Models and Satisfiability

Grzegorz Bancerek¹ Warsaw University Białystok

Summary. The article includes schemes of defining by structural induction, and definitions and theorems related to: the set of variables which have free occurrences in a ZF-formula, the set of all valuations of variables in a model, the set of all valuations which satisfy a ZF-formula in a model, the satisfiability of a ZF-formula in a model by a valuation, the validity of a ZF-formula in a model, the axioms of ZF-language, the model of the ZF set theory.

The articles [6], [7], [3], [1], [4], [5], and [2] provide the notation and terminology for this paper. For simplicity we adopt the following convention: H, H' will have the type ZF-formula; x, y, z will have the type Variable; a, b, c will have the type Any; A, X will have the type set. In the article we present several logical schemes. The scheme $ZFsch_ex$ deals with a binary functor \mathcal{F} , a binary functor \mathcal{G} , a unary functor \mathcal{H} , a binary functor \mathcal{I} , a binary functor \mathcal{I} and a constant \mathcal{A} that has the type ZF-formula, and states that the following holds

```
\begin{array}{l} \mathbf{ex}\, a, A \ \mathbf{st} \ (\mathbf{for}\, x, y \ \mathbf{holds} \ \langle x = y, \mathcal{F}(x,y) \rangle \in A \ \& \ \langle x \in y, \mathcal{G}(x,y) \rangle \in A) \ \& \ \langle A, a \rangle \in A \ \& \ \mathbf{for}\, H, a \ \mathbf{st} \ \langle H, a \rangle \in A \ \mathbf{holds} \ (H \ \mathbf{is\_a\_equality} \ \mathbf{implies} \ a = \mathcal{F}(\mathrm{Var}_1 \ H, \mathrm{Var}_2 \ H)) \ \& \ (H \ \mathbf{is\_negative} \ \mathbf{implies} \ \mathbf{ex} \ b \ \mathbf{st} \ a = \mathcal{H}(b) \ \& \ \langle \mathbf{the\_argument\_of} \ H, b \rangle \in A) \ \& \ (H \ \mathbf{is\_conjunctive} \ \mathbf{implies} \ \mathbf{ex} \ b, c \ \mathbf{st} \ a = \mathcal{I}(b,c) \ \& \ \langle \mathbf{the\_left\_argument\_of} \ H, b \rangle \in A \ \& \ \langle \mathbf{the\_right\_argument\_of} \ H, c \rangle \in A) \ \& \ (H \ \mathbf{is\_universal} \ \mathbf{implies} \ \mathbf{ex} \ b, x \ \mathbf{st} \ x = \mathbf{bound\_in} \ H \ \& \ a = \mathcal{J}(x,b) \ \& \ \langle \mathbf{the\_scope\_of} \ H, b \rangle \in A) \end{array}
```

for all values of the parameters.

¹Supported by RPBP.III-24.C1.

The scheme $ZFsch_uniq$ deals with a binary functor \mathcal{F} , a binary functor \mathcal{G} , a unary functor \mathcal{H} , a binary functor \mathcal{I} , a binary functor \mathcal{I} , a constant \mathcal{A} that has the type ZF-formula, a constant \mathcal{B} and a constant \mathcal{C} and states that the following holds

