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Summary. The article includes schemes of defining by structural induction,

and definitions and theorems related to: the set of variables which have free occur-

rences in a ZF-formula, the set of all valuations of variables in a model, the set of all

valuations which satisfy a ZF-formula in a model, the satisfiability of a ZF-formula

in a model by a valuation, the validity of a ZF-formula in a model, the axioms of

ZF-language, the model of the ZF set theory.

The articles [6], [7], [3], [1], [4], [5], and [2] provide the notation and terminology for this

paper. For simplicity we adopt the following convention: H , H ′ will have the type

ZF-formula; x, y, z will have the type Variable; a, b, c will have the type Any; A, X

will have the type set. In the article we present several logical schemes. The scheme

ZFsch ex deals with a binary functor F , a binary functor G, a unary functor H, a binary

functor I, a binary functor J and a constant A that has the type ZF-formula, and states

that the following holds

ex a,A st (forx,y holds 〈x -- y,F(x, y)〉 ∈ A & 〈x ǫ y,G(x, y)〉 ∈ A) & 〈A,a〉 ∈ A &

forH,a st 〈H, a〉 ∈ A holds (H is a equality implies a = F(Var1 H,Var2 H)) &

(H is a membership implies a = G(Var1 H,Var2 H)) &

(H is negative implies ex b st a = H(b) & 〈the argument ofH,b〉 ∈ A) &

(H is conjunctive implies ex b,c

st a = I(b, c) & 〈the left argument of H,b〉 ∈ A & 〈the right argument ofH,c〉 ∈ A)

& (H is universal

implies ex b,x st x = bound in H & a = J (x, b) & 〈the scope of H,b〉 ∈ A)

for all values of the parameters.
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The scheme ZFsch uniq deals with a binary functor F , a binary functor G, a unary

functor H, a binary functor I, a binary functor J , a constant A that has the type

ZF-formula, a constant B and a constant C and states that the following holds

B = C

provided the parameters satisfy the following conditions:

• exA st (for x,y holds 〈x -- y,F(x, y)〉 ∈ A & 〈x ǫ y,G(x, y)〉 ∈ A) & 〈A,B〉 ∈ A

& forH,a st 〈H, a〉 ∈ A holds

(H is a equality implies a = F(Var1 H,Var2 H)) &

(H is a membership implies a = G(Var1 H,Var2 H)) &

(H is negative implies ex b st a = H(b) & 〈the argument of H,b〉 ∈ A) &

(H is conjunctive implies ex b,c st a = I(b, c)

& 〈the left argument of H,b〉 ∈ A & 〈the right argument of H,c〉 ∈ A)

& (H is universal

implies ex b,x st x = bound in H & a = J (x, b) & 〈the scope of H,b〉 ∈ A),

• exA st (for x,y holds 〈x -- y,F(x, y)〉 ∈ A & 〈x ǫ y,G(x, y)〉 ∈ A) & 〈A,C〉 ∈ A

& forH,a st 〈H, a〉 ∈ A holds

(H is a equality implies a = F(Var1 H,Var2 H)) &

(H is a membership implies a = G(Var1 H,Var2 H)) &

(H is negative implies ex b st a = H(b) & 〈the argument of H,b〉 ∈ A) &

(H is conjunctive implies ex b,c st a = I(b, c)

& 〈the left argument of H,b〉 ∈ A & 〈the right argument of H,c〉 ∈ A)

& (H is universal

implies ex b,x st x = bound in H & a = J (x, b) & 〈the scope of H,b〉 ∈ A).

The scheme ZFsch result deals with a binary functor F , a binary functor G, a unary

functor H, a binary functor I, a binary functor J , a constant A that has the type

ZF-formula and a unary functor K and states that the following holds

(A is a equality implies K(A) = F(Var1 A,Var2 A)) &

(A is a membership implies K(A) = G(Var1 A,Var2 A)) &

(A is negative implies K(A) = H(K(the argument ofA))) &

(A is conjunctive implies for a,b st

a = K(the left argument ofA) & b = K(the right argument ofA)

holds K(A) = I(a, b))

& (A is universal implies K(A) = J (bound inA,K(the scope ofA)))
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provided the parameters satisfy the following condition:

• forH ′,a holds a = K(H ′) iff exA st

(for x,y holds 〈x -- y,F(x, y)〉 ∈ A & 〈x ǫ y,G(x, y)〉 ∈ A) & 〈H ′,a〉 ∈ A &

forH,a st 〈H, a〉 ∈ A holds (H is a equality implies a = F(Var1 H,Var2 H))

& (H is a membership implies a = G(Var1 H,Var2 H)) &

(H is negative implies ex b st a = H(b) & 〈the argument ofH,b〉 ∈ A) &

(H is conjunctive implies ex b,c st a = I(b, c)

& 〈the left argument of H,b〉 ∈ A & 〈the right argument ofH,c〉 ∈ A)

& (H is universal

implies ex b,x st x = bound in H & a = J (x, b) & 〈the scope ofH,b〉 ∈ A).

