A Model of ZF Set Theory Language

Grzegorz Bancerek¹ Warsaw University Białystok

Summary. The goal of this article is to construct a language of the ZF set theory and to develop a notational and conceptual base which facilitates a convenient usage of the language.

The articles [5], [6], [3], [4], [1], and [2] provide the terminology and notation for this paper. For simplicity we adopt the following convention: k, n will have the type Nat; D will have the type DOMAIN; a will have the type Any; p, q will have the type FinSequence of NAT. The constant VAR has the type SUBDOMAIN of NAT, and is defined by

$$it = \{k : 5 \le k\}.$$

The following proposition is true

(1)
$$VAR = \{ k : 5 \le k \}$$

Variable stands for Element of VAR.

One can prove the following proposition

(2)
$$a$$
 is Variable iff a is Element of VAR.

Let us consider n. The functor

 ξn ,

with values of the type Variable, is defined by

$$\mathbf{it} = 5 + n.$$

One can prove the following proposition

(3)

$$\xi n = 5 + n$$

¹Supported by RPBP III.24 C1.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

GRZEGORZ BANCEREK

In the sequel x, y, z, t denote objects of the type Variable. Let us consider x. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$\langle x \rangle$$
 is FinSequence of NAT.

We now define two new functors. Let us consider x, y. The functor

$$x$$
 = y ,

with values of the type FinSequence of NAT, is defined by

$$\mathbf{it} = \langle 0 \rangle \frown \langle x \rangle \frown \langle y \rangle.$$

The functor

$$x \in y$$
,

yields the type FinSequence of NAT and is defined by

$$\mathbf{it} = <1> \frown \frown .$$

Next we state four propositions:

$$(4) x = y = \langle 0 \rangle \land \langle x \rangle \land \langle y \rangle,$$

(5) $x \epsilon y = \langle 1 \rangle ^{\frown} \langle x \rangle ^{\frown} \langle y \rangle,$

(6)
$$x = y = z = t \text{ implies } x = z \& y = t,$$

(7)
$$x \epsilon y = z \epsilon t$$
 implies $x = z \& y = t$.

We now define two new functors. Let us consider p. The functor

$$\neg p$$
,

with values of the type FinSequence of NAT, is defined by

$$\mathbf{it} = \langle 2 \rangle \frown p.$$

Let us consider q. The functor

$$p \wedge q$$
,

with values of the type FinSequence of NAT, is defined by

$$\mathbf{it} = <3> \frown p \frown q.$$

Next we state three propositions:

(8)
$$\neg p = \langle 2 \rangle \frown p,$$

$$(9) p \wedge q = \langle 3 \rangle ^{\frown} p ^{\frown} q,$$

(10)
$$\neg p = \neg q \text{ implies } p = q.$$

Let us consider x, p. The functor

 $\forall (x, p),$

yields the type FinSequence of NAT and is defined by

$$\mathbf{it} = <4> \frown \frown p.$$

The following propositions are true:

(11)
$$\forall (x,p) = \langle 4 \rangle ^{\frown} \langle x \rangle ^{\frown} p,$$

(12)
$$\forall (x,p) = \forall (y,q) \text{ implies } x = y \& p = q.$$

The constant WFF has the type DOMAIN, and is defined by

(for a st $a \in it$ holds a is FinSequence of NAT) &

(for
$$x, y$$
 holds $x = y \in it \& x \in y \in it$) & (for p st $p \in it$ holds $\neg p \in it$) &

 $(\mathbf{for}\, p, q \mathbf{st}\, p \in \mathbf{it} \& q \in \mathbf{it} \mathbf{holds}\, p \land q \in \mathbf{it}) \& (\mathbf{for}\, x, p \mathbf{st}\, p \in \mathbf{it} \mathbf{holds} \, \forall \, (x, p) \in \mathbf{it}) \&$

 $\mathbf{for}\,D\,\mathbf{st}$

(for a st $a \in D$ holds a is FinSequence of NAT) &

$$(\mathbf{for}\ x, y\ \mathbf{holds}\ x = y \in D \ \&\ x \in y \in D) \ \&\ (\mathbf{for}\ p\ \mathbf{st}\ p \in D\ \mathbf{holds}\ \neg\ p \in D)$$

