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Summary. We present the choice function rule in the beginning of
the article. In the main part of the article we formalize the base of cardinal
theory. In the first section we introduce the concept of cardinal numbers
and order relations between them. We present here Cantor-Bernstein the-
orem and other properties of order relation of cardinals. In the second
section we show that every set has cardinal number equipotence to it. We
introduce notion of alephs and we deal with the concept of finite set. At
the end of the article we show two schemes of cardinal induction. Some
definitions are based on [9] and [11].

MML Identifier: CARD 1.

The papers [12], [10], [1], [13], [7], [4], [2], [3], [5], [6], and [8] provide the notation
and terminology for this paper. For simplicity we follow the rules: A, B will be
ordinal numbers, X, X1, Y , Y1, Z will be sets, R will be a relation, f will be a
function, x, y will be arbitrary, m, n will be natural numbers, and M will be a
non-empty family of sets. We now state a proposition

(1) If for every X such that X ∈ M holds X 6= ∅, then there exists Choice

being a function such that dom Choice = M and for every X such that
X ∈ M holds Choice(X) ∈ X.

The mode cardinal number, which widens to the type a set, is defined by:
there exists B such that it = B and for every A such that A ≈ B holds B ⊆ A.

One can prove the following proposition

(2) X is a cardinal number if and only if there exists A such that X = A

and for every B such that B ≈ A holds A ⊆ B.

Let M be a cardinal number. The functor M yielding an ordinal number, is
defined by:

M = M .
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In the sequel K, M , N will be cardinal numbers. We now state three propo-
sitions:

(3) M = M .

(4) For every X there exists A such that X ≈ A.

(5) M is an ordinal number.

We now define two new predicates. Let us consider M , N . The predicate
M ≤ N is defined by:

M ⊆ N .
The predicate M < N is defined by:

M ∈ N .

Next we state a number of propositions:

(6) M ≤ N if and only if M ⊆ N .

(7) M < N if and only if M ∈ N .

(8) M = N if and only if M ≈ N .

(9) M ≤ M .

(10) If M ≤ N and N ≤ M , then M = N .

(11) If M ≤ N and N ≤ K, then M ≤ K.

(12) M ≤ N or N ≤ M .

(13) M < N if and only if M ≤ N and M 6= N .

(14) M < N if and only if N 6≤ M .

(15) If M < N , then N 6< M .

(16) M < N or M = N or N < M .

(17) If M < N and N < K, then M < K.

(18) If M < N and N ≤ K or M ≤ N and N < K, then M < K.

Let us consider X. The functor X yields a cardinal number and is defined
by:

X ≈ X .

Next we state a number of propositions:

(19) M = X if and only if X ≈ M .

(20) M = M .

(21) X ≈ Y if and only if X = Y .

(22) If R is well ordering relation, then field R ≈ R.

(23) If X ⊆ M , then X ≤ M .

(24) A ⊆ A.

(25) If X ∈ M , then X < M .

(26) X ≤ Y if and only if there exists f such that f is one-to-one and
dom f = X and rng f ⊆ Y .

(27) If X ⊆ Y , then X ≤ Y .

(28) X ≤ Y if and only if there exists f such that dom f = Y and X ⊆ rng f .
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(29) X 6≈ 2X .

(30) X < 2X .

Let us consider X. The functor X+ yielding a cardinal number, is defined by:

X < X+ and for every M such that X < M holds X+ ≤ M .

We now state several propositions:

(31) M = X+ if and only if X < M and for every N such that X < N holds
M ≤ N .

(32) M < M+.

(33) 0 < X+.

(34) If X = Y , then X+ = Y +.

(35) If X ≈ Y , then X+ = Y +.

(36) A ∈ A+.

In the sequel L, L1 will be transfinite sequences. Let us consider M . The
predicate M is a limit cardinal number is defined by:

for no N holds M = N+.

One can prove the following proposition

(37) M is a limit cardinal number if and only if for no N holds M = N +.

Let us consider A. The functor ℵA yielding any, is defined by:
there exists L such that ℵA = last L and dom L = succ A and L(0) = � and

for all B, y such that succ B ∈ succ A and y = L(B) holds L(succ B) = (
⋃
{y})+

and for all B, L1 such that B ∈ succ A and B 6= 0 and B is a limit ordinal

number and L1 = L
�
B holds L(B) = sup L1 .