The scheme ZFsch property concerns a binary functor F , a binary functor G, a unary

functor H, a binary functor I, a binary functor J , a unary functor K, a constant A that

has the type ZF-formula and a unary predicate P and states that the following holds

P [K(A)]

provided the parameters satisfy the following conditions:

• forH ′,a holds a = K(H ′) iff exA st

(for x,y holds 〈x -- y,F(x, y)〉 ∈ A & 〈x ǫ y,G(x, y)〉 ∈ A) & 〈H ′,a〉 ∈ A &

forH,a st 〈H, a〉 ∈ A holds (H is a equality implies a = F(Var1 H,Var2 H))

& (H is a membership implies a = G(Var1 H,Var2 H)) &

(H is negative implies ex b st a = H(b) & 〈the argument ofH,b〉 ∈ A) &

(H is conjunctive implies ex b,c st a = I(b, c)

& 〈the left argument of H,b〉 ∈ A & 〈the right argument ofH,c〉 ∈ A)

& (H is universal

implies ex b,x st x = bound in H & a = J (x, b) & 〈the scope ofH,b〉 ∈ A),

• forx,y holds P [F(x, y)] & P [G(x, y)],

• for a st P [a] holds P [H(a)],

• for a,b st P [a] & P [b] holds P [I(a, b)],

• for a,x st P [a] holds P [J (x, a)].

Let us consider H . The functor

Free H,
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yields the type Any and is defined by

exA st (for x,y holds 〈x -- y,{x, y}〉 ∈ A & 〈x ǫ y,{x, y}〉 ∈ A) & 〈H, it〉 ∈ A &

forH ′,a st 〈H ′,a〉 ∈ A holds (H ′ is a equality implies a = {Var1 H ′,Var2 H ′}) &

(H ′ is a membership implies a = {Var1 H ′,Var2 H ′}) &

(H ′ is negative implies ex b st a = b & 〈the argument of H ′,b〉 ∈ A) &

(H ′ is conjunctive implies ex b,c

st a =
⋃

{b, c} & 〈the left argument ofH ′,b〉 ∈ A & 〈the right argument of H ′,c〉 ∈ A)

& (H ′ is universal

implies ex b,x st x = bound in H ′ & a = (
⋃

{b}) \ {x} & 〈the scope of H ′,b〉 ∈ A).

Let us consider H . Let us note that it makes sense to consider the following functor

on a restricted area. Then

Free H is set of Variable .

One can prove the following proposition

(1) forH holds (H is a equality implies Free H = {Var1 H,Var2 H}) &

(H is a membership implies Free H = {Var1 H,Var2 H}) &

(H is negative implies Free H = Free the argument ofH) &

(H is conjunctive implies

Free H = Free the left argument of H ∪ Free the right argument ofH)

& (H is universal implies Free H = (Free the scope ofH) \ {bound in H}).

Let D have the type SET DOMAIN. The functor

VAL D,

with values of the type DOMAIN, is defined by

a ∈ it iff a is Function of VAR ,D.

The arguments of the notions defined below are the following: D1 which is an object

of the type SET DOMAIN; f which is an object of the type Function of VAR, D1;

x which is an object of the type reserved above. Let us note that it makes sense to

consider the following functor on a restricted area. Then

f .x is Element of D1.

For simplicity we adopt the following convention: E will denote an object of the

type SET DOMAIN; f , g will denote objects of the type Function of VAR, E; v1,

v2, v3, v4, v5 will denote objects of the type Element of VAL E. Let us consider H ,

E. The functor

St (H, E),
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yields the type Any and is defined by

exA st

(for x,y holds 〈x -- y,{ v1 : for f st f = v1 holds f .x = f .y }〉 ∈ A

& 〈x ǫ y,{ v2 : for f st f = v2 holds f .x ∈ f .y }〉 ∈ A)

& 〈H, it〉 ∈ A & forH ′,a st 〈H ′,a〉 ∈ A holds

(H ′ is a equality

implies a = { v3 : for f st f = v3 holds f .(Var1 H ′) = f .(Var2 H ′) })

&

(H ′ is a membership

implies a = { v4 : for f st f = v4 holds f .(Var1 H ′) ∈ f .(Var2 H ′) })

& (H ′ is negative implies ex b st a = (VAL E) \
⋃

{b} & 〈the argument of H ′,b〉 ∈ A)

&

(H ′ is conjunctive implies ex b,c st a = (
⋃

{b}) ∩
⋃

{c}

& 〈the left argument of H ′,b〉 ∈ A & 〈the right argument ofH ′,c〉 ∈ A)

& (H ′ is universal implies ex b,x st x = bound in H ′ &

a = { v5 :

forX,f st X = b & f = v5

holds f ∈ X & for g st for y st g.y 6= f .y holds x = y holds g ∈ X }

& 〈the scope of H ′,b〉 ∈ A).

