A Model of ZF Set Theory Language

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The goal of this article is to construct a language of the ZF set theory and to develop a notational and conceptual base which facilitates a convenient usage of the language.

The articles [5], [6], [3], [4], [1], and [2] provide the terminology and notation for this paper. For simplicity we adopt the following convention: k, n will have the type Nat; D will have the type DOMAIN; a will have the type Any; p, q will have the type FinSequence of NAT. The constant VAR has the type SUBDOMAIN of NAT, and is defined by

$$
\mathbf{i t}=\{k: 5 \leq k\} .
$$

The following proposition is true

$$
\begin{equation*}
\mathrm{VAR}=\{k: 5 \leq k\} . \tag{1}
\end{equation*}
$$

Variable stands for Element of VAR .
One can prove the following proposition
a is Variable iff a is Element of VAR .
Let us consider n. The functor

$$
\xi n
$$

with values of the type Variable, is defined by

$$
\text { it }=5+n .
$$

One can prove the following proposition

(3)

$$
\xi n=5+n .
$$

[^0]In the sequel x, y, z, t denote objects of the type Variable. Let us consider x. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
<x>\quad \text { is } \quad \text { FinSequence of NAT. }
$$

We now define two new functors. Let us consider x, y. The functor

$$
x=y
$$

with values of the type FinSequence of NAT, is defined by

$$
\text { it }=<0>\frown<x>\frown<y>.
$$

The functor

$$
x \in y,
$$

yields the type FinSequence of NAT and is defined by

$$
\text { it }=<1>\frown\langle x\rangle^{\frown}<y>
$$

Next we state four propositions:

$$
\begin{align*}
& x=y=<0>\frown<x>\frown<y>, \tag{4}\\
& x \in y=<1>\frown<x>\frown<y>,
\end{align*}
$$

$$
\begin{equation*}
x=y=z=t \text { implies } x=z \& y=t, \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
x \in y=z \epsilon t \text { implies } x=z \& y=t . \tag{7}
\end{equation*}
$$

We now define two new functors. Let us consider p. The functor

$$
\neg p
$$

with values of the type FinSequence of NAT, is defined by

$$
\mathbf{i t}=<2>\frown p .
$$

Let us consider q. The functor

$$
p \wedge q
$$

with values of the type FinSequence of NAT, is defined by

$$
\text { it }=<3>\rho^{\frown} q .
$$

Next we state three propositions:

$$
\begin{gather*}
\neg p=<2>\frown p, \tag{8}\\
p \wedge q=<3>\frown p \frown q, \\
\neg p=\neg q \text { implies } p=q .
\end{gather*}
$$

Let us consider x, p. The functor

$$
\forall(x, p),
$$

yields the type FinSequence of NAT and is defined by

$$
\text { it }=<4>\frown<x>\frown p .
$$

The following propositions are true:

$$
\begin{equation*}
\forall(x, p)=<4>\frown<x>\frown p, \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\forall(x, p)=\forall(y, q) \text { implies } x=y \& p=q . \tag{12}
\end{equation*}
$$

The constant WFF has the type DOMAIN, and is defined by
(for a st $a \in$ it holds a is FinSequence of NAT) \&
(for x, y holds $x=y \in \mathbf{i t} \& x \in y \in \mathbf{i t}) \&($ for p st $p \in \mathbf{i t}$ holds $\neg p \in \mathbf{i t}) \&$
$($ for p, q st $p \in$ it $\& q \in$ it holds $p \wedge q \in \mathbf{i t}) \&($ for x, p st $p \in \mathbf{i t}$ holds $\forall(x, p) \in \mathbf{i t}) \&$ for D st
(for a st $a \in D$ holds a is FinSequence of NAT) \&
(for x, y holds $x=y \in D \& x \in y \in D) \&($ for p st $p \in D$ holds $\neg p \in D)$
$\&($ for p, q st $p \in D \& q \in D$ holds $p \wedge q \in D) \&$ for x, p st $p \in D$ holds $\forall(x, p) \in D$
holds it $\subseteq D$.