Let us consider A. Then ℵA is a cardinal number.

The following propositions are true:

(38) ℵ0 = � .

(39) ℵsucc A = ℵA
+.

(40) If A 6= 0 and A is a limit ordinal number, then for every L such that
dom L = A and for every B such that B ∈ A holds L(B) = ℵB holds

ℵA = sup L .

(41) A ∈ B if and only if ℵA < ℵB.

(42) If ℵA = ℵB, then A = B.

(43) A ⊆ B if and only if ℵA ≤ ℵB.

(44) If X ⊆ Y and Y ⊆ Z and X ≈ Z, then X ≈ Y and Y ≈ Z.

(45) If 2Y ⊆ X, then Y < X and Y 6≈ X.

(46) X ≈ ∅ if and only if X = ∅.

(47) ∅ = 0.

(48) X ≈ {x} if and only if there exists x such that X = {x}.

(49) X = {x} if and only if there exists x such that X = {x}.

(50) {x} = 1.
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Let us consider n. The functor n yielding an ordinal number, is defined by:
there exists f such that n = f(n) and dom f = � and f(0) = 0 and for every

element n of � for every x such that x = f(n) holds f(n + 1) = succ(
⋃
{x}).

We now state a number of propositions:

(51) 0 = 0.

(52) n + 1 = succ(n).

(53) n ∈ ω.

(54) If A is natural, then there exists n such that n = A.

(55) If n = m, then n = m.

(56) n ≤ m if and only if n ⊆ m.

(57) � ≈ ω.

(58) If X ∩X1 = ∅ and Y ∩ Y1 = ∅ and X ≈ Y and X1 ≈ Y1, then X ∪ X1 ≈
Y ∪ Y1.

(59) If x ∈ X and y ∈ X, then X \ {x} ≈ X \ {y}.

(60) If X ⊆ dom f and f is one-to-one, then X ≈ f ◦ X.

(61) If X ≈ Y and x ∈ X and y ∈ Y , then X \ {x} ≈ Y \ {y}.

(62) If Seg n ≈ Seg m, then n = m.

(63) Seg n ≈ n.

(64) If n ≈ m, then n = m.

(65) If A ∈ ω, then A is a cardinal number.

(66) n = n .

Let us consider n. The functor n yielding a cardinal number, is defined by:
n = n.

One can prove the following propositions:

(67) n = n.

(68) If X ≈ Y or Y ≈ X but X is finite, then Y is finite.

(69) n is finite and n is finite.

(70) Seg n = n .

(71) If n = m , then n = m.

(72) n ≤ m if and only if n ≤ m.

(73) n < m if and only if n < m.

(74) If X is finite, then there exists n such that X ≈ n.

(75) If X is finite, then there exists n such that X ≈ Seg n.

(76) n
+

= n + 1.

Let us consider X. Let us assume that X is finite. The functor card X yields
a natural number and is defined by:

card X = X .

We now state several propositions:

(77) If X is finite, then card X = n if and only if n = X .

(78) card ∅ = 0.
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(79) card{x} = 1.

(80) If Y is finite and X ⊆ Y , then card X ≤ card Y .

(81) If X is finite or Y is finite but X ≈ Y , then card X = card Y .

(82) If X is finite, then X+ is finite.

In the article we present several logical schemes. The scheme Cardinal Ind

concerns a unary predicate P and states that:
for every M holds P[M ]

provided the parameter satisfies the following conditions:
• P[0],
• for every M such that P[M ] holds P[M+],
• for every M such that M 6= 0 and M is a limit cardinal number and

for every N such that N < M holds P[N ] holds P[M ].
The scheme Cardinal CompInd concerns a unary predicate P and states that:
for every M holds P[M ]

provided the parameter satisfies the following condition:
• for every M such that for every N such that N < M holds P[N ]

holds P[M ].
Next we state several propositions:

(83) ℵ0 = ω.

(84) ω = ω and � = ω.

(85) ω is a limit cardinal number.

(86) If M is finite, then there exists n such that M = n .

(87) card(Seg n) = n and card(n) = n and card n = n.
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