Let us consider H , E. Let us note that it makes sense to consider the following

functor on a restricted area. Then

St (H, E) is Subset of VAL E.

We now state a number of propositions:

(2) forx,y,f holds f .x = f .y iff f ∈ St (x -- y,E),

(3) forx,y,f holds f .x ∈ f .y iff f ∈ St (x ǫ y,E),

(4) forH,f holds not f ∈ St (H, E) iff f ∈ St (¬H,E),

(5) forH,H ′,f holds f ∈ St (H, E) & f ∈ St (H ′,E) iff f ∈ St (H ∧ H ′,E),

(6) for x,H,f holds

f ∈ St (H, E) & (for g st for y st g.y 6= f .y holds x = y holds g ∈ St (H, E))

iff f ∈ St (∀ (x, H),E),

(7) H is a equality

implies for f holds f .(Var1 H) = f .(Var2 H) iff f ∈ St (H, E),
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(8) H is a membership

implies for f holds f .(Var1 H) ∈ f .(Var2 H) iff f ∈ St (H, E),

(9) H is negative

implies for f holds not f ∈ St (the argument of H,E) iff f ∈ St (H, E),

(10) H is conjunctive implies for f holds

f ∈ St (the left argument ofH,E) & f ∈ St (the right argument of H,E)

iff f ∈ St (H, E),

(11) H is universal implies for f holds

f ∈ St (the scope of H,E) & (for g

st for y st g.y 6= f .y holds bound in H = y holds g ∈ St (the scope ofH,E))

iff f ∈ St (H, E).

The arguments of the notions defined below are the following: D which is an object

of the type SET DOMAIN; f which is an object of the type Function of VAR, D; H

which is an object of the type reserved above. The predicate

D, f |= H is defined by f ∈ St (H, D).

Next we state a number of propositions:

(12) forE,f,x,y holds E, f |= x -- y iff f .x = f .y,

(13) forE,f,x,y holds E, f |= x ǫ y iff f .x ∈ f .y,

(14) forE,f,H holds E, f |= H iff notE, f |= ¬H,

(15) forE,f,H,H ′ holds E, f |= H ∧ H ′ iff E, f |= H & E, f |= H ′,

(16) forE,f,H,x holds

E, f |= ∀ (x, H) iff for g st for y st g.y 6= f .y holds x = y holds E, g |= H,

(17) forE,f,H,H ′ holds E, f |= H ∨ H ′ iff E, f |= H or E, f |= H ′,

(18) forE,f,H,H ′ holds E, f |= H ⇒ H ′ iff (E, f |= H implies E, f |= H ′),

(19) forE,f,H,H ′ holds E, f |= H ⇔ H ′ iff (E, f |= H iff E, f |= H ′),

(20) forE,f,H,x holds

E, f |= ∃ (x, H) iff ex g st (for y st g.y 6= f .y holds x = y) & E, g |= H,

(21) forE,f,x

for e being Element of E ex g st g.x = e & for z st z 6= x holds g.z = f .z,
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(22) E, f |= ∀ (x, y, H)

iff for g st for z st g.z 6= f .z holds x = z or y = z holds E, g |= H,

(23) E, f |= ∃ (x, y, H)

iff ex g st (for z st g.z 6= f .z holds x = z or y = z) & E, g |= H.

Let us consider E, H . The predicate

E |= H is defined by for f holds E, f |= H.

One can prove the following propositions:

(24) E |= H iff for f holds E, f |= H,

(25) E |= ∀ (x, H) iff E |= H.

We now define five new functors. The constant the axiom of extensionality has the

type ZF-formula, and is defined by

it = ∀ (ξ 0,ξ 1,∀ (ξ 2,ξ 2 ǫ ξ 0 ⇔ ξ 2 ǫ ξ 1) ⇒ ξ 0 -- ξ 1).