$$\mathcal{B} = \mathcal{C}$$

provided the parameters satisfy the following conditions:

```
• ex A st (for x,y holds \langle x = y, \mathcal{F}(x,y) \rangle \in A \& \langle x \in y, \mathcal{G}(x,y) \rangle \in A \rangle \& \langle \mathcal{A}, \mathcal{B} \rangle \in A
                                            & for H.a st \langle H.a \rangle \in A holds
                          (H \text{ is\_a\_equality implies } a = \mathcal{F}(\text{Var}_1 H, \text{Var}_2 H)) \&
                       (H \text{ is\_a\_membership implies } a = \mathcal{G}(\text{Var}_1 H, \text{Var}_2 H)) \&
        (H is_negative implies ex b st a = \mathcal{H}(b) & \langle \text{the\_argument\_of } H, b \rangle \in A \rangle &
                               (H is_conjunctive implies ex b,c st a = \mathcal{I}(b,c)
           & \langle \text{the\_left\_argument\_of } H, b \rangle \in A \& \langle \text{the\_right\_argument\_of } H, c \rangle \in A \rangle
                                                        & (H \text{ is\_universal})
     implies ex b,x st x = \text{bound\_in } H \& a = \mathcal{J}(x,b) \& \langle \text{the\_scope\_of } H,b \rangle \in A \rangle,
• ex A st (for x,y holds \langle x = y, \mathcal{F}(x,y) \rangle \in A \& \langle x \in y, \mathcal{G}(x,y) \rangle \in A \rangle \& \langle \mathcal{A}, \mathcal{C} \rangle \in A
                                            & for H.a st \langle H.a \rangle \in A holds
                           (H \text{ is\_a\_equality implies } a = \mathcal{F}(\operatorname{Var}_1 H, \operatorname{Var}_2 H)) \&
                       (H \text{ is\_a\_membership implies } a = \mathcal{G}(\text{Var}_1 H, \text{Var}_2 H)) \&
        (H is_negative implies ex b st a = \mathcal{H}(b) & (the_argument_of H,b) \in A) &
                               (H is_conjunctive implies ex b,c st a = \mathcal{I}(b,c)
           & \langle \text{the\_left\_argument\_of} \, H, b \rangle \in A \ \& \ \langle \text{the\_right\_argument\_of} \, H, c \rangle \in A \rangle
                                                       & (H \text{ is\_universal})
     implies ex b,x st x = \text{bound\_in } H \& a = \mathcal{J}(x,b) \& \langle \text{the\_scope\_of } H,b \rangle \in A \rangle.
```

The scheme $ZFsch_result$ deals with a binary functor \mathcal{F} , a binary functor \mathcal{G} , a unary functor \mathcal{H} , a binary functor \mathcal{I} , a binary functor \mathcal{I} , a binary functor \mathcal{I} , a constant \mathcal{A} that has the type ZF-formula and a unary functor \mathcal{K} and states that the following holds

```
(\mathcal{A} \text{ is\_a\_equality implies } \mathcal{K}(\mathcal{A}) = \mathcal{F}(\operatorname{Var}_1 \mathcal{A}, \operatorname{Var}_2 \mathcal{A})) \ \& \\ (\mathcal{A} \text{ is\_a\_membership implies } \mathcal{K}(\mathcal{A}) = \mathcal{G}(\operatorname{Var}_1 \mathcal{A}, \operatorname{Var}_2 \mathcal{A})) \ \& \\ (\mathcal{A} \text{ is\_negative implies } \mathcal{K}(\mathcal{A}) = \mathcal{H}(\mathcal{K}(\text{the\_argument\_of } \mathcal{A}))) \ \& \\ (\mathcal{A} \text{ is\_conjunctive implies for } a, b \text{ st} \\ a = \mathcal{K}(\text{the\_left\_argument\_of } \mathcal{A}) \ \& \ b = \mathcal{K}(\text{the\_right\_argument\_of } \mathcal{A}) \\ \text{holds } \mathcal{K}(\mathcal{A}) = \mathcal{I}(a, b)) \\ \& \ (\mathcal{A} \text{ is\_universal implies } \mathcal{K}(\mathcal{A}) = \mathcal{J}(\text{bound\_in } \mathcal{A}, \mathcal{K}(\text{the\_scope\_of } \mathcal{A})))
```

