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Université Catholique de Louvain

Partially Ordered Sets

Wojciech A. Trybulec1

Warsaw University

Summary. In the beginning of this article we define the choice
function of a non-empty set family that does not contain ∅ as introduced
in [5, pages 88–89]. We define order of a set as a relation being reflexive,
antisymmetric and transitive in the set, partially ordered set as structure
non-emty set and order of the set, chains, lower and upper cone of a sub-
set, initial segments of element and subset of partially ordered set. Some
theorems that belong rather to [4] or [9] are proved.

MML Identifier: ORDERS 1.

The notation and terminology used in this paper have been introduced in the
following articles: [6], [2], [3], [7], [9], [8], and [1]. We adopt the following conven-
tion: X, Y will denote sets, x, y, y1, y2, z will be arbitrary, and f will denote a
function. In the article we present several logical schemes. The scheme FuncExS

deals with a constant A that is a set and a binary predicate P and states that:
there exists f such that dom f = A and for every X such that X ∈ A holds

P[X, f(X)]
provided the parameters satisfy the following conditions:

• for all X, y1, y2 such that X ∈ A and P[X, y1] and P[X, y2] holds
y1 = y2,

• for every X such that X ∈ A there exists y such that P[X, y].
The scheme LambdaS concerns a constant A that is a set and a unary functor

F and states that:
there exists f such that dom f = A and for every X such that X ∈ A holds

f(X) = F(X)
for all values of the parameters.

In the sequel M will be a non-empty family of sets and F will be a function
from M into

⋃
M . Let us consider M . Let us assume that ∅ /∈ M . The mode

choice function of M , which widens to the type a function from M into
⋃

M , is
defined by:
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for every X such that X ∈ M holds it(X) ∈ X.

The following proposition is true

(1) If ∅ /∈ M and for every X such that X ∈ M holds F (X) ∈ X, then F is
a choice function of M .

In the sequel CF will denote a choice function of M . Next we state a propo-
sition

(2) If ∅ /∈ M , then for every X such that X ∈ M holds CF (X) ∈ X.

In the sequel D, D1 will denote non-empty sets. Let us consider D. The
functor 2D

+ yielding a non-empty family of sets, is defined by:
2D
+ = 2D \ {∅}.

Next we state several propositions:

(3) 2D
+ = 2D \ {∅}.

(4) ∅ /∈ 2D
+ .

(5) D1 ⊆ D if and only if D1 ∈ 2D
+ .

(6) D1 is a subset of D if and only if D1 ∈ 2D
+ .

(7) D ∈ 2D
+ .

In the sequel P denotes a relation and R denotes a relation on X. Let us
consider X. The mode order in X, which widens to the type a relation on X, is
defined by:

it is reflexive in X and it is antisymmetric in X and it is transitive in X.

We now state a proposition

(8) If R is reflexive in X and R is antisymmetric in X and R is transitive in
X, then R is an order in X.

In the sequel O denotes an order in X. We now state several propositions:

(9) O is reflexive in X.

(10) O is antisymmetric in X.

(11) O is transitive in X.

(12) If x ∈ X, then 〈〈x, x〉〉 ∈ O.

(13) If x ∈ X and y ∈ X and 〈〈x, y〉〉 ∈ O and 〈〈y, x〉〉 ∈ O, then x = y.

(14) If x ∈ X and y ∈ X and z ∈ X and 〈〈x, y〉〉 ∈ O and 〈〈y, z〉〉 ∈ O, then
〈〈x, z〉〉 ∈ O.

We consider posets which are systems
〈 a carrier, an order 〉
where the carrier is a non-empty set and the order is an order in the carrier.

In the sequel A will denote a poset. Let us consider A. An element of A is an
element of the carrier of A.

Let us consider A. A subset of A is a subset of the carrier of A.

In the sequel a is an element of the carrier of A and S is a subset of the carrier
of A. One can prove the following propositions:

(15) a is an element of A.

(16) S is a subset of A.
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(17) x ∈the carrier of A if and only if x is an element of A.

(18) X ⊆the carrier of A if and only if X is a subset of A.

(19) If x ∈ S, then x is an element of A.

We follow the rules: a, a1, a2, a3, b, c denote elements of A and S, T denote
subsets of A. Let us consider A, a. Then {a} is a subset of A.

Let us consider A, a1, a2. Then {a1, a2} is a subset of A.

Let us consider A, S, T . Then S ∪ T is a subset of A. Then S ∩ T is a subset
of A. Then S \ T is a subset of A. Then S−. T is a subset of A.

