Models and Satisfiability

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The article includes schemes of defining by structural induction, and definitions and theorems related to: the set of variables which have free occurrences in a ZF-formula, the set of all valuations of variables in a model, the set of all valuations which satisfy a ZF-formula in a model, the satisfiability of a ZF-formula in a model by a valuation, the validity of a ZF-formula in a model, the axioms of ZF-language, the model of the ZF set theory.

The articles [6], [7], [3], [1], [4], [5], and [2] provide the notation and terminology for this paper. For simplicity we adopt the following convention: H, H^{\prime} will have the type ZF-formula; x, y, z will have the type Variable; a, b, c will have the type Any; A, X will have the type set. In the article we present several logical schemes. The scheme ZFsch_ex deals with a binary functor \mathcal{F}, a binary functor \mathcal{G}, a unary functor \mathcal{H}, a binary functor \mathcal{I}, a binary functor \mathcal{J} and a constant \mathcal{A} that has the type ZF-formula, and states that the following holds

$$
\begin{aligned}
& \text { ex } a, A \text { st (for } x, y \text { holds }\langle x=y, \mathcal{F}(x, y)\rangle \in A \&\langle x \in y, \mathcal{G}(x, y)\rangle \in A) \&\langle\mathcal{A}, a\rangle \in A \& \\
& \text { for } H, a \text { st }\langle H, a\rangle \in A \text { holds }\left(H \text { is_a_equality implies } a=\mathcal{F}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right) \& \\
& \left(H \text { is_a_membership implies } a=\mathcal{G}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right) \& \\
& (H \text { is_negative implies ex } b \text { st } a=\mathcal{H}(b) \&\langle\text { the_argument_of } H, b\rangle \in A) \& \\
& (H \text { is_conjunctive implies ex } b, c \\
& \text { st } a=\mathcal{I}(b, c) \&\langle\text { the_left_argument_of } H, b\rangle \in A \&\langle\text { the_right_argument_of } H, c\rangle \in A) \\
& \&(H \text { is_universal } \\
& \text { implies ex } b, x \text { st } x=\text { bound_in } H \& a=\mathcal{J}(x, b) \&\langle\text { the_scope_of } H, b\rangle \in A)
\end{aligned}
$$

for all values of the parameters.

[^0]The scheme ZFsch_uniq deals with a binary functor \mathcal{F}, a binary functor \mathcal{G}, a unary functor \mathcal{H}, a binary functor \mathcal{I}, a binary functor \mathcal{J}, a constant \mathcal{A} that has the type ZF-formula, a constant \mathcal{B} and a constant \mathcal{C} and states that the following holds

$$
\mathcal{B}=\mathcal{C}
$$

provided the parameters satisfy the following conditions:

- ex A st (for x, y holds $\langle x=y, \mathcal{F}(x, y)\rangle \in A \&\langle x \in y, \mathcal{G}(x, y)\rangle \in A) \&\langle\mathcal{A}, \mathcal{B}\rangle \in A$
$\&$ for H, a st $\langle H, a\rangle \in A$ holds
(H is_a_equality implies $a=\mathcal{F}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)$) \&
$\left(H\right.$ is_a_membership implies $\left.a=\mathcal{G}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right) \&$
(H is_negative implies ex b st $a=\mathcal{H}(b) \&\langle$ the_argument_of $H, b\rangle \in A$) \&
(H is_conjunctive implies ex b, c st $a=\mathcal{I}(b, c)$
$\&\langle$ the_left_argument_of $H, b\rangle \in A \&\langle$ the_right_argument_of $H, c\rangle \in A$)
$\&(H$ is_universal
implies ex b, x st $x=$ bound_in $H \& a=\mathcal{J}(x, b) \&\langle$ the_scope_of $H, b\rangle \in A)$,
- ex A st (for x, y holds $\langle x=y, \mathcal{F}(x, y)\rangle \in A \&\langle x \in y, \mathcal{G}(x, y)\rangle \in A) \&\langle\mathcal{A}, \mathcal{C}\rangle \in A$
\& for H, a st $\langle H, a\rangle \in A$ holds
(H is_a_equality implies $a=\mathcal{F}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)$) \&
$\left(H\right.$ is_a_membership implies $\left.a=\mathcal{G}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right) \&$
(H is_negative implies ex b st $a=\mathcal{H}(b) \&\langle$ the_argument_of $H, b\rangle \in A$) \&
(H is_conjunctive implies ex b, c st $a=\mathcal{I}(b, c)$
$\&\langle$ the_left_argument_of $H, b\rangle \in A \&\langle$ the_right_argument_of $H, c\rangle \in A$)
$\&(H$ is_universal
implies ex b, x st $x=$ bound_in $H \& a=\mathcal{J}(x, b) \&\langle$ the_scope_of $H, b\rangle \in A)$.
The scheme ZFsch_result deals with a binary functor \mathcal{F}, a binary functor \mathcal{G}, a unary functor \mathcal{H}, a binary functor \mathcal{I}, a binary functor \mathcal{J}, a constant \mathcal{A} that has the type ZF-formula and a unary functor \mathcal{K} and states that the following holds