provided the parameters satisfy the following condition:

```
• for H',a holds a = \mathcal{K}(H') iff ex A st (for x,y holds \langle x = y, \mathcal{F}(x,y) \rangle \in A \& \langle x \in y, \mathcal{G}(x,y) \rangle \in A) \& \langle H',a \rangle \in A \& for H,a st \langle H,a \rangle \in A holds (H is_a_equality implies a = \mathcal{F}(\operatorname{Var}_1 H, \operatorname{Var}_2 H)) \& (H is_a_membership implies a = \mathcal{G}(\operatorname{Var}_1 H, \operatorname{Var}_2 H)) \& (H is_negative implies ex b st a = \mathcal{H}(b) \& \langle \text{the}_{-} \text{argument}_{-} \text{of } H,b \rangle \in A) \& (H is_conjunctive implies ex b,c st a = \mathcal{I}(b,c) \& \langle \text{the}_{-} \text{left}_{-} \text{argument}_{-} \text{of } H,c \rangle \in A) & (H is_universal implies ex b,x st x = \text{bound}_{-} \text{in } H \& a = \mathcal{J}(x,b) \& \langle \text{the}_{-} \text{scope}_{-} \text{of } H,b \rangle \in A).
```

The scheme $ZFsch_property$ concerns a binary functor \mathcal{F} , a binary functor \mathcal{G} , a unary functor \mathcal{H} , a binary functor \mathcal{I} , a binary functor \mathcal{I} , a binary functor \mathcal{I} , a unary functor \mathcal{K} , a constant \mathcal{A} that has the type ZF-formula and a unary predicate \mathcal{P} and states that the following holds

$$\mathcal{P}[\mathcal{K}(\mathcal{A})]$$

provided the parameters satisfy the following conditions:

```
• for H',a holds a = \mathcal{K}(H') iff ex A st (\text{for } x,y \text{ holds } \langle x = y,\mathcal{F}(x,y) \rangle \in A \ \& \ \langle x \in y,\mathcal{G}(x,y) \rangle \in A) \ \& \ \langle H',a \rangle \in A \ \&  for H,a st \langle H,a \rangle \in A holds (H \text{ is\_a\_equality implies } a = \mathcal{F}(\text{Var}_1 H, \text{Var}_2 H)) \& \ (H \text{ is\_a\_membership implies } a = \mathcal{G}(\text{Var}_1 H, \text{Var}_2 H)) \ \&  (H \text{ is\_negative implies ex } b \text{ st } a = \mathcal{H}(b) \ \& \ \langle \text{the\_argument\_of } H,b \rangle \in A) \ \& \ (H \text{ is\_conjunctive implies ex } b,c \text{ st } a = \mathcal{I}(b,c) \& \ \langle \text{the\_left\_argument\_of } H,b \rangle \in A \ \& \ \langle \text{the\_right\_argument\_of } H,c \rangle \in A) \& \ (H \text{ is\_universal} implies ex b,x st x = \text{bound\_in } H \ \& \ a = \mathcal{J}(x,b) \ \& \ \langle \text{the\_scope\_of } H,b \rangle \in A),
```

- for x,y holds $\mathcal{P}[\mathcal{F}(x,y)] \& \mathcal{P}[\mathcal{G}(x,y)],$
- for a st $\mathcal{P}[a]$ holds $\mathcal{P}[\mathcal{H}(a)]$,
- for a,b st $\mathcal{P}[a] \& \mathcal{P}[b]$ holds $\mathcal{P}[\mathcal{I}(a,b)]$,
- for a, x st $\mathcal{P}[a]$ holds $\mathcal{P}[\mathcal{J}(x, a)]$.