&
$$(\mathbf{for}\ p, q\ \mathbf{st}\ p \in D \ \&\ q \in D\ \mathbf{holds}\ p \land q \in D) \ \&\ \mathbf{for}\ x, p\ \mathbf{st}\ p \in D\ \mathbf{holds}\ \forall\ (x, p) \in D$$

$$\mathbf{holds}\ \mathbf{it} \subseteq D.$$

One can prove the following proposition

(13) (for
$$a$$
 st $a \in$ WFF holds a is FinSequence of NAT) &
(for x, y holds $x = y \in$ WFF & $x \in y \in$ WFF) &
(for p st $p \in$ WFF holds $\neg p \in$ WFF) &
(for p, q st $p \in$ WFF & $q \in$ WFF holds $p \land q \in$ WFF) &
(for x, p st $p \in$ WFF holds $\forall (x, p) \in$ WFF) & for D st
(for a st $a \in D$ holds a is FinSequence of NAT) &
(for x, y holds $x = y \in D$ & $x \in y \in D$) & (for p st $p \in D$ holds $\neg p \in D$) &
(for p, q st $p \in D$ & $q \in D$ holds $p \land q \in D$)
& (for x, p st $p \in D$ holds $\forall (x, p) \in D$
holds WFF $\subseteq D$.

The mode

 $\operatorname{ZF-formula}$,

which widens to the type FinSequence of NAT, is defined by

it is Element of WFF.

GRZEGORZ BANCEREK

We now state two propositions:

(14)
$$a ext{ is ZF-formula iff } a \in WFF,$$

(15)
$$a$$
 is ZF-formula iff a is Element of WFF.

In the sequel F, F1, G, G1, H, H1 denote objects of the type ZF-formula. Let us consider x, y. Let us note that it makes sense to consider the following functors on restricted areas. Then

> x = y is ZF-formula, $x \in y$ is ZF-formula.

Let us consider H. Let us note that it makes sense to consider the following functor on a restricted area. Then

 $\neg H$ is ZF-formula.

Let us consider G. Let us note that it makes sense to consider the following functor on a restricted area. Then

 $H \wedge G$ is ZF-formula.

Let us consider x, H. Let us note that it makes sense to consider the following functor on a restricted area. Then

 $\forall (x, H)$ is ZF-formula.

We now define five new predicates. Let us consider H. The predicate

H is_a_equality is defined by
$$ex x, y st H = x = y$$
.

The predicate

H is_a_membership is defined by
$$ex x, y st H = x \epsilon y$$
.

The predicate

H is_negative is defined by $ex H1 st H = \neg H1$.

The predicate

H is_conjunctive is defined by
$$\mathbf{ex} F, G \mathbf{st} H = F \wedge G$$
.

The predicate

$$H$$
 is universal is defined by $\mathbf{ex} x, H1$ $\mathbf{st} H = \forall (x, H1).$

The following proposition is true

(16)
$$(H \text{ is_a_equality iff } \mathbf{ex} x, y \text{ st } H = x = y) \&$$
$$(H \text{ is_a_membership iff } \mathbf{ex} x, y \text{ st } H = x \notin y) \&$$
$$(H \text{ is_negative iff } \mathbf{ex} H1 \text{ st } H = \neg H1) \&$$
$$(H \text{ is_conjunctive iff } \mathbf{ex} F, G \text{ st } H = F \land G)$$
$$\& (H \text{ is_universal iff } \mathbf{ex} x, H1 \text{ st } H = \forall (x, H1)).$$

Let us consider H. The predicate

H is_atomic is defined by H is_a_equality or H is_a_membership.

Next we state a proposition

(17) H is_atomic **iff** H is_a_equality **or** H is_a_membership.

