Partially Ordered Sets

Wojciech A. Trybulec¹ Warsaw University

Summary. In the beginning of this article we define the choice function of a non-empty set family that does not contain \emptyset as introduced in [5, pages 88–89]. We define order of a set as a relation being reflexive, antisymmetric and transitive in the set, partially ordered set as structure non-empty set and order of the set, chains, lower and upper cone of a subset, initial segments of element and subset of partially ordered set. Some theorems that belong rather to [4] or [9] are proved.

MML Identifier: ORDERS_1.

The notation and terminology used in this paper have been introduced in the following articles: [6], [2], [3], [7], [9], [8], and [1]. We adopt the following convention: X, Y will denote sets, x, y, y_1, y_2, z will be arbitrary, and f will denote a function. In the article we present several logical schemes. The scheme *FuncExS* deals with a constant \mathcal{A} that is a set and a binary predicate \mathcal{P} and states that:

there exists f such that dom $f = \mathcal{A}$ and for every X such that $X \in \mathcal{A}$ holds $\mathcal{P}[X, f(X)]$

provided the parameters satisfy the following conditions:

- for all X, y_1 , y_2 such that $X \in \mathcal{A}$ and $\mathcal{P}[X, y_1]$ and $\mathcal{P}[X, y_2]$ holds $y_1 = y_2$,
- for every X such that $X \in \mathcal{A}$ there exists y such that $\mathcal{P}[X, y]$.

The scheme LambdaS concerns a constant \mathcal{A} that is a set and a unary functor \mathcal{F} and states that:

there exists f such that dom $f = \mathcal{A}$ and for every X such that $X \in \mathcal{A}$ holds $f(X) = \mathcal{F}(X)$

for all values of the parameters.

In the sequel M will be a non-empty family of sets and F will be a function from M into $\bigcup M$. Let us consider M. Let us assume that $\emptyset \notin M$. The mode choice function of M, which widens to the type a function from M into $\bigcup M$, is defined by:

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C1

for every X such that $X \in M$ holds $it(X) \in X$.

The following proposition is true

(1) If $\emptyset \notin M$ and for every X such that $X \in M$ holds $F(X) \in X$, then F is a choice function of M.

In the sequel CF will denote a choice function of M. Next we state a proposition

(2) If $\emptyset \notin M$, then for every X such that $X \in M$ holds $CF(X) \in X$.

In the sequel D, D_1 will denote non-empty sets. Let us consider D. The functor 2^{D}_{+} yielding a non-empty family of sets, is defined by:

 $2^{D}_{+} = 2^{D} \setminus \{\emptyset\}.$

Next we state several propositions:

- $(3) \quad 2^D_+ = 2^D \setminus \{\emptyset\}.$
- (4) $\emptyset \notin 2^D_+$.
- (5) $D_1 \subseteq D$ if and only if $D_1 \in 2^D_+$.
- (6) D_1 is a subset of D if and only if $D_1 \in 2^D_+$.
- $(7) \quad D \in 2^D_+.$

In the sequel P denotes a relation and R denotes a relation on X. Let us consider X. The mode order in X, which widens to the type a relation on X, is defined by:

it is reflexive in X and it is antisymmetric in X and it is transitive in X.

We now state a proposition

(8) If R is reflexive in X and R is antisymmetric in X and R is transitive in X, then R is an order in X.

In the sequel O denotes an order in X. We now state several propositions:

- (9) O is reflexive in X.
- (10) O is antisymmetric in X.
- (11) O is transitive in X.
- (12) If $x \in X$, then $\langle x, x \rangle \in O$.
- (13) If $x \in X$ and $y \in X$ and $\langle x, y \rangle \in O$ and $\langle y, x \rangle \in O$, then x = y.
- (14) If $x \in X$ and $y \in X$ and $z \in X$ and $\langle x, y \rangle \in O$ and $\langle y, z \rangle \in O$, then $\langle x, z \rangle \in O$.

We consider posets which are systems

 \langle a carrier, an order \rangle

where the carrier is a non-empty set and the order is an order in the carrier. In the sequel A will denote a poset. Let us consider A. An element of A is an element of the carrier of A.

Let us consider A. A subset of A is a subset of the carrier of A.

In the sequel a is an element of the carrier of A and S is a subset of the carrier of A. One can prove the following propositions:

- (15) a is an element of A.
- (16) S is a subset of A.

- (17) $x \in \text{the carrier of } A \text{ if and only if } x \text{ is an element of } A.$
- (18) $X \subseteq$ the carrier of A if and only if X is a subset of A.
- (19) If $x \in S$, then x is an element of A.

We follow the rules: a, a_1, a_2, a_3, b, c denote elements of A and S, T denote subsets of A. Let us consider A, a. Then $\{a\}$ is a subset of A.

Let us consider A, a_1 , a_2 . Then $\{a_1, a_2\}$ is a subset of A.

Let us consider A, S, T. Then $S \cup T$ is a subset of A. Then $S \cap T$ is a subset of A. Then $S \setminus T$ is a subset of A. Then $S \to T$ is a subset of A.