Let us consider H. The functor

Free H,

yields the type Any and is defined by

 $\begin{array}{l} \mathbf{ex}\,A\,\,\mathbf{st}\,\,(\mathbf{for}\,x,y\,\,\mathbf{holds}\,\,\langle x = y,\{x,y\}\rangle \in A\,\,\&\,\,\langle x\,\,\epsilon\,\,y,\{x,y\}\rangle \in A)\,\,\&\,\,\langle H,\mathbf{it}\rangle \in A\,\,\&\\ \mathbf{for}\,H',a\,\,\mathbf{st}\,\,\langle H',a\rangle \in A\,\,\mathbf{holds}\,\,(H'\,\,\mathrm{is_a_equality}\,\,\mathbf{implies}\,\,a = \{\mathrm{Var}_1\,H',\mathrm{Var}_2\,H'\})\,\,\&\\ (H'\,\,\mathrm{is_a_membership}\,\,\mathbf{implies}\,\,a = \{\mathrm{Var}_1\,H',\mathrm{Var}_2\,H'\})\,\,\&\\ (H'\,\,\mathrm{is_negative}\,\,\mathbf{implies}\,\,\mathbf{ex}\,\,b\,\,\mathbf{st}\,\,a = b\,\,\&\,\,\langle\,\mathbf{the_argument_of}\,H',b\rangle \in A)\,\,\&\\ (H'\,\,\mathrm{is_conjunctive}\,\,\mathbf{implies}\,\,\mathbf{ex}\,\,b,c \end{array}$

st $a = \bigcup \{b, c\}$ & $\langle \text{the_left_argument_of } H', b \rangle \in A$ & $\langle \text{the_right_argument_of } H', c \rangle \in A$) & $\langle H' \text{ is_universal} \rangle$

implies ex b,x **st** $x = \text{bound_in } H' \& a = (\bigcup \{b\}) \setminus \{x\} \& \langle \text{the_scope_of } H',b \rangle \in A).$

Let us consider H. Let us note that it makes sense to consider the following functor on a restricted area. Then

Free H is **set of** Variable.

One can prove the following proposition

(1) for H holds (H is_a_equality implies Free $H = \{ Var_1 H, Var_2 H \} \}$ & (H is_a_membership implies Free $H = \{ Var_1 H, Var_2 H \} \}$ & (H is_negative implies Free $H = \{ Var_1 H, Var_2 H \} \}$ & (H is_conjunctive implies

Free H = Free the_left_argument_of H \cup Free the_right_argument_of H) & $(H \text{ is_universal implies Free } H = (Free the_scope_of <math>H) \setminus \{bound_in H\}).$

Let D have the type SET_DOMAIN. The functor

VAL D.

with values of the type DOMAIN, is defined by

 $a \in \mathbf{it} \ \mathbf{iff} \ a \ \mathbf{is} \ \mathrm{Function} \ \mathbf{of} \ \mathrm{VAR} \ , D.$

The arguments of the notions defined below are the following: D1 which is an object of the type SET_DOMAIN; f which is an object of the type Function of VAR, D1; x which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

f.x is Element of D1.

For simplicity we adopt the following convention: E will denote an object of the type SET_DOMAIN; f, g will denote objects of the type Function of VAR, E; v1, v2, v3, v4, v5 will denote objects of the type Element of VAL E. Let us consider H, E. The functor

St(H,E),

yields the type Any and is defined by

$$\operatorname{ex} A \operatorname{st} \\ (\operatorname{for} x,y \operatorname{holds} \langle x = y, \{v1 : \operatorname{for} f \operatorname{st} f = v1 \operatorname{holds} f.x = f.y \} \rangle \in A \\ \& \langle x \in y, \{v2 : \operatorname{for} f \operatorname{st} f = v2 \operatorname{holds} f.x \in f.y \} \rangle \in A) \\ \& \langle H, \operatorname{it} \rangle \in A \& \operatorname{for} H', a \operatorname{st} \langle H', a \rangle \in A \operatorname{holds} \\ (H' \operatorname{is_a_equality} \\ \operatorname{implies} a = \{v3 : \operatorname{for} f \operatorname{st} f = v3 \operatorname{holds} f.(\operatorname{Var}_1 H') = f.(\operatorname{Var}_2 H') \}) \\ \& \\ (H' \operatorname{is_a_membership} \\ \operatorname{implies} a = \{v4 : \operatorname{for} f \operatorname{st} f = v4 \operatorname{holds} f.(\operatorname{Var}_1 H') \in f.(\operatorname{Var}_2 H') \}) \\ \& (H' \operatorname{is_negative} \operatorname{implies} \operatorname{ex} b \operatorname{st} a = (\operatorname{VAL} E) \setminus \bigcup \{b\} \& \langle \operatorname{the_argument_of} H', b \rangle \in A) \\ \& (H' \operatorname{is_conjunctive} \operatorname{implies} \operatorname{ex} b, c \operatorname{st} a = (\bigcup \{b\}) \cap \bigcup \{c\} \\ \& \langle \operatorname{the_left_argument_of} H', b \rangle \in A \& \langle \operatorname{the_right_argument_of} H', c \rangle \in A) \\ \& (H' \operatorname{is_universal} \operatorname{implies} \operatorname{ex} b, x \operatorname{st} x = \operatorname{bound_in} H' \& a = \{v5 : \\ \operatorname{for} X, f \operatorname{st} X = b \& f = v5 \\ \operatorname{holds} f \in X \& \operatorname{for} g \operatorname{st} \operatorname{for} y \operatorname{st} g, y \neq f, y \operatorname{holds} x = y \operatorname{holds} g \in X \}$$