We now define two new functors. Let us consider F, G. The functor

 $F \lor G$,

yields the type ZF-formula and is defined by

$$\mathbf{it} = \neg \, (\neg \, F \land \neg \, G).$$

The functor

 $F \Rightarrow G$,

yields the type ZF-formula and is defined by

$$\mathbf{it} = \neg \left(F \land \neg G \right).$$

The following two propositions are true:

(18)
$$F \lor G = \neg (\neg F \land \neg G),$$

(19)
$$F \Rightarrow G = \neg (F \land \neg G).$$

Let us consider F, G. The functor

 $F \Leftrightarrow G$,

yields the type ZF-formula and is defined by

$$\mathbf{it} = (F \Rightarrow G) \land (G \Rightarrow F).$$

We now state a proposition

(20)
$$F \Leftrightarrow G = (F \Rightarrow G) \land (G \Rightarrow F).$$

Let us consider x, H. The functor

$$\exists (x, H),$$

yields the type ZF-formula and is defined by

$$\mathbf{it} = \neg \,\forall \, (x, \neg \, H).$$

The following proposition is true

(21)
$$\exists (x,H) = \neg \forall (x,\neg H).$$

We now define four new predicates. Let us consider H. The predicate

$$H \, \text{is_disjunctive} \qquad \text{is defined by} \qquad \mathbf{ex} \, F, G \, \mathbf{st} \, H = F \lor G.$$
 The predicate

$$H \text{ is_conditional} \quad \text{ is defined by} \quad \mathbf{ex} \ F, G \ \mathbf{st} \ H = F \Rightarrow G.$$
 The predicate

H is_biconditional is defined by $\mathbf{ex} F, G \mathbf{st} H = F \Leftrightarrow G$.

The predicate

H is existential is defined by
$$\mathbf{ex} x, H1$$
 st $H = \exists (x, H1).$

The following proposition is true

(22)
$$(H \text{ is_disjunctive iff } \mathbf{ex} \ F, G \text{ st } H = F \lor G) \&$$
$$(H \text{ is_conditional iff } \mathbf{ex} \ F, G \text{ st } H = F \Rightarrow G) \&$$
$$(H \text{ is_biconditional iff } \mathbf{ex} \ F, G \text{ st } H = F \Leftrightarrow G)$$
$$\& (H \text{ is_existential iff } \mathbf{ex} \ x, H1 \text{ st } H = \exists (x, H1)).$$

We now define two new functors. Let us consider x, y, H. The functor

$$\forall (x, y, H),$$

yields the type ZF-formula and is defined by

$$\mathbf{it} = \forall \, (x, \forall \, (y, H)).$$

The functor

$$\exists (x, y, H),$$

yields the type ZF-formula and is defined by

$$\mathbf{it} = \exists \, (x, \exists \, (y, H)).$$

The following proposition is true

$$(23) \qquad \forall (x, y, H) = \forall (x, \forall (y, H)) \& \exists (x, y, H) = \exists (x, \exists (y, H)).$$

We now define two new functors. Let us consider x, y, z, H. The functor

$$\forall (x, y, z, H),$$

with values of the type ZF-formula, is defined by

$$\mathbf{it} = \forall \, (x, \forall \, (y, z, H)).$$

The functor

$$\exists (x, y, z, H),$$

with values of the type ZF-formula, is defined by

$$\mathbf{it} = \exists \, (x, \exists \, (y, z, H)).$$

We now state several propositions:

(24)
$$\forall (x, y, z, H) = \forall (x, \forall (y, z, H)) \& \exists (x, y, z, H) = \exists (x, \exists (y, z, H)),$$

or H is_a_membership or H is_negative or H is_conjunctive or H is_universal,

- (26) H is_atomic or H is_negative or H is_conjunctive or H is_universal,
- (27) H is_atomic implies len H = 3,
- (28) H is_atomic or ex H1 st len $H1 + 1 \le \text{len } H$,

(30)
$$\operatorname{len} H = 3 \text{ implies } H \operatorname{is_atomic}$$

One can prove the following propositions:

(31)	for x, y holds $(x = y) \cdot 1 = 0 \& (x \in y) \cdot 1 = 1$,	
(32)	for H holds $(\neg H) \cdot 1 = 2$,	
(33)	for F, G holds $(F \land G) \cdot 1 = 3$,	
(34)	for x, H holds $\forall (x, H).1 = 4$,	
(35)	H is_a_equality implies $H.1 = 0$,	
(36)	H is_a_membership implies $H.1 = 1$,	
(37)	H is_negative implies $H.1 = 2$,	
(38)	H is_conjunctive implies $H.1 = 3$,	
(39)	H is_universal implies $H.1 = 4$,	
(40)		

(40)
$$H$$
 is_a_equality & $H.1 = 0$ or H is_a_membership & $H.1 = 1$ or
 H is_negative & $H.1 = 2$

or
$$H$$
 is_conjunctive & $H.1 = 3$ or H is_universal & $H.1 = 4$,

(41)
$$H.1 = 0$$
 implies H is_a_equality,

(42) H.1 = 1 implies H is_a_membership,

Grzegorz Bancerek

(43)
$$H.1 = 2$$
 implies H is_negative,

- (44) H.1 = 3 implies H is_conjunctive,
- (45) H.1 = 4 implies H is_universal.