One can prove the following proposition
(for a st $a \in$ WFF holds a is FinSequence of NAT) \& (for x, y holds $x=y \in \mathrm{WFF} \& x \in y \in \mathrm{WFF}) \&$
(for p st $p \in \mathrm{WFF}$ holds $\neg p \in \mathrm{WFF}) \&$
(for p, q st $p \in \mathrm{WFF} \& q \in \mathrm{WFF}$ holds $p \wedge q \in \mathrm{WFF}) \&$ (for x, p st $p \in$ WFF holds $\forall(x, p) \in \mathrm{WFF}) \&$ for D st
(for a st $a \in D$ holds a is FinSequence of NAT) \&
(for x, y holds $x=y \in D \& x \in y \in D) \&($ for p st $p \in D$ holds $\neg p \in D) \&$
$($ for p, q st $p \in D \& q \in D$ holds $p \wedge q \in D)$
$\&$ for x, p st $p \in D$ holds $\forall(x, p) \in D$
holds $\mathrm{WFF} \subseteq D$.
The mode
ZF-formula,
which widens to the type FinSequence of NAT, is defined by

We now state two propositions:

$$
\begin{gather*}
a \text { is ZF-formula iff } a \in \mathrm{WFF}, \tag{14}\\
a \text { is ZF-formula iff } a \text { is Element of WFF . } \tag{15}
\end{gather*}
$$

In the sequel $F, F 1, G, G 1, H, H 1$ denote objects of the type ZF-formula. Let us consider x, y. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{aligned}
& x=y \quad \text { is } \quad \text { ZF-formula, } \\
& x \in y \quad \text { is } \quad \text { ZF-formula. }
\end{aligned}
$$

Let us consider H. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\neg H \quad \text { is } \quad \text { ZF-formula } .
$$

Let us consider G. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
H \wedge G \quad \text { is } \quad \text { ZF-formula. }
$$

Let us consider x, H. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\forall(x, H) \quad \text { is } \quad \text { ZF-formula. }
$$

We now define five new predicates. Let us consider H. The predicate

$$
H \text { is_a_equality } \quad \text { is defined by } \quad \text { ex } x, y \text { st } H=x=y \text {. }
$$

The predicate

$$
H \text { is_a_membership } \quad \text { is defined by } \quad \text { ex } x, y \text { st } H=x \in y \text {. }
$$

The predicate

$$
H \text { is_negative } \quad \text { is defined by } \quad \text { ex } H 1 \text { st } H=\neg H 1 \text {. }
$$

The predicate

$$
H \text { is_conjunctive } \quad \text { is defined by } \quad \text { ex } F, G \text { st } H=F \wedge G \text {. }
$$

The predicate

$$
H \text { is_universal } \quad \text { is defined by } \quad \text { ex } x, H 1 \text { st } H=\forall(x, H 1) \text {. }
$$

The following proposition is true

$$
\begin{gather*}
(H \text { is_a_equality iff ex } x, y \text { st } H=x=y) \& \tag{16}\\
(H \text { is_a_membership iff ex } x, y \text { st } H=x \epsilon y) \& \\
(H \text { is_negative iff ex } H 1 \text { st } H=\neg H 1) \& \\
(H \text { is_conjunctive iff ex } F, G \text { st } H=F \wedge G) \\
\&(H \text { is_universal iff ex } x, H 1 \text { st } H=\forall(x, H 1)) .
\end{gather*}
$$

Let us consider H. The predicate
H is_atomic is defined by $\quad H$ is_a_equality or H is_a_membership.
Next we state a proposition
H is_atomic iff H is_a_equality or H is_a_membership .

We now define two new functors. Let us consider F, G. The functor

$$
F \vee G,
$$

yields the type ZF-formula and is defined by

$$
\text { it }=\neg(\neg F \wedge \neg G) .
$$

The functor

$$
F \Rightarrow G
$$

yields the type ZF-formula and is defined by

$$
\text { it }=\neg(F \wedge \neg G) .
$$

The following two propositions are true:

$$
\begin{gather*}
F \vee G=\neg(\neg F \wedge \neg G), \tag{18}\\
F \Rightarrow G=\neg(F \wedge \neg G) .
\end{gather*}
$$

Let us consider F, G. The functor

$$
F \Leftrightarrow G,
$$

yields the type ZF-formula and is defined by

$$
\text { it }=(F \Rightarrow G) \wedge(G \Rightarrow F)
$$

We now state a proposition

$$
\begin{equation*}
F \Leftrightarrow G=(F \Rightarrow G) \wedge(G \Rightarrow F) \tag{20}
\end{equation*}
$$

Let us consider x, H. The functor

$$
\exists(x, H),
$$

yields the type ZF-formula and is defined by

$$
\mathbf{i t}=\neg \forall(x, \neg H) .
$$

The following proposition is true

$$
\begin{equation*}
\exists(x, H)=\neg \forall(x, \neg H) . \tag{21}
\end{equation*}
$$