Let us consider A. The functor \emptyset_A yielding a subset of A, is defined by: $\emptyset_A = \emptyset$.

Let us consider A. The functor Ω_A yielding a subset of A, is defined by: Ω_A =the carrier of A.

- One can prove the following propositions:
- (20) $\emptyset_A = \emptyset.$
- (21) Ω_A = the carrier of A.

Let us consider A, a_1 , a_2 . The predicate $a_1 \leq a_2$ is defined by: $\langle a_1, a_2 \rangle \in \text{the order of } A.$

Let us consider A, a_1 , a_2 . The predicate $a_1 < a_2$ is defined by: $a_1 \leq a_2$ and $a_1 \neq a_2$.

One can prove the following propositions:

- (22) $a_1 \leq a_2$ if and only if $\langle a_1, a_2 \rangle \in$ the order of A.
- (23) $a_1 < a_2$ if and only if $a_1 \le a_2$ and $a_1 \ne a_2$.
- $(24) \quad a \le a.$
- (25) If $a_1 \le a_2$ and $a_2 \le a_1$, then $a_1 = a_2$.
- (26) If $a_1 \le a_2$ and $a_2 \le a_3$, then $a_1 \le a_3$.
- $(27) \quad a \not< a.$
- (28) this conjunction is not true: $a_1 < a_2$ and $a_2 < a_1$.
- (29) If $a_1 < a_2$ and $a_2 < a_3$, then $a_1 < a_3$.
- (30) If $a_1 \leq a_2$, then $a_2 \not< a_1$.
- (31) If $a_1 < a_2$, then $a_2 \not\leq a_1$.

(32) If $a_1 < a_2$ and $a_2 \le a_3$ or $a_1 \le a_2$ and $a_2 < a_3$, then $a_1 < a_3$.

Let us consider A. The mode chain of A, which widens to the type a subset of A, is defined by:

the order of ${\cal A}$ is strongly connected in it .

One can prove the following proposition

(33) If the order of A is strongly connected in S, then S is a chain of A.

In the sequel C will denote a chain of A. One can prove the following propositions:

- (34) the order of A is strongly connected in C.
- (35) $\{a\}$ is a chain of A.
- (36) $\{a_1, a_2\}$ is a chain of A if and only if $a_1 \leq a_2$ or $a_2 \leq a_1$.

- (37) If $S \subseteq C$, then S is a chain of A.
- (38) There exists C such that $a_1 \in C$ and $a_2 \in C$ if and only if $a_1 \leq a_2$ or $a_2 \leq a_1$.
- (39) There exists C such that $a_1 \in C$ and $a_2 \in C$ if and only if $a_1 < a_2$ if and only if $a_2 \not\leq a_1$.
- (40) If the order of A well orders T, then T is a chain of A.

Let us consider A, S. The functor UpperCone S yields a subset of A and is defined by:

UpperCone $S = \{a_1 : \bigvee_{a_2} [a_2 \in S \Rightarrow a_2 < a_1]\}.$

Let us consider A, S. The functor LowerCone S yielding a subset of A, is defined by:

LowerCone $S = \{a_1 : \bigvee_{a_2} [a_2 \in S \Rightarrow a_1 < a_2]\}.$

The following propositions are true:

- (41) UpperCone $S = \{a_1 : \bigvee_{a_2} [a_2 \in S \Rightarrow a_2 < a_1]\}.$
- (42) LowerCone $S = \{a_1 : \bigvee_{a_2} [a_2 \in S \Rightarrow a_1 < a_2]\}.$
- (43) UpperCone \emptyset_A = the carrier of A.
- (44) UpperCone $\Omega_A = \emptyset$.
- (45) LowerCone \emptyset_A = the carrier of A.
- (46) LowerCone $\Omega_A = \emptyset$.
- (47) If $a \in S$, then $a \notin \text{UpperCone } S$.
- (48) $a \notin \text{UpperCone}\{a\}.$
- (49) If $a \in S$, then $a \notin \text{LowerCone } S$.
- (50) $a \notin \text{LowerCone}\{a\}.$
- (51) c < a if and only if $a \in \text{UpperCone}\{c\}$.
- (52) a < c if and only if $a \in \text{LowerCone}\{c\}$.

Let us consider A, S, a. The functor InitSegm(S, a) yields a subset of A and is defined by:

 $\operatorname{InitSegm}(S, a) = \operatorname{LowerCone}\{a\} \cap S.$

Let us consider A, S. The mode initial segment of S, which widens to the type a subset of A, is defined by:

there exists a such that $a \in S$ and it = InitSegm(S, a) if $S \neq \emptyset$, it = \emptyset , otherwise.

The following propositions are true:

- (53) InitSegm(S, a) = LowerCone $\{a\} \cap S$.
- (54) If $S \neq \emptyset$ and there exists a such that $a \in S$ and T = InitSegm(S, a), then T is an initial segment of S.
- (55) If $S = \emptyset$, then T is an initial segment of S if and only if $T = \emptyset$.