Let us consider A. The functor ∅A yielding a subset of A, is defined by:
∅A = ∅.

Let us consider A. The functor ΩA yielding a subset of A, is defined by:
ΩA =the carrier of A.

One can prove the following propositions:

(20) ∅A = ∅.

(21) ΩA =the carrier of A.

Let us consider A, a1, a2. The predicate a1 ≤ a2 is defined by:
〈〈a1, a2〉〉 ∈the order of A.

Let us consider A, a1, a2. The predicate a1 < a2 is defined by:
a1 ≤ a2 and a1 6= a2.

One can prove the following propositions:

(22) a1 ≤ a2 if and only if 〈〈a1, a2〉〉 ∈the order of A.

(23) a1 < a2 if and only if a1 ≤ a2 and a1 6= a2.

(24) a ≤ a.

(25) If a1 ≤ a2 and a2 ≤ a1, then a1 = a2.

(26) If a1 ≤ a2 and a2 ≤ a3, then a1 ≤ a3.

(27) a 6< a.

(28) this conjunction is not true: a1 < a2 and a2 < a1.

(29) If a1 < a2 and a2 < a3, then a1 < a3.

(30) If a1 ≤ a2, then a2 6< a1.

(31) If a1 < a2, then a2 6≤ a1.

(32) If a1 < a2 and a2 ≤ a3 or a1 ≤ a2 and a2 < a3, then a1 < a3.

Let us consider A. The mode chain of A, which widens to the type a subset
of A, is defined by:

the order of A is strongly connected in it .

One can prove the following proposition

(33) If the order of A is strongly connected in S, then S is a chain of A.

In the sequel C will denote a chain of A. One can prove the following propo-
sitions:

(34) the order of A is strongly connected in C.

(35) {a} is a chain of A.

(36) {a1, a2} is a chain of A if and only if a1 ≤ a2 or a2 ≤ a1.
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(37) If S ⊆ C, then S is a chain of A.

(38) There exists C such that a1 ∈ C and a2 ∈ C if and only if a1 ≤ a2 or
a2 ≤ a1.

(39) There exists C such that a1 ∈ C and a2 ∈ C if and only if a1 < a2 if and
only if a2 6≤ a1.

(40) If the order of A well orders T , then T is a chain of A.

Let us consider A, S. The functor UpperConeS yields a subset of A and is
defined by:

UpperConeS = {a1 :
∨

a2
[a2 ∈ S ⇒ a2 < a1]}.

Let us consider A, S. The functor LowerCone S yielding a subset of A, is
defined by:

LowerCone S = {a1 :
∨

a2
[a2 ∈ S ⇒ a1 < a2]}.

The following propositions are true:

(41) UpperConeS = {a1 :
∨

a2
[a2 ∈ S ⇒ a2 < a1]}.

(42) LowerCone S = {a1 :
∨

a2
[a2 ∈ S ⇒ a1 < a2]}.

(43) UpperCone∅A =the carrier of A.

(44) UpperCone ΩA = ∅.

(45) LowerCone ∅A =the carrier of A.

(46) LowerCone ΩA = ∅.

(47) If a ∈ S, then a /∈ UpperConeS.

(48) a /∈ UpperCone{a}.

(49) If a ∈ S, then a /∈ LowerCone S.

(50) a /∈ LowerCone{a}.

(51) c < a if and only if a ∈ UpperCone{c}.

(52) a < c if and only if a ∈ LowerCone{c}.

Let us consider A, S, a. The functor InitSegm(S, a) yields a subset of A and
is defined by:

InitSegm(S, a) = LowerCone{a} ∩ S.

Let us consider A, S. The mode initial segment of S, which widens to the
type a subset of A, is defined by:

there exists a such that a ∈ S and it = InitSegm(S, a) if S 6= ∅, it = ∅,
otherwise.

The following propositions are true:

(53) InitSegm(S, a) = LowerCone{a} ∩ S.

(54) If S 6= ∅ and there exists a such that a ∈ S and T = InitSegm(S, a), then
T is an initial segment of S.

(55) If S = ∅, then T is an initial segment of S if and only if T = ∅.

In the sequel I will be an initial segment of S and I0 will be an initial segment
of ∅A. One can prove the following propositions:

(56) x ∈ InitSegm(S, a) if and only if x ∈ LowerCone{a} and x ∈ S.

(57) a ∈ InitSegm(S, b) if and only if a < b and a ∈ S.
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(58) If S 6= ∅, then there exists a such that a ∈ S and I = InitSegm(S, a).