We now define four new predicates. Let us consider H. The predicate

$$
H \text { is_disjunctive } \quad \text { is defined by } \quad \text { ex } F, G \text { st } H=F \vee G \text {. }
$$

The predicate
H is_conditional is defined by ex F, G st $H=F \Rightarrow G$.
The predicate

$$
H \text { is_biconditional } \quad \text { is defined by } \quad \text { ex } F, G \text { st } H=F \Leftrightarrow G \text {. }
$$

The predicate

$$
H \text { is_existential } \quad \text { is defined by } \quad \text { ex } x, H 1 \text { st } H=\exists(x, H 1) \text {. }
$$

The following proposition is true
$\quad(H$ is_disjunctive iff ex F, G st $H=F \vee G) \&$
$(H$ is_conditional iff ex F, G st $H=F \Rightarrow G) \&$
$(H$ is_biconditional iff ex F, G st $H=F \Leftrightarrow G)$
$\&(H$ is_existential iff ex $x, H 1$ st $H=\exists(x, H 1))$.

We now define two new functors. Let us consider x, y, H. The functor

$$
\forall(x, y, H),
$$

yields the type ZF-formula and is defined by

$$
\mathbf{i t}=\forall(x, \forall(y, H)) .
$$

The functor

$$
\exists(x, y, H),
$$

yields the type ZF-formula and is defined by

$$
\mathbf{i t}=\exists(x, \exists(y, H))
$$

The following proposition is true

$$
\begin{equation*}
\forall(x, y, H)=\forall(x, \forall(y, H)) \& \exists(x, y, H)=\exists(x, \exists(y, H)) . \tag{23}
\end{equation*}
$$

We now define two new functors. Let us consider x, y, z, H. The functor

$$
\forall(x, y, z, H),
$$

with values of the type ZF-formula, is defined by

$$
\mathbf{i t}=\forall(x, \forall(y, z, H)) .
$$

The functor

$$
\exists(x, y, z, H)
$$

with values of the type ZF-formula, is defined by

$$
\mathbf{i t}=\exists(x, \exists(y, z, H)) .
$$

We now state several propositions:

$$
\begin{gather*}
\forall(x, y, z, H)=\forall(x, \forall(y, z, H)) \& \exists(x, y, z, H)=\exists(x, \exists(y, z, H)), \tag{24}\\
H \text { is_a_equality } \tag{25}
\end{gather*}
$$

or H is_a_membership or H is_negative or H is_conjunctive or H is_universal,
H is_atomic or H is_negative or H is_conjunctive or H is_universal,

$$
\begin{equation*}
H \text { is_atomic implies len } H=3, \tag{26}
\end{equation*}
$$

H is_atomic or ex $H 1$ st len $H 1+1 \leq$ len H,

$$
\begin{equation*}
3 \leq \operatorname{len} H, \tag{29}
\end{equation*}
$$

len $H=3$ implies H is_atomic.
One can prove the following propositions:

$$
\begin{equation*}
\text { for } x, y \text { holds }(x=y) \cdot 1=0 \&(x \in y) \cdot 1=1, \tag{31}
\end{equation*}
$$

for H holds $(\neg H) .1=2$,
for F, G holds $(F \wedge G) \cdot 1=3$,
for x, H holds $\forall(x, H) \cdot 1=4$,
H is_a_equality implies $H .1=0$, H is_a_membership implies $H .1=1$,
H is_negative implies $H .1=2$,
H is_conjunctive implies $H .1=3$,
H is_universal implies $H .1=4$,
H is_a_equality $\& H .1=0$ or H is_a_membership \& $H .1=1$ or
H is_negative \& $H .1=2$
or H is_conjunctive \& $H .1=3$ or H is_universal \& $H .1=4$,

$$
\begin{equation*}
H .1=0 \text { implies } H \text { is_a_equality } \tag{41}
\end{equation*}
$$

$H .1=1$ implies H is_a_membership,

$$
\begin{equation*}
H .1=2 \text { implies } H \text { is_negative } \tag{43}
\end{equation*}
$$ $H .1=3$ implies H is_conjunctive, $H .1=4$ implies H is_universal.