Let us consider H, E. Let us note that it makes sense to consider the following functor on a restricted area. Then

& $\langle \text{the_scope_of } H', b \rangle \in A \rangle$.

$$St(H, E)$$
 is Subset of VAL E .

We now state a number of propositions:

(2) for
$$x,y,f$$
 holds $f.x = f.y$ iff $f \in St(x = y,E)$,

(3) for
$$x, y, f$$
 holds $f \cdot x \in f \cdot y$ iff $f \in St(x \in y, E)$,

(4) for
$$H, f$$
 holds not $f \in St(H, E)$ iff $f \in St(\neg H, E)$,

(5) for
$$H, H', f$$
 holds $f \in St(H, E) \& f \in St(H', E)$ iff $f \in St(H \land H', E)$,

(6)
$$f \in \operatorname{St}(H,E) \& (\mathbf{for} \ g \ \mathbf{st} \ \mathbf{for} \ y \ \mathbf{st} \ g.y \neq f.y \ \mathbf{holds} \ x = y \ \mathbf{holds} \ g \in \operatorname{St}(H,E))$$

$$\mathbf{iff} \ f \in \operatorname{St}(\forall (x,H),E),$$

(7)
$$H$$
 is_a_equality implies for f holds $f.(\operatorname{Var}_1 H) = f.(\operatorname{Var}_2 H)$ iff $f \in \operatorname{St}(H, E)$,

- (8) $H \text{ is_a_membership}$ implies for $f \text{ holds } f.(\operatorname{Var}_1 H) \in f.(\operatorname{Var}_2 H) \text{ iff } f \in \operatorname{St}(H, E),$
- (9) H is_negative implies for f holds not $f \in St$ (the_argument_of H,E) iff $f \in St$ (H,E),
- (10) H is_conjunctive **implies for** f **holds** $f \in St$ (the_left_argument_of H,E) & $f \in St$ (the_right_argument_of H,E) **iff** $f \in St$ (H,E),
- (11) H is universal implies for f holds $f \in \operatorname{St} (\operatorname{the_scope_of} H, E) \ \& \ (\mathbf{for} \ g$ $\mathbf{st} \ \mathbf{for} \ y \ \mathbf{st} \ g.y \neq f.y \ \mathbf{holds} \ \operatorname{bound_in} \ H = y \ \mathbf{holds} \ g \in \operatorname{St} (\operatorname{the_scope_of} H, E))$ $\mathbf{iff} \ f \in \operatorname{St} (H, E).$

The arguments of the notions defined below are the following: D which is an object of the type SET_DOMAIN; f which is an object of the type Function of VAR, D; H which is an object of the type reserved above. The predicate

$$D, f \models H$$
 is defined by $f \in St(H, D)$.

