) If $S \subseteq T$ and the order of A well orders T and for all a_{1}, a_{2} such that $a_{2} \in S$ and $a_{1} \in T$ and $a_{1}<a_{2}$ holds $a_{1} \in S$, then $S=T$ or S is an initial segment of T.
In the sequel f will denote a choice function of $2_{+}^{\text {the carrier of } A}$. Let us consider A, f. The mode chain of f, which widens to the type a chain of A, is defined by:
it $\neq \emptyset$ and the order of A well orders it and for every a such that $a \in$ it holds $f(\operatorname{UpperCone} \operatorname{InitSegm}(\mathrm{it}, a))=a$.

Next we state a proposition
(74) If $C \neq \emptyset$ and the order of A well orders C and for every a such that $a \in C$ holds $f(\operatorname{UpperCone\operatorname {InitSegm}}(C, a))=a$, then C is a chain of f.
In the sequel $f C, f C_{1}, f C_{2}$ denote chains of f. Next we state a number of propositions:
(75) $\quad f C \neq \emptyset$.
(76) the order of A well orders $f C$.

(78) $\quad\{f($ the carrier of $A)\}$ is a chain of f.
(79) $\quad f$ (the carrier of $A) \in f C$.
(80) If $a \in f C$ and $b=f($ the carrier of $A)$, then $b \leq a$.
(81) If $a=f$ (the carrier of A), then $\operatorname{InitSegm}(f C, a)=\emptyset$.
(82) $\quad f C_{1} \cap f C_{2} \neq \emptyset$.
(83) If $f C_{1} \neq f C_{2}$, then $f C_{1}$ is an initial segment of $f C_{2}$ if and only if $f C_{2}$ is not an initial segment of $f C_{1}$.
(84) $f C_{1} \neq f C_{2}$ and $f C_{1} \subseteq f C_{2}$ if and only if $f C_{1}$ is an initial segment of fC_{2}.
Let us consider A, f. The functor Chains f yielding a non-empty set, is defined by:
$x \in$ Chains f if and only if x is a chain of f.
One can prove the following propositions:
(85) If for every x holds $x \in D$ if and only if x is a chain of f, then $D=$ Chains f.
(86) $\quad x \in$ Chains f if and only if x is a chain of f.
(87) \bigcup (Chains $f) \neq \emptyset$.
(88) If $f C \neq \bigcup($ Chains $f)$ and $S=\bigcup($ Chains $f)$, then $f C$ is an initial segment of S.
(89) $\bigcup($ Chains $f)$ is a chain of f.
(90) $x \in X$ if and only if $\{x\} \in 2^{X}$.
(91) There exists X such that $X \neq \emptyset$ and $X \in Y$ if and only if $\cup Y \neq \emptyset$.
(92) $\quad P$ is strongly connected in X if and only if P is reflexive in X and P is connected in X.
(93) If P is reflexive in X and $Y \subseteq X$, then P is reflexive in Y.
(94) If P is antisymmetric in X and $Y \subseteq X$, then P is antisymmetric in Y.
(95) If P is transitive in X and $Y \subseteq X$, then P is transitive in Y.
(96) If P is strongly connected in X and $Y \subseteq X$, then P is strongly connected in Y.

References

[1] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123-129, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[5] Kazimierz Kuratowski. Wstép do teorii mnogości i topologii. PWN, Warszawa, 1977.
[6] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[7] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[8] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, $1(1): 181-186,1990$.
[9] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

Received August 30, 1989

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1