The constant the axiom of pairs has the type ZF-formula, and is defined by

it = ∀ (ξ 0,ξ 1,∃ (ξ 2,∀ (ξ 3,ξ 3 ǫ ξ 2 ⇔ (ξ 3 -- ξ 0 ∨ ξ 3 -- ξ 1)))).

The constant the axiom of unions has the type ZF-formula, and is defined by

it = ∀ (ξ 0,∃ (ξ 1,∀ (ξ 2,ξ 2 ǫ ξ 1 ⇔∃ (ξ 3,ξ 2 ǫ ξ 3 ∧ ξ 3 ǫ ξ 0)))).

The constant the axiom of infinity has the type ZF-formula, and is defined by

it = ∃ (ξ 0,

ξ 1, ξ 1 ǫ ξ 0 ∧ ∀ (ξ 2,ξ 2 ǫ ξ 0 ⇒∃ (ξ 3,ξ 3 ǫ ξ 0 ∧ ¬ ξ 3 -- ξ 2 ∧ ∀ (ξ 4,ξ 4 ǫ ξ 2 ⇒ ξ 4 ǫ ξ 3)))).

The constant the axiom of power sets has the type ZF-formula, and is defined by

it = ∀ (ξ 0,∃ (ξ 1,∀ (ξ 2,ξ 2 ǫ ξ 1 ⇔∀ (ξ 3,ξ 3 ǫ ξ 2 ⇒ ξ 3 ǫ ξ 0)))).

Let H have the type ZF-formula. Assume that the following holds

{ξ 0,ξ 1,ξ 2} misses Free H.

The functor

the axiom of substitution for H,

with values of the type ZF-formula, is defined by

it =

∀ (ξ 3,∃ (ξ 0,∀ (ξ 4,H ⇔ ξ 4 -- ξ 0))) ⇒∀ (ξ 1,∃ (ξ 2,∀ (ξ 4,ξ 4 ǫ ξ 2 ⇔∃ (ξ 3,ξ 3 ǫ ξ 1 ∧ H)))).
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We now state several propositions:

(26) the axiom of extensionality = ∀ (ξ 0,ξ 1,∀ (ξ 2,ξ 2 ǫ ξ 0 ⇔ ξ 2 ǫ ξ 1) ⇒ ξ 0 -- ξ 1),

(27) the axiom of pairs = ∀ (ξ 0,ξ 1,∃ (ξ 2,∀ (ξ 3,ξ 3 ǫ ξ 2 ⇔ (ξ 3 -- ξ 0 ∨ ξ 3 -- ξ 1)))),

(28) the axiom of unions

= ∀ (ξ 0,∃ (ξ 1,∀ (ξ 2,ξ 2 ǫ ξ 1 ⇔∃ (ξ 3,ξ 2 ǫ ξ 3 ∧ ξ 3 ǫ ξ 0)))),

(29) the axiom of infinity = ∃ (ξ 0, ξ 1, ξ 1 ǫ ξ 0 ∧ ∀ (ξ 2,

ξ 2 ǫ ξ 0 ⇒∃ (ξ 3, ξ 3 ǫ ξ 0 ∧ ¬ ξ 3 -- ξ 2 ∧ ∀ (ξ 4,ξ 4 ǫ ξ 2 ⇒ ξ 4 ǫ ξ 3)))),

(30) the axiom of power sets

= ∀ (ξ 0,∃ (ξ 1,∀ (ξ 2,ξ 2 ǫ ξ 1 ⇔∀ (ξ 3,ξ 3 ǫ ξ 2 ⇒ ξ 3 ǫ ξ 0)))),

(31) {ξ 0,ξ 1,ξ 2} misses Free H implies the axiom of substitution for H =

∀ (ξ 3, ∃ (ξ 0,

∀ (ξ 4, H ⇔ ξ 4 -- ξ 0))) ⇒∀ (ξ 1,∃ (ξ 2,∀ (ξ 4,ξ 4 ǫ ξ 2 ⇔∃ (ξ 3,ξ 3 ǫ ξ 1 ∧ H)))).

Let us consider E. The predicate

E is a model of ZF

is defined by

E is ∈-transitive & E |= the axiom of pairs & E |= the axiom of unions &

E |= the axiom of infinity & E |= the axiom of power sets

& forH st {ξ 0,ξ 1,ξ 2} misses Free H holds E |= the axiom of substitution for H.

The following proposition is true

(32) E is a model of ZF iff E is ∈-transitive & E |= the axiom of pairs &

E |= the axiom of unions & E |= the axiom of infinity &

E |= the axiom of power sets & forH

st {ξ 0,ξ 1,ξ 2} misses Free H holds E |= the axiom of substitution for H.
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