$$
\begin{gathered}
\left(\mathcal{A} \text { is_a_equality implies } \mathcal{K}(\mathcal{A})=\mathcal{F}\left(\operatorname{Var}_{1} \mathcal{A}, \operatorname{Var}_{2} \mathcal{A}\right)\right) \& \\
\left(\mathcal{A} \text { is_a_membership implies } \mathcal{K}(\mathcal{A})=\mathcal{G}\left(\operatorname{Var}_{1} \mathcal{A}, \operatorname{Var}_{2} \mathcal{A}\right)\right) \& \\
(\mathcal{A} \text { is_negative implies } \mathcal{K}(\mathcal{A})=\mathcal{H}(\mathcal{K}(\text { the_argument_of } \mathcal{A}))) \& \\
(\mathcal{A} \text { is_conjunctive implies for } a, b \text { st } \\
a=\mathcal{K}(\text { the_left_argument_of } \mathcal{A}) \& b=\mathcal{K}(\text { the_right_argument_of } \mathcal{A}) \\
\text { holds } \mathcal{K}(\mathcal{A})=\mathcal{I}(a, b)) \\
\&(\mathcal{A} \text { is_universal implies } \mathcal{K}(\mathcal{A})=\mathcal{J}(\text { bound_in } \mathcal{A}, \mathcal{K}(\text { the_scope_of } \mathcal{A})))
\end{gathered}
$$

provided the parameters satisfy the following condition:

- for H^{\prime}, a holds $a=\mathcal{K}\left(H^{\prime}\right)$ iff ex A st
(for x, y holds $\langle x=y, \mathcal{F}(x, y)\rangle \in A \&\langle x \in y, \mathcal{G}(x, y)\rangle \in A) \&\left\langle H^{\prime}, a\right\rangle \in A \&$
for H, a st $\langle H, a\rangle \in A$ holds (H is_a_equality implies $a=\mathcal{F}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)$)
$\&\left(H\right.$ is_a_membership implies $\left.a=\mathcal{G}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right) \&$
(H is_negative implies ex b st $a=\mathcal{H}(b) \&\langle$ the_argument_of $H, b\rangle \in A$) \&
(H is_conjunctive implies ex b, c st $a=\mathcal{I}(b, c)$
$\&\langle$ the_left_argument_of $H, b\rangle \in A \&\langle$ the_right_argument_of $H, c\rangle \in A$)
\& (H is_universal
implies ex b, x st $x=$ bound_in $H \& a=\mathcal{J}(x, b) \&\langle$ the_scope_of $H, b\rangle \in A)$.
The scheme ZFsch_property concerns a binary functor \mathcal{F}, a binary functor \mathcal{G}, a unary functor \mathcal{H}, a binary functor \mathcal{I}, a binary functor \mathcal{J}, a unary functor \mathcal{K}, a constant \mathcal{A} that has the type ZF-formula and a unary predicate \mathcal{P} and states that the following holds

$$
\mathcal{P}[\mathcal{K}(\mathcal{A})]
$$

provided the parameters satisfy the following conditions:

- for H^{\prime}, a holds $a=\mathcal{K}\left(H^{\prime}\right)$ iff ex A st
$($ for x, y holds $\langle x=y, \mathcal{F}(x, y)\rangle \in A \&\langle x \in y, \mathcal{G}(x, y)\rangle \in A) \&\left\langle H^{\prime}, a\right\rangle \in A \&$ for H, a st $\langle H, a\rangle \in A$ holds $\left(H\right.$ is_a_equality implies $\left.a=\mathcal{F}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right)$
$\&\left(H\right.$ is_a_membership implies $\left.a=\mathcal{G}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right) \&$
(H is_negative implies ex b st $a=\mathcal{H}(b) \&\langle$ the_argument_of $H, b\rangle \in A$) \&
(H is_conjunctive implies ex b, c st $a=\mathcal{I}(b, c)$
$\&\langle$ the_left_argument_of $H, b\rangle \in A \&\langle$ the_right_argument_of $H, c\rangle \in A$)
$\&(H$ is_universal
implies ex b, x st $x=$ bound_in $H \& a=\mathcal{J}(x, b) \&\langle$ the_scope_of $H, b\rangle \in A)$,
- for x, y holds $\mathcal{P}[\mathcal{F}(x, y)] \& \mathcal{P}[\mathcal{G}(x, y)]$,
- for a st $\mathcal{P}[a]$ holds $\mathcal{P}[\mathcal{H}(a)]$,
- for a, b st $\mathcal{P}[a] \& \mathcal{P}[b]$ holds $\mathcal{P}[\mathcal{I}(a, b)]$,
- for a, x st $\mathcal{P}[a]$ holds $\mathcal{P}[\mathcal{J}(x, a)]$.

Let us consider H. The functor
yields the type Any and is defined by

$$
\text { ex } A \text { st }(\text { for } x, y \text { holds }\langle x=y,\{x, y\}\rangle \in A \&\langle x \in y,\{x, y\}\rangle \in A) \&\langle H, \text { it }\rangle \in A \&
$$

for H^{\prime}, a st $\left\langle H^{\prime}, a\right\rangle \in A$ holds (H^{\prime} is_a_equality implies $\left.a=\left\{\operatorname{Var}_{1} H^{\prime}, \operatorname{Var}_{2} H^{\prime}\right\}\right) \&$ $\left(H^{\prime}\right.$ is_a_membership implies $\left.a=\left\{\operatorname{Var}_{1} H^{\prime}, \operatorname{Var}_{2} H^{\prime}\right\}\right) \&$
$\left(H^{\prime}\right.$ is_negative implies ex b st $a=b \&\left\langle\right.$ the_argument_of $\left.\left.H^{\prime}, b\right\rangle \in A\right) \&$ (H^{\prime} is_conjunctive implies ex b, c
st $a=\bigcup\{b, c\} \&\left\langle\right.$ the_left_argument_of $\left.H^{\prime}, b\right\rangle \in A \&\left\langle\right.$ the_right_argument_of $\left.H^{\prime}, c\right\rangle \in A$)

$$
\&\left(H^{\prime}\right. \text { is_universal }
$$

implies ex b, x st $x=$ bound_in $H^{\prime} \& a=(\bigcup\{b\}) \backslash\{x\} \&\left\langle\right.$ the_scope_of $\left.\left.H^{\prime}, b\right\rangle \in A\right)$.
Let us consider H. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\text { Free } H \quad \text { is } \quad \text { set of Variable. }
$$

One can prove the following proposition
(1) for H holds (H is_a_equality implies Free $\left.H=\left\{\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right\}\right) \&$
(H is_a_membership implies Free $H=\left\{\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right\}$) \& (H is_negative implies Free $H=$ Free the_argument_of H) \&
(H is_conjunctive implies
Free $H=$ Free the_left_argument_of $H \cup$ Free the_right_argument_of H)
$\&(H$ is_universal implies Free $H=($ Free the_scope_of $H) \backslash\{$ bound_in $H\}$).
Let D have the type SET_DOMAIN. The functor
VAL D,
with values of the type DOMAIN, is defined by

$$
a \in \text { it iff } a \text { is Function of VAR }, D
$$

The arguments of the notions defined below are the following: $D 1$ which is an object of the type SET_DOMAIN; f which is an object of the type Function of VAR, $D 1$; x which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f . x \quad \text { is } \quad \text { Element of } D 1
$$