In the sequel sq denotes an object of the type FinSequence. We now state several propositions:

(46) $H = F \cap sq \text{ implies } H = F,$

(47)
$$H \wedge G = H1 \wedge G1 \text{ implies } H = H1 \& G = G1,$$

(48)
$$F \lor G = F1 \lor G1 \text{ implies } F = F1 \& G = G1,$$

(49)
$$F \Rightarrow G = F1 \Rightarrow G1 \text{ implies } F = F1 \& G = G1,$$

(50)
$$F \Leftrightarrow G = F1 \Leftrightarrow G1 \text{ implies } F = F1 \& G = G1,$$

(51)
$$\exists (x,H) = \exists (y,G) \text{ implies } x = y \& H = G.$$

We now define two new functors. Let us consider H. Assume that the following holds

H is atomic .

The functor

 $\operatorname{Var}_1 H$,

yields the type Variable and is defined by

$$\mathbf{it} = H.2.$$

The functor

 $\operatorname{Var}_2 H$,

yields the type Variable and is defined by

 $\mathbf{it} = H.3.$

One can prove the following three propositions:

(52)
$$H$$
 is atomic implies $\operatorname{Var}_1 H = H.2 \& \operatorname{Var}_2 H = H.3$,

(53)
$$H$$
 is_a_equality implies $H = (\operatorname{Var}_1 H) = \operatorname{Var}_2 H$,

(54) H is_a_membership **implies** $H = (\operatorname{Var}_1 H) \epsilon \operatorname{Var}_2 H.$

Let us consider H. Assume that the following holds

H is_negative.

The functor

the argument of H,

with values of the type ZF-formula, is defined by

$$\neg$$
 it = H.

We now state a proposition

(55) H is negative implies $H = \neg$ the argument of H.

We now define two new functors. Let us consider H. Assume that the following holds

 $H \operatorname{is_conjunctive} \mathbf{or} \; H \operatorname{is_disjunctive}.$

The functor

the left_argument_of H,

with values of the type ZF-formula, is defined by

 $\begin{array}{ll} \mathbf{ex}\,H\mathbf{1}\,\mathbf{st}\,\mathbf{it}\wedge H\mathbf{1}=H, & \mathbf{if} & H\,\mathrm{is_conjunctive}\,,\\ \mathbf{ex}\,H\mathbf{1}\,\mathbf{st}\,\mathbf{it}\vee H\mathbf{1}=H, & \mathbf{otherwise}. \end{array}$

The functor

the right argument of H,

with values of the type ZF-formula, is defined by

ex H1 st $H1 \land it = H$, if H is_conjunctive, ex H1 st $H1 \lor it = H$, otherwise.

One can prove the following propositions:

- (56) *H* is_conjunctive **implies** (*F* = the_left_argument_of *H* **iff ex** *G* **st** *F* \land *G* = *H*) & (*F* = the_right_argument_of *H* **iff ex** *G* **st** *G* \land *F* = *H*),
- (57) *H* is_disjunctive implies ($F = \text{the_left_argument_of } H$ iff ex G st $F \lor G = H$) & ($F = \text{the_right_argument_of } H$ iff ex G st $G \lor F = H$),

(58) *H* is_conjunctive

implies $H = (\text{the_left_argument_of } H) \land \text{the_right_argument_of } H$,

(59)

H is_disjunctive

```
implies H = (\text{the\_left\_argument\_of } H) \lor \text{the\_right\_argument\_of } H.
```

We now define two new functors. Let us consider H. Assume that the following holds

H is_universal or H is_existential.

The functor

bound_in H,

with values of the type Variable, is defined by

ex H1 st \forall (it H1) = H, if H is_universal, ex H1 st \exists (it H1) = H, otherwise.