In the sequel I will be an initial segment of S and I_0 will be an initial segment of \emptyset_A . One can prove the following propositions:

- (56) $x \in \text{InitSegm}(S, a)$ if and only if $x \in \text{LowerCone}\{a\}$ and $x \in S$.
- (57) $a \in \text{InitSegm}(S, b)$ if and only if a < b and $a \in S$.

- (58) If $S \neq \emptyset$, then there exists a such that $a \in S$ and I = InitSegm(S, a).
- (59) If $a \in T$ and S = InitSegm(T, a), then S is an initial segment of T.
- (60) InitSegm $(\emptyset_A, a) = \emptyset$.
- (61) InitSegm $(S, a) \subseteq S$.
- (62) $a \notin \text{InitSegm}(S, a).$
- (63) $a_1 \in S$ and $a_1 < a_2$ if and only if $a_1 \in \text{InitSegm}(S, a_2)$.
- (64) If $a_1 < a_2$, then InitSegm $(S, a_1) \subseteq$ InitSegm (S, a_2) .
- (65) If $S \subseteq T$, then InitSegm $(S, a) \subseteq$ InitSegm(T, a).
- $(66) \quad I_0 = \emptyset.$
- $(67) \quad I \subseteq S.$
- (68) $S \neq \emptyset$ if and only if S is not an initial segment of S.
- (69) If $S \neq \emptyset$ or $T \neq \emptyset$ but S is an initial segment of T, then T is not an initial segment of S.
- (70) If $a_1 < a_2$ and $a_1 \in S$ and $a_2 \in T$ and T is an initial segment of S, then $a_1 \in T$.
- (71) If $a \in S$ and S is an initial segment of T, then InitSegm(S, a) = InitSegm(T, a).
- (72) If $S \subseteq T$ and the order of A well orders T and for all a_1, a_2 such that $a_2 \in S$ and $a_1 < a_2$ holds $a_1 \in S$, then S = T or S is an initial segment of T.
- (73) If $S \subseteq T$ and the order of A well orders T and for all a_1, a_2 such that $a_2 \in S$ and $a_1 \in T$ and $a_1 < a_2$ holds $a_1 \in S$, then S = T or S is an initial segment of T.

In the sequel f will denote a choice function of $2^{\text{the carrier of } A}$. Let us consider A, f. The mode chain of f, which widens to the type a chain of A, is defined by:

it $\neq \emptyset$ and the order of A well orders it and for every a such that $a \in$ it holds f(UpperConeInitSegm(it, a)) = a.

Next we state a proposition

(74) If $C \neq \emptyset$ and the order of A well orders C and for every a such that $a \in C$ holds f(UpperConeInitSegm(C, a)) = a, then C is a chain of f.

In the sequel fC, fC_1 , fC_2 denote chains of f. Next we state a number of propositions:

- (75) $fC \neq \emptyset$.
- (76) the order of A well orders fC.
- (77) If $a \in fC$, then f(UpperConeInitSegm(fC, a)) = a.
- (78) $\{f(\text{the carrier of } A)\}$ is a chain of f.
- (79) $f(\text{the carrier of } A) \in fC.$
- (80) If $a \in fC$ and b = f (the carrier of A), then $b \le a$.
- (81) If a = f (the carrier of A), then InitSegm $(fC, a) = \emptyset$.
- (82) $fC_1 \cap fC_2 \neq \emptyset.$

- (83) If $fC_1 \neq fC_2$, then fC_1 is an initial segment of fC_2 if and only if fC_2 is not an initial segment of fC_1 .
- (84) $fC_1 \neq fC_2$ and $fC_1 \subseteq fC_2$ if and only if fC_1 is an initial segment of fC_2 .

Let us consider A, f. The functor Chains f yielding a non-empty set, is defined by:

 $x \in \text{Chains } f \text{ if and only if } x \text{ is a chain of } f.$

One can prove the following propositions:

- (85) If for every x holds $x \in D$ if and only if x is a chain of f, then D = Chains f.
- (86) $x \in \text{Chains } f \text{ if and only if } x \text{ is a chain of } f.$
- (87) \bigcup (Chains f) $\neq \emptyset$.
- (88) If $fC \neq \bigcup$ (Chains f) and $S = \bigcup$ (Chains f), then fC is an initial segment of S.
- (89) \bigcup (Chains f) is a chain of f.
- (90) $x \in X$ if and only if $\{x\} \in 2^X$.
- (91) There exists X such that $X \neq \emptyset$ and $X \in Y$ if and only if $\bigcup Y \neq \emptyset$.
- (92) P is strongly connected in X if and only if P is reflexive in X and P is connected in X.
- (93) If P is reflexive in X and $Y \subseteq X$, then P is reflexive in Y.
- (94) If P is antisymmetric in X and $Y \subseteq X$, then P is antisymmetric in Y.
- (95) If P is transitive in X and $Y \subseteq X$, then P is transitive in Y.
- (96) If P is strongly connected in X and $Y \subseteq X$, then P is strongly connected in Y.

References

- Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123-129, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [5] Kazimierz Kuratowski. Wstep do teorii mnogości i topologii. PWN, Warszawa, 1977.
- [6] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

- [7] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [8] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181–186, 1990.
- [9] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.

Received August 30, 1989