Next we state a number of propositions:

(12) for
$$E, f, x, y$$
 holds $E, f \models x = y$ iff $f.x = f.y$,

(13) for
$$E, f, x, y$$
 holds $E, f \models x \in y$ iff $f. x \in f. y$,

(14) for
$$E, f, H$$
 holds $E, f \models H$ iff not $E, f \models \neg H$,

(15) for
$$E, f, H, H'$$
 holds $E, f \models H \land H'$ iff $E, f \models H \& E, f \models H'$,

- (16) for E, f, H, x holds $E, f \models \forall (x, H)$ iff for g st for y st $g, y \neq f, y$ holds x = y holds $E, g \models H$,
- (17) for E, f, H, H' holds $E, f \models H \lor H'$ iff $E, f \models H$ or $E, f \models H'$,
- (18) for E, f, H, H' holds $E, f \models H \Rightarrow H'$ iff $(E, f \models H \text{ implies } E, f \models H')$,
- (19) for E, f, H, H' holds $E, f \models H \Leftrightarrow H'$ iff $(E, f \models H \text{ iff } E, f \models H')$,
- (20) for E, f, H, x holds $E, f \models \exists (x, H) \text{ iff ex } g \text{ st (for } y \text{ st } g. y \neq f. y \text{ holds } x = y) \& E, g \models H,$
- (21) for E, f, xfor e being Element of $E \in g$ st g, x = e & for z st $z \neq x$ holds g, z = f, z,

$$(22) E, f \models \forall (x, y, H)$$

iff for g st for z st $g.z \neq f.z$ holds x = z or y = z holds $E, g \models H$,

(23)
$$E, f \models \exists (x, y, H)$$

iff ex g st (for z st $g.z \neq f.z$ holds x = z or y = z) & $E, g \models H$.

Let us consider E, H. The predicate

$$E \models H$$
 is defined by **for** f **holds** $E, f \models H$.

One can prove the following propositions:

(24)
$$E \models H \text{ iff for } f \text{ holds } E, f \models H,$$

(25)
$$E \models \forall (x, H) \text{ iff } E \models H.$$

We now define five new functors. The constant the_axiom_of_extensionality has the type ZF-formula, and is defined by

$$\mathbf{it} = \forall (\xi 0, \xi 1, \forall (\xi 2, \xi 2 \epsilon \xi 0 \Leftrightarrow \xi 2 \epsilon \xi 1) \Rightarrow \xi 0 = \xi 1).$$

The constant the axiom of pairs has the type ZF-formula, and is defined by

$$\mathbf{it} = \forall (\xi 0, \xi 1, \exists (\xi 2, \forall (\xi 3, \xi 3 \in \xi 2 \Leftrightarrow (\xi 3 = \xi 0 \lor \xi 3 = \xi 1)))).$$

The constant the axiom of unions has the type ZF-formula, and is defined by

$$\mathbf{it} = \forall (\xi 0, \exists (\xi 1, \forall (\xi 2, \xi 2 \epsilon \xi 1 \Leftrightarrow \exists (\xi 3, \xi 2 \epsilon \xi 3 \land \xi 3 \epsilon \xi 0)))).$$

The constant the axiom_of_infinity has the type ZF-formula, and is defined by

$$\mathbf{it} = \exists (\xi 0,$$

$$\xi 1, \xi 1 \in \xi 0 \land \forall (\xi 2, \xi 2 \in \xi 0 \Rightarrow \exists (\xi 3, \xi 3 \in \xi 0 \land \neg \xi 3 = \xi 2 \land \forall (\xi 4, \xi 4 \in \xi 2 \Rightarrow \xi 4 \in \xi 3)))).$$

The constant the axiom_of_power_sets has the type ZF-formula, and is defined by

$$\mathbf{it} = \forall (\xi 0, \exists (\xi 1, \forall (\xi 2, \xi 2 \epsilon \xi 1 \Leftrightarrow \forall (\xi 3, \xi 3 \epsilon \xi 2 \Rightarrow \xi 3 \epsilon \xi 0)))).$$

Let H have the type ZF-formula. Assume that the following holds

$$\{\xi 0, \xi 1, \xi 2\}$$
 misses Free H.