The functor

the_scope_of H,

with values of the type ZF-formula, is defined by

ex x st $\forall (x, it) = H$, if H is_universal, ex x st $\exists (x, it) = H$, otherwise.

Next we state four propositions:

(60)
$$H$$
 is_universal **implies** $(x = \text{bound_in } H$ **iff ex** $H1$ **st** $\forall (x, H1) = H)$
& $(H1 = \text{the_scope_of } H$ **iff ex** x **st** $\forall (x, H1) = H)$,

(61)
$$H$$
 is_existential implies $(x = \text{bound_in } H \text{ iff } ex H1 \text{ st } \exists (x, H1) = H)$
& $(H1 = \text{the_scope_of } H \text{ iff } ex x \text{ st } \exists (x, H1) = H),$

(62)
$$H$$
 is_universal implies $H = \forall$ (bound_in H , the_scope_of H),

(63)
$$H$$
 is_existential **implies** $H = \exists$ (bound_in H , the_scope_of H)

We now define two new functors. Let us consider H. Assume that the following holds

H is conditional.

The functor

the_antecedent_of H,

with values of the type ZF-formula, is defined by

$$\mathbf{ex} H1 \mathbf{st} H = \mathbf{it} \Rightarrow H1.$$

The functor

the consequent of H,

with values of the type ZF-formula, is defined by

$$\mathbf{ex} H1 \mathbf{st} H = H1 \Rightarrow \mathbf{it}$$
.

The following propositions are true:

(64)
$$H$$
 is_conditional implies (F = the_antecedent_of H iff ex G st $H = F \Rightarrow G$)
& (F = the_consequent_of H iff ex G st $H = G \Rightarrow F$),

(65) H is conditional implies $H = (\text{the antecedent of } H) \Rightarrow \text{the consequent of } H$.

We now define two new functors. Let us consider H. Assume that the following holds

 $H \operatorname{is_biconditional}$.

The functor

the left_side_of H,

yields the type ZF-formula and is defined by

 $\mathbf{ex} H1 \mathbf{st} H = \mathbf{it} \Leftrightarrow H1.$

The functor

the right side of H,

with values of the type ZF-formula, is defined by

$$\mathbf{ex} H1 \mathbf{st} H = H1 \Leftrightarrow \mathbf{it}$$
.

We now state two propositions:

(66)
$$H$$
 is biconditional **implies** $(F = \text{the left side of } H \text{ iff } \mathbf{ex} G \text{ st } H = F \Leftrightarrow G)$
& $(F = \text{the right side of } H \text{ iff } \mathbf{ex} G \text{ st } H = G \Leftrightarrow F),$

(67) H is biconditional implies $H = (\text{the_left_side_of } H) \Leftrightarrow \text{the_right_side_of } H.$

Let us consider H, F. The predicate

H is_immediate_constituent_of F

is defined by

$$F = \neg H$$
 or $(\mathbf{ex} H1 \mathbf{st} F = H \land H1$ or $F = H1 \land H)$ or $\mathbf{ex} x \mathbf{st} F = \forall (x, H)$.

We now state a number of propositions:

(68) H is immediate constituent of F iff

 $F = \neg H \text{ or } (\mathbf{ex} H1 \text{ st } F = H \land H1 \text{ or } F = H1 \land H) \text{ or } \mathbf{ex} x \text{ st } F = \forall (x, H),$

(69) **not**
$$H$$
 is_immediate_constituent_of $x = y$,

(70) **not**
$$H$$
 is immediate constituent of $x \in y$,

- (71) F is immediate constituent of $\neg H$ iff F = H,
- (72) F is immediate constituent of $G \wedge H$ iff F = G or F = H,
- (73) F is_immediate_constituent_of $\forall (x, H)$ iff F = H,

GRZEGORZ BANCEREK

(74) H is atomic **implies not** F is immediate constituent of H,

(75)
$$H$$
 is_negative

implies (F is_immediate_constituent_of H iff $F = \text{the_argument_of } H$),

(76)
$$H$$
 is_conjunctive implies (F is_immediate_constituent_of H
iff F = the_left_argument_of H or F = the_right_argument_of H),

(77)
$$H$$
 is_universal

implies (F is_immediate_constituent_of H **iff** F = the_scope_of H).