For simplicity we adopt the following convention: E will denote an object of the type SET_DOMAIN; f, g will denote objects of the type Function of VAR, $E ; v 1$, $v 2, v 3, v 4, v 5$ will denote objects of the type Element of VAL E. Let us consider H, E. The functor

$$
\operatorname{St}(H, E),
$$

yields the type Any and is defined by
ex A st
(for x, y holds $\langle x=y,\{v 1:$ for f st $f=v 1$ holds $f . x=f . y\}\rangle \in A$
$\&\langle x \in y,\{v 2:$ for f st $f=v 2$ holds $f . x \in f . y\}\rangle \in A)$
$\&\langle H, \mathbf{i t}\rangle \in A \&$ for H^{\prime}, a st $\left\langle H^{\prime}, a\right\rangle \in A$ holds

$$
\text { (} H^{\prime} \text { is_a_equality }
$$

implies $a=\left\{v 3:\right.$ for f st $f=v 3$ holds $\left.\left.f \cdot\left(\operatorname{Var}_{1} H^{\prime}\right)=f .\left(\operatorname{Var}_{2} H^{\prime}\right)\right\}\right)$
\&
(H^{\prime} is_a_membership
implies $a=\left\{v 4\right.$: for f st $f=v 4$ holds $\left.\left.f .\left(\operatorname{Var}_{1} H^{\prime}\right) \in f .\left(\operatorname{Var}_{2} H^{\prime}\right)\right\}\right)$
$\&\left(H^{\prime}\right.$ is_negative implies ex b st $a=(\operatorname{VAL} E) \backslash \bigcup\{b\} \&\left\langle\right.$ the_argument_of $\left.\left.H^{\prime}, b\right\rangle \in A\right)$ \&
$\left(H^{\prime}\right.$ is_conjunctive implies ex b, c st $a=(\bigcup\{b\}) \cap \bigcup\{c\}$
$\&\left\langle\right.$ the_left_argument_of $\left.H^{\prime}, b\right\rangle \in A \&\left\langle\right.$ the_right_argument_of $\left.H^{\prime}, c\right\rangle \in A$)
$\&\left(H^{\prime}\right.$ is_universal implies ex b, x st $x=$ bound_in $H^{\prime} \&$

$$
a=\{v 5:
$$

$$
\text { for } X, f \text { st } X=b \& f=v 5
$$

holds $f \in X$ \& for g st for y st $g . y \neq f . y$ holds $x=y$ holds $g \in X\}$

$$
\left.\&\left\langle\text { the_scope_of } H^{\prime}, b\right\rangle \in A\right) .
$$

Let us consider H, E. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\operatorname{St}(H, E) \quad \text { is } \quad \text { Subset of VAL } E .
$$

We now state a number of propositions:

$$
\begin{equation*}
\text { for } H, f \text { holds not } f \in \operatorname{St}(H, E) \text { iff } f \in \operatorname{St}(\neg H, E) \text {, } \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\text { for } H, H^{\prime}, f \text { holds } f \in \operatorname{St}(H, E) \& f \in \operatorname{St}\left(H^{\prime}, E\right) \text { iff } f \in \operatorname{St}\left(H \wedge H^{\prime}, E\right) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\text { for } x, H, f \text { holds } \tag{5}
\end{equation*}
$$

$f \in \operatorname{St}(H, E) \&($ for g st for y st $g . y \neq f . y$ holds $x=y$ holds $g \in \operatorname{St}(H, E))$

$$
\text { iff } f \in \operatorname{St}(\forall(x, H), E)
$$

$$
\begin{equation*}
H \text { is_a_equality } \tag{7}
\end{equation*}
$$

implies for f holds $f .\left(\operatorname{Var}_{1} H\right)=f .\left(\operatorname{Var}_{2} H\right)$ iff $f \in \operatorname{St}(H, E)$,
H is_a_membership
implies for f holds $f .\left(\operatorname{Var}_{1} H\right) \in f .\left(\operatorname{Var}_{2} H\right)$ iff $f \in \operatorname{St}(H, E)$,
H is_negative
implies for f holds not $f \in \operatorname{St}$ (the_argument_of $H, E)$ iff $f \in \operatorname{St}(H, E)$, H is_conjunctive implies for f holds
$f \in \operatorname{St}$ (the_left_argument_of $H, E) \& f \in \operatorname{St}($ the_right_argument_of $H, E)$ iff $f \in \operatorname{St}(H, E)$,
H is_universal implies for f holds $f \in \operatorname{St}$ (the_scope_of H, E) \& (for g
st for y st $g . y \neq f . y$ holds bound_in $H=y$ holds $g \in \operatorname{St}($ the_scope_of $H, E)$)

$$
\text { iff } f \in \operatorname{St}(H, E)
$$

The arguments of the notions defined below are the following: D which is an object of the type SET_DOMAIN; f which is an object of the type Function of VAR, $D ; H$ which is an object of the type reserved above. The predicate

$$
D, f \models H \quad \text { is defined by } \quad f \in \operatorname{St}(H, D) \text {. }
$$