In the sequel $s q$ denotes an object of the type FinSequence. We now state several propositions:

$$
\begin{equation*}
H=F \frown s q \text { implies } H=F \tag{46}
\end{equation*}
$$

$$
\begin{equation*}
H \wedge G=H 1 \wedge G 1 \text { implies } H=H 1 \& G=G 1 \tag{47}
\end{equation*}
$$

$$
F \vee G=F 1 \vee G 1 \text { implies } F=F 1 \& G=G 1
$$

$$
\begin{equation*}
F \Rightarrow G=F 1 \Rightarrow G 1 \text { implies } F=F 1 \& G=G 1, \tag{49}
\end{equation*}
$$

$$
\begin{equation*}
F \Leftrightarrow G=F 1 \Leftrightarrow G 1 \text { implies } F=F 1 \& G=G 1, \tag{50}
\end{equation*}
$$

$$
\begin{equation*}
\exists(x, H)=\exists(y, G) \text { implies } x=y \& H=G \tag{51}
\end{equation*}
$$

We now define two new functors. Let us consider H. Assume that the following holds

$$
H \text { is_atomic . }
$$

The functor

$$
\operatorname{Var}_{1} H,
$$

yields the type Variable and is defined by

$$
\mathbf{i t}=H .2
$$

The functor

$$
\operatorname{Var}_{2} H,
$$

yields the type Variable and is defined by

$$
\mathbf{i t}=H .3
$$

One can prove the following three propositions:

$$
\begin{gather*}
H \text { is_atomic implies } \operatorname{Var}_{1} H=H .2 \& \operatorname{Var}_{2} H=H .3, \tag{52}\\
H \text { is_a_equality implies } H=\left(\operatorname{Var}_{1} H\right)=\operatorname{Var}_{2} H, \\
H \text { is_a_membership implies } H=\left(\operatorname{Var}_{1} H\right) \epsilon \operatorname{Var}_{2} H .
\end{gather*}
$$

Let us consider H. Assume that the following holds
H is_negative .

The functor

$$
\text { the_argument_of } H \text {, }
$$

with values of the type ZF-formula, is defined by

$$
\neg \mathbf{i t}=H .
$$

We now state a proposition

$$
\begin{equation*}
H \text { is_negative implies } H=\neg \text { the_argument_of } H \text {. } \tag{55}
\end{equation*}
$$

We now define two new functors. Let us consider H. Assume that the following holds
H is_conjunctive or H is_disjunctive .
The functor

$$
\text { the_left_argument_of } H \text {, }
$$

with values of the type ZF-formula, is defined by
ex $H 1$ st it $\wedge H 1=H$, if $\quad H$ is_conjunctive, ex $H 1$ st it $\vee H 1=H$, otherwise.

The functor
the_right_argument_of H,
with values of the type ZF-formula, is defined by
ex $H 1$ st $H 1 \wedge \mathbf{i t}=H, \quad$ if $\quad H$ is_conjunctive, ex $H 1$ st $H 1 \vee$ it $=H$, otherwise.

One can prove the following propositions:
(56) H is_conjunctive implies ($F=$ the_left_argument_of H iff ex G st $F \wedge G=H$)

$$
\&(F=\text { the_right_argument_of } H \text { iff ex } G \text { st } G \wedge F=H),
$$

(57) H is_disjunctive implies ($F=$ the_left_argument_of H iff ex G st $F \vee G=H$)

$$
\&(F=\text { the_right_argument_of } H \text { iff ex } G \text { st } G \vee F=H),
$$

H is_conjunctive

$$
\begin{equation*}
\text { implies } H=(\text { the_left_argument_of } H) \wedge \text { the_right_argument_of } H, \tag{58}
\end{equation*}
$$

H is_disjunctive
implies $H=($ the_left_argument_of $H) \vee$ the_right_argument_of H.
We now define two new functors. Let us consider H. Assume that the following holds

The functor

$$
\text { bound_in } H \text {, }
$$

with values of the type Variable, is defined by
ex $H 1$ st $\forall($ it,$H 1)=H$, if $\quad H$ is_universal, ex $H 1$ st $\exists($ it,$H 1)=H, \quad$ otherwise.

The functor

$$
\text { the_scope_of } H \text {, }
$$

with values of the type ZF-formula, is defined by
ex x st $\forall(x, \mathbf{i t})=H, \quad$ if $\quad H$ is_universal, ex x st $\exists(x$, it $)=H, \quad$ otherwise.

Next we state four propositions:
(60) $\quad H$ is_universal implies $(x=$ bound_in H iff ex $H 1$ st $\forall(x, H 1)=H)$
$\&(H 1=$ the_scope_of H iff ex x st $\forall(x, H 1)=H)$,
(61) $\quad H$ is_existential implies $(x=$ bound_in H iff ex $H 1$ st $\exists(x, H 1)=H)$
$\&(H 1=$ the_scope_of H iff ex x st $\exists(x, H 1)=H)$,
H is_universal implies $H=\forall$ (bound_in H,the_scope_of H), H is_existential implies $H=\exists$ (bound_in H,the_scope_of H).