(59) If a ∈ T and S = InitSegm(T, a), then S is an initial segment of T .

(60) InitSegm(∅A, a) = ∅.

(61) InitSegm(S, a) ⊆ S.

(62) a /∈ InitSegm(S, a).

(63) a1 ∈ S and a1 < a2 if and only if a1 ∈ InitSegm(S, a2).

(64) If a1 < a2, then InitSegm(S, a1) ⊆ InitSegm(S, a2).

(65) If S ⊆ T , then InitSegm(S, a) ⊆ InitSegm(T, a).

(66) I0 = ∅.

(67) I ⊆ S.

(68) S 6= ∅ if and only if S is not an initial segment of S.

(69) If S 6= ∅ or T 6= ∅ but S is an initial segment of T , then T is not an
initial segment of S.

(70) If a1 < a2 and a1 ∈ S and a2 ∈ T and T is an initial segment of S, then
a1 ∈ T .

(71) If a ∈ S and S is an initial segment of T , then

InitSegm(S, a) = InitSegm(T, a) .

(72) If S ⊆ T and the order of A well orders T and for all a1, a2 such that
a2 ∈ S and a1 < a2 holds a1 ∈ S, then S = T or S is an initial segment of
T .

(73) If S ⊆ T and the order of A well orders T and for all a1, a2 such that
a2 ∈ S and a1 ∈ T and a1 < a2 holds a1 ∈ S, then S = T or S is an initial
segment of T .

In the sequel f will denote a choice function of 2the carrier of A
+ . Let us consider

A, f . The mode chain of f , which widens to the type a chain of A, is defined by:

it 6= ∅ and the order of A well orders it and for every a such that a ∈ it holds
f(UpperCone InitSegm(it, a)) = a.

Next we state a proposition

(74) If C 6= ∅ and the order of A well orders C and for every a such that
a ∈ C holds f(UpperCone InitSegm(C, a)) = a, then C is a chain of f .

In the sequel fC, fC1, fC2 denote chains of f . Next we state a number of
propositions:

(75) fC 6= ∅.

(76) the order of A well orders fC.

(77) If a ∈ fC, then f(UpperCone InitSegm(fC, a)) = a.

(78) {f(the carrier of A)} is a chain of f .

(79) f(the carrier of A) ∈ fC.

(80) If a ∈ fC and b = f(the carrier of A), then b ≤ a.

(81) If a = f(the carrier of A), then InitSegm(fC, a) = ∅.

(82) fC1 ∩ fC2 6= ∅.
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(83) If fC1 6= fC2, then fC1 is an initial segment of fC2 if and only if fC2

is not an initial segment of fC1.

(84) fC1 6= fC2 and fC1 ⊆ fC2 if and only if fC1 is an initial segment of
fC2.

Let us consider A, f . The functor Chains f yielding a non-empty set, is defined
by:

x ∈ Chains f if and only if x is a chain of f .

One can prove the following propositions:

(85) If for every x holds x ∈ D if and only if x is a chain of f , then D =
Chains f .

(86) x ∈ Chains f if and only if x is a chain of f .

(87)
⋃

(Chains f) 6= ∅.

(88) If fC 6=
⋃

(Chains f) and S =
⋃

(Chains f), then fC is an initial segment
of S.

(89)
⋃

(Chains f) is a chain of f .

(90) x ∈ X if and only if {x} ∈ 2X .

(91) There exists X such that X 6= ∅ and X ∈ Y if and only if
⋃

Y 6= ∅.

(92) P is strongly connected in X if and only if P is reflexive in X and P is
connected in X.

(93) If P is reflexive in X and Y ⊆ X, then P is reflexive in Y .

(94) If P is antisymmetric in X and Y ⊆ X, then P is antisymmetric in Y .

(95) If P is transitive in X and Y ⊆ X, then P is transitive in Y .

(96) If P is strongly connected in X and Y ⊆ X, then P is strongly connected
in Y .

References

[1] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics,
1(1):123–129, 1990.
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‘
czkowska. Boolean properties of sets. For-

malized Mathematics, 1(1):17–23, 1990.



Partially Ordered Sets 319

[7] Edmund Woronowicz. Relations and their basic properties. Formalized

Mathematics, 1(1):73–83, 1990.

[8] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics,
1(1):181–186, 1990.

[9] Edmund Woronowicz and Anna Zalewska. Properties of binary relations.
Formalized Mathematics, 1(1):85–89, 1990.

Received August 30, 1989