Next we state a number of propositions:

$$
\begin{equation*}
\text { for } E, f, H, x \text { holds } \tag{15}
\end{equation*}
$$

$E, f \models \forall(x, H)$ iff for g st for y st $g . y \neq f . y$ holds $x=y$ holds $E, g \models H$,
for E, f, H, H^{\prime} holds $E, f \models H \vee H^{\prime}$ iff $E, f \models H$ or $E, f \models H^{\prime}$,
for E, f, H, H^{\prime} holds $E, f \models H \Leftrightarrow H^{\prime}$ iff $\left(E, f \models H\right.$ iff $\left.E, f \models H^{\prime}\right)$,
for E, f, H, x holds
$E, f \models \exists(x, H)$ iff ex g st (for y st $g . y \neq f . y$ holds $x=y) \& E, g \models H$,

$$
\begin{equation*}
\text { for } E, f, x \tag{21}
\end{equation*}
$$

for e being Element of E ex g st $g . x=e \&$ for z st $z \neq x$ holds $g . z=f . z$,

$$
E, f \models \forall(x, y, H)
$$

iff for g st for z st $g . z \neq f . z$ holds $x=z$ or $y=z$ holds $E, g \models H$,

$$
\begin{equation*}
E, f \models \exists(x, y, H) \tag{23}
\end{equation*}
$$

iff ex g st (for z st $g . z \neq f . z$ holds $x=z$ or $y=z) \& E, g \models H$.
Let us consider E, H. The predicate

$$
E \models H \quad \text { is defined by } \quad \text { for } f \text { holds } E, f \models H \text {. }
$$

One can prove the following propositions:

$$
\begin{gather*}
E \models H \text { iff for } f \text { holds } E, f \models H, \tag{24}\\
E \models \forall(x, H) \text { iff } E \models H .
\end{gather*}
$$

We now define five new functors. The constant the_axiom_of_extensionality has the type ZF-formula, and is defined by

$$
\mathbf{i t}=\forall(\xi 0, \xi 1, \forall(\xi 2, \xi 2 \epsilon \xi 0 \Leftrightarrow \xi 2 \epsilon \xi 1) \Rightarrow \xi 0=\xi 1)
$$

The constant the_axiom_of_pairs has the type ZF-formula, and is defined by

$$
\text { it }=\forall(\xi 0, \xi 1, \exists(\xi 2, \forall(\xi 3, \xi 3 \epsilon \xi 2 \Leftrightarrow(\xi 3=\xi 0 \vee \xi 3=\xi 1)))) .
$$

The constant the_axiom_of_unions has the type ZF-formula, and is defined by

$$
\text { it }=\forall(\xi 0, \exists(\xi 1, \forall(\xi 2, \xi 2 \epsilon \xi 1 \Leftrightarrow \exists(\xi 3, \xi 2 \epsilon \xi 3 \wedge \xi 3 \epsilon \xi 0)))) .
$$

The constant the_axiom_of_infinity has the type ZF-formula, and is defined by

$$
\begin{gathered}
\text { it }=\exists(\xi 0, \\
\xi 1, \xi 1 \epsilon \xi 0 \wedge \forall(\xi 2, \xi 2 \epsilon \xi 0 \Rightarrow \exists(\xi 3, \xi 3 \epsilon \xi 0 \wedge \neg \xi 3=\xi 2 \wedge \forall(\xi 4, \xi 4 \epsilon \xi 2 \Rightarrow \xi 4 \epsilon \xi 3))) .
\end{gathered}
$$