The functor

the $axiom_of_substitution_for H$,

with values of the type ZF-formula, is defined by

$$\forall (\xi 3, \exists (\xi 0, \forall (\xi 4, H \Leftrightarrow \xi 4 = \xi 0))) \Rightarrow \forall (\xi 1, \exists (\xi 2, \forall (\xi 4, \xi 4 \epsilon \xi 2 \Leftrightarrow \exists (\xi 3, \xi 3 \epsilon \xi 1 \land H)))).$$

We now state several propositions:

- (26) the axiom_of_extensionality = $\forall (\xi 0, \xi 1, \forall (\xi 2, \xi 2 \epsilon \xi 0 \Leftrightarrow \xi 2 \epsilon \xi 1) \Rightarrow \xi 0 = \xi 1)$,
- (27) the axiom of pairs = $\forall (\xi 0, \xi 1, \exists (\xi 2, \forall (\xi 3, \xi 3 \epsilon \xi 2 \Leftrightarrow (\xi 3 = \xi 0 \lor \xi 3 = \xi 1)))),$
- (28) the_axiom_of_unions $= \forall (\xi \, 0, \exists \, (\xi \, 1, \forall \, (\xi \, 2, \xi \, 2 \, \epsilon \, \xi \, 1 \Leftrightarrow \exists \, (\xi \, 3, \xi \, 2 \, \epsilon \, \xi \, 3 \, \wedge \, \xi \, 3 \, \epsilon \, \xi \, 0)))),$
- (29) the_axiom_of_infinity = $\exists (\xi 0, \xi 1, \xi 1 \epsilon \xi 0 \land \forall (\xi 2, \xi 2 \epsilon \xi 0) \Rightarrow \exists (\xi 3, \xi 3 \epsilon \xi 0 \land \neg \xi 3 = \xi 2 \land \forall (\xi 4, \xi 4 \epsilon \xi 2 \Rightarrow \xi 4 \epsilon \xi 3)))),$
- (30) the_axiom_of_power_sets $= \forall (\xi \ 0, \exists (\xi \ 1, \forall (\xi \ 2, \xi \ 2 \in \xi \ 1 \Leftrightarrow \forall (\xi \ 3, \xi \ 3 \in \xi \ 2 \Rightarrow \xi \ 3 \in \xi \ 0)))),$
- (31) $\{\xi \ 0, \xi \ 1, \xi \ 2\}$ misses Free H implies the axiom_of_substitution_for $H = \forall \ (\xi \ 3, \exists \ (\xi \ 0, \forall \ (\xi \ 4, H \Leftrightarrow \xi \ 4 = \xi \ 0))) \Rightarrow \forall \ (\xi \ 1, \exists \ (\xi \ 2, \forall \ (\xi \ 4, \xi \ 4 \ \epsilon \ \xi \ 2 \Leftrightarrow \exists \ (\xi \ 3, \xi \ 3 \ \epsilon \ \xi \ 1 \land H)))).$

Let us consider E. The predicate

E is a model of ZF

is defined by

E is_ \in -transitive & $E \models$ the_axiom_of_pairs & $E \models$ the_axiom_of_unions & $E \models \text{the_axiom_of_infinity \& } E \models \text{the_axiom_of_power_sets}$ & for H st $\{\xi \ 0, \xi \ 1, \xi \ 2\}$ misses Free H holds $E \models \text{the_axiom_of_substitution_for } H$.

The following proposition is true

(32) E is_a_model_of_ZF **iff** E is_ \in -transitive & $E \models$ the_axiom_of_pairs & $E \models \text{the_axiom_of_power_sets} \& \text{ for } H$ $\text{st } \{\xi \ 0, \xi \ 1, \xi \ 2\} \text{ misses Free } H \text{ holds } E \models \text{the_axiom_of_substitution_for } H.$

References

- [1] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1, 1990.

- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.
- [5] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
- [7] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. *Formalized Mathematics*, 1, 1990.

Received April 14, 1989