In the sequel L will denote an object of the type FinSequence. Let us consider H, F. The predicate

H is subformula_of F

is defined by

$$\begin{aligned} & \mathbf{ex} \ n, L \ \mathbf{st} \ 1 \leq n \ \& \ \ln L = n \ \& \ L.1 = H \ \& \ L.n = F \ \& \ \mathbf{for} \ k \ \mathbf{st} \ 1 \leq k \ \& \ k < n \\ & \mathbf{ex} \ H1, F1 \ \mathbf{st} \ L.k = H1 \ \& \ L.(k+1) = F1 \ \& \ H1 \ \text{is_immediate_constituent_of} \ F1 \end{aligned}$$

Next we state two propositions:

(78)
$$H$$
 is_subformula_of F iff ex n, L st $1 \le n$ & len $L = n$ & $L.1 = H$ & $L.n = F$ &
for k st $1 \le k$ & $k < n$ ex $H1, F1$

st L.k = H1 & L.(k+1) = F1 & H1 is_immediate_constituent_of F1,

(79)
$$H$$
 is_subformula_of H .

Let us consider H, F. The predicate

H is proper subformula of *F* is defined by *H* is subformula of *F* & $H \neq F$.

We now state several propositions:

(80)
$$H$$
 is_proper_subformula_of F iff H is_subformula_of $F \& H \neq F$,

(81)
$$H$$
 is immediate constituent of F implies $\ln H < \ln F$

(82) H is immediate constituent of F implies H is proper subformula of F,

(83)
$$H \text{ is_proper_subformula_of } F \text{ implies } \text{len } H < \text{len } F,$$

(84)
$$H$$
 is_proper_subformula_of F

implies $\operatorname{ex} G$ st G is_immediate_constituent_of F.

The following propositions are true:

(85)
$$F$$
 is_proper_subformula_of $G \& G$ is_proper_subformula_of H
implies F is_proper_subformula_of H ,

(86)	F is_subformula_of $G \& G$ is_subformula_of H implies F is_subformula_of H ,		
(87)	G is_subformula_of $H \& H$ is_subformula_of G implies $G = H$,		
(88)	not F is_proper_subformula_of $x = y$,		
(89)	not F is_proper_subformula_of $x \in y$,		
(90)	F is_proper_subformula_of $\neg H$ implies F is_subformula_of H ,		
(91)	F is_proper_subformula_of $G \wedge H$		
	implies F is_subformula_of G or F is_subformula_of H ,		
(92)	F is_proper_subformula_of $\forall (x, H)$ implies F is_subformula_of H ,		
(93)	H is_atomic implies not F is_proper_subformula_of H ,		
(94)	H is negative implies the argument of H is proper subformula of H ,		
(95)	H is_conjunctive $\mathbf{implies}$ the_left_argument_of H is_proper_subformula_of H		
	& the right argument of H is proper subformula of $H,$		
(96)	H is _universal $\mathbf{implies}$ the_scope_of H is _proper_subformula_of $H,$		
(97)	H is_subformula_of $x = y$ iff $H = x = y$,		
(98)	H is_subformula_of $x \epsilon y$ iff $H = x \epsilon y$.		

Let us consider H. The functor

Subformulae H,

yields the type set and is defined by

 $a \in \mathbf{it} \ \mathbf{iff} \ \mathbf{ex} \ F \ \mathbf{st} \ F = a \ \& \ F \ \mathbf{is_subformula_of} \ H.$

We now state a number of propositions:

(99)
$$a \in \text{Subformulae } H \text{ iff ex } F \text{ st } F = a \& F \text{ is_subformula_of } H,$$

(100)
$$G \in \text{Subformulae } H \text{ implies } G \text{ is_subformula_of } H,$$

(101)
$$F$$
 is_subformula_of H implies Subformulae $F \subseteq$ Subformulae H ,

(102) Subformulae
$$x = y = \{x = y\},\$$

(103) Subformulae
$$x \epsilon y = \{x \epsilon y\},\$$

(104) Subformulae $\neg H =$ Subformulae $H \cup \{\neg H\},$

Grzegorz 1	Bancerek
------------	----------

```
(105) Subformulae (H \wedge F) = Subformulae H \cup Subformulae F \cup \{H \wedge F\