The constant the_axiom_of_power_sets has the type ZF-formula, and is defined by

$$
\text { it }=\forall(\xi 0, \exists(\xi 1, \forall(\xi 2, \xi 2 \epsilon \xi 1 \Leftrightarrow \forall(\xi 3, \xi 3 \epsilon \xi 2 \Rightarrow \xi 3 \in \xi 0)))) .
$$

Let H have the type ZF-formula. Assume that the following holds

$$
\{\xi 0, \xi 1, \xi 2\} \text { misses Free } H
$$

The functor

$$
\text { the_axiom_of_substitution_for } H \text {, }
$$

with values of the type ZF-formula, is defined by

$$
\begin{gathered}
\mathbf{i t}= \\
\forall(\xi 3, \exists(\xi 0, \forall(\xi 4, H \Leftrightarrow \xi 4=\xi 0))) \Rightarrow \forall(\xi 1, \exists(\xi 2, \forall(\xi 4, \xi 4 \epsilon \xi 2 \Leftrightarrow \exists(\xi 3, \xi 3 \in \xi 1 \wedge H)))) .
\end{gathered}
$$

We now state several propositions:
(26) the_axiom_of_extensionality $=\forall(\xi 0, \xi 1, \forall(\xi 2, \xi 2 \epsilon \xi 0 \Leftrightarrow \xi 2 \epsilon \xi 1) \Rightarrow \xi 0=\xi 1)$,
(27) the_axiom_of_pairs $=\forall(\xi 0, \xi 1, \exists(\xi 2, \forall(\xi 3, \xi 3 \epsilon \xi 2 \Leftrightarrow(\xi 3=\xi 0 \vee \xi 3=\xi 1))))$,
the_axiom_of_unions

$$
\begin{equation*}
=\forall(\xi 0, \exists(\xi 1, \forall(\xi 2, \xi 2 \epsilon \xi 1 \Leftrightarrow \exists(\xi 3, \xi 2 \epsilon \xi 3 \wedge \xi 3 \epsilon \xi 0)))) \tag{28}
\end{equation*}
$$

> the_axiom_of_infinity $=\exists(\xi 0, \xi 1, \xi 1 \epsilon \xi 0 \wedge \forall(\xi 2$, $\xi 2 \epsilon \xi 0 \Rightarrow \exists(\xi 3, \xi 3 \epsilon \xi 0 \wedge \neg \xi 3=\xi 2 \wedge \forall(\xi 4, \xi 4 \epsilon \xi 2 \Rightarrow \xi 4 \epsilon \xi 3))))$,
(30)
the_axiom_of_power_sets

$$
=\forall(\xi 0, \exists(\xi 1, \forall(\xi 2, \xi 2 \epsilon \xi 1 \Leftrightarrow \forall(\xi 3, \xi 3 \epsilon \xi 2 \Rightarrow \xi 3 \epsilon \xi 0)))),
$$

(31) $\quad\{\xi 0, \xi 1, \xi 2\}$ misses Free H implies the_axiom_of_substitution_for $H=$

$$
\begin{gathered}
\forall(\xi 3, \exists(\xi 0, \\
\forall(\xi 4, H \Leftrightarrow \xi 4=\xi 0))) \Rightarrow \forall(\xi 1, \exists(\xi 2, \forall(\xi 4, \xi 4 \epsilon \xi 2 \Leftrightarrow \exists(\xi 3, \xi 3 \epsilon \xi 1 \wedge H)))) .
\end{gathered}
$$

Let us consider E. The predicate
E is_a_model_of_ZF
is defined by
E is_ \in-transitive \& $E \models$ the_axiom_of_pairs \& $E \models$ the_axiom_of_unions \&
$E \models$ the_axiom_of_infinity $\& E \models$ the_axiom_of_power_sets
\& for H st $\{\xi 0, \xi 1, \xi 2\}$ misses Free H holds $E \models$ the_axiom_of_substitution_for H.
The following proposition is true
(32) E is_a_model_of_ZF iff E is_ $\in-$ transitive $\& E \models$ the_axiom_of_pairs \& $E \models$ the_axiom_of_unions \& $E \models$ the_axiom_of_infinity \&
$E \models$ the_axiom_of_power_sets \& for H st $\{\xi 0, \xi 1, \xi 2\}$ misses Free H holds $E \models$ the_axiom_of_substitution_for H.

References

[1] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.
[5] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[7] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received April 14, 1989

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1.