We now define two new functors. Let us consider H. Assume that the following holds

$$
H \text { is_conditional. }
$$

The functor

$$
\text { the_antecedent_of } H \text {, }
$$

with values of the type ZF-formula, is defined by

$$
\text { ex } H 1 \text { st } H=\mathbf{i t} \Rightarrow H 1
$$

The functor

$$
\text { the_consequent_of } H \text {, }
$$

with values of the type ZF-formula, is defined by

$$
\text { ex } H 1 \text { st } H=H 1 \Rightarrow \text { it. }
$$

The following propositions are true:
(64) H is_conditional implies ($F=$ the_antecedent_of H iff ex G st $H=F \Rightarrow G$)

$$
\&(F=\text { the_consequent_of } H \text { iff ex } G \text { st } H=G \Rightarrow F),
$$

(65) H is_conditional implies $H=$ (the_antecedent_of $H) \Rightarrow$ the_consequent_of H.

We now define two new functors. Let us consider H. Assume that the following holds

$$
H \text { is_biconditional. }
$$

The functor

$$
\text { the_left_side_of } H \text {, }
$$

yields the type ZF-formula and is defined by

$$
\text { ex } H 1 \text { st } H=\mathbf{i t} \Leftrightarrow H 1 \text {. }
$$

The functor

$$
\text { the_right_side_of } H \text {, }
$$

with values of the type ZF-formula, is defined by

$$
\text { ex } H 1 \text { st } H=H 1 \Leftrightarrow \text { it. }
$$

We now state two propositions:
(66) H is_biconditional implies ($F=$ the_left_side_of H iff ex G st $H=F \Leftrightarrow G$)

$$
\&(F=\text { the_right_side_of } H \text { iff ex } G \text { st } H=G \Leftrightarrow F),
$$

(67) $\quad H$ is_biconditional implies $H=$ (the_left_side_of $H) \Leftrightarrow$ the_right_side_of H.

Let us consider H, F. The predicate

$$
H \text { is_immediate_constituent_of } F
$$

is defined by

$$
F=\neg H \text { or }(\text { ex } H 1 \text { st } F=H \wedge H 1 \text { or } F=H 1 \wedge H) \text { or ex } x \text { st } F=\forall(x, H)
$$

We now state a number of propositions:
H is_immediate_constituent_of F iff

$$
\begin{equation*}
F=\neg H \text { or }(\text { ex } H 1 \text { st } F=H \wedge H 1 \text { or } F=H 1 \wedge H) \text { or ex } x \text { st } F=\forall(x, H) \tag{68}
\end{equation*}
$$ $\operatorname{not} H$ is_immediate_constituent_of $x=y$,

F is_immediate_constituent_of $\forall(x, H)$ iff $F=H$,
H is_atomic implies not F is_immediate_constituent_of H,
H is_negative
implies $(F$ is_immediate_constituent_of H iff $F=$ the_argument_of $H)$,
H is_conjunctive implies (F is_immediate_constituent_of H iff $F=$ the_left_argument_of H or $F=$ the_right_argument_of H),
H is_universal
implies (F is_immediate_constituent_of H iff $F=$ the_scope_of H).
In the sequel L will denote an object of the type FinSequence. Let us consider H, F. The predicate

$$
H \text { is_subformula_of } F
$$

is defined by
ex n, L st $1 \leq n \&$ len $L=n \& L .1=H \& L . n=F \&$ for k st $1 \leq k \& k<n$ ex $H 1, F 1$ st $L . k=H 1 \& L .(k+1)=F 1 \& H 1$ is_immediate_constituent_of $F 1$.

Next we state two propositions:
(78) H is_subformula_of F iff ex n, L st $1 \leq n \& \operatorname{len} L=n \& L .1=H \& L . n=F \&$
for k st $1 \leq k \& k<n$ ex $H 1, F 1$
st $L . k=H 1 \& L .(k+1)=F 1 \& H 1$ is_immediate_constituent_of $F 1$,
(79)
H is_subformula_of H.
Let us consider H, F. The predicate
H is_proper_subformula_of $F \quad$ is defined by $\quad H$ is_subformula_of $F \& H \neq F$.
We now state several propositions:

$$
\begin{equation*}
H \text { is_proper_subformula_of } F \text { iff } H \text { is_subformula_of } F \& H \neq F \tag{80}
\end{equation*}
$$

H is_immediate_constituent_of F implies len $H<\operatorname{len} F$,
(82) $\quad H$ is_immediate_constituent_of F implies H is_proper_subformula_of F,

$$
\begin{equation*}
H \text { is_proper_subformula_of } F \text { implies len } H<\text { len } F, \tag{83}
\end{equation*}
$$

H is_proper_subformula_of F
implies ex G st G is_immediate_constituent_of F.
The following propositions are true:
F is_proper_subformula_of $G \& G$ is_proper_subformula_of H
implies F is_proper_subformula_of H,
(86) F is_subformula_of $G \& G$ is_subformula_of H implies F is_subformula_of H,
(90) $\quad F$ is_proper_subformula_of $\neg H$ implies F is_subformula_of H,
F is_proper_subformula_of $G \wedge H$
implies F is_subformula_of G or F is_subformula_of H,
(92) $\quad F$ is_proper_subformula_of $\forall(x, H)$ implies F is_subformula_of H,
H is_atomic implies not F is_proper_subformula_of H,
(94) H is_negative implies the_argument_of H is_proper_subformula_of H,
(95) H is_conjunctive implies the_left_argument_of H is_proper_subformula_of H
\& the_right_argument_of H is_proper_subformula_of H,
H is_universal implies the_scope_of H is_proper_subformula_of H,
H is_subformula_of $x=y$ iff $H=x=y$, H is_subformula_of $x \in y$ iff $H=x \in y$.

Let us consider H. The functor
Subformulae H,
yields the type set and is defined by

$$
a \in \text { it iff ex } F \text { st } F=a \& F \text { is_subformula_of } H \text {. }
$$

We now state a number of propositions:
$a \in$ Subformulae H iff ex F st $F=a \& F$ is_subformula_of H,
$G \in$ Subformulae H implies G is_subformula_of H,

Subformulae $x=y=\{x=y\}$,
Subformulae $x \in y=\{x \in y\}$,
Subformulae $\neg H=$ Subformulae $H \cup\{\neg H\}$,

$$
\begin{gather*}
\text { Subformulae }(H \wedge F)=\text { Subformulae } H \cup \text { Subformulae } F \cup\{H \wedge F\}, \tag{105}\\
\text { Subformulae } \forall(x, H)=\text { Subformulae } H \cup\{\forall(x, H)\}, \\
H \text { is_atomic iff Subformulae } H=\{H\}, \\
H \text { is_negative } \\
\text { implies Subformulae } H=\text { Subformulae the_argument_of } H \cup\{H\}, \\
H \text { is_conjunctive implies Subformulae } H=\text { Subformulae } \\
\text { the_left_argument_of } H \cup \text { Subformulae the_right_argument_of } H \cup\{H\} \text {, } \\
H \text { is_universal implies Subformulae } H=\text { Subformulae the_scope_of } H \cup\{H\}, \tag{110}\\
(H \text { is_immediate_constituent_of } G \tag{111}\\
\text { or } H \text { is_proper_subformula_of } G \text { or } H \text { is_subformula_of } G) \\
\& ~ G \in \text { Subformulae } F \\
\text { implies } H \in \text { Subformulae } F .
\end{gather*}
$$

In the article we present several logical schemes. The scheme $Z F_{-}$Ind deals with a unary predicate \mathcal{P} states that the following holds

for H holds $\mathcal{P}[H]$

provided the parameter satisfies the following conditions:

- for H st H is_atomic holds $\mathcal{P}[H]$,
- for H st H is_negative $\& \mathcal{P}[$ the_argument_of $H]$ holds $\mathcal{P}[H]$,
- for H st
H is_conjunctive $\& \mathcal{P}[$ the_left_argument_of $H] \& \mathcal{P}[$ the_right_argument_of $H]$
holds $\mathcal{P}[H]$,
- for H st H is_universal \& $\mathcal{P}[$ the_scope_of $H]$ holds $\mathcal{P}[H]$.

The scheme ZF_CompInd deals with a unary predicate \mathcal{P} states that the following holds

$$
\text { for } H \text { holds } \mathcal{P}[H]
$$

provided the parameter satisfies the following condition:

- for H st for F st F is_proper_subformula_of H holds $\mathcal{P}[F]$ holds $\mathcal{P}[H]$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[6] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

[^0]: ${ }^{1}$ Supported by RPBP III. 24 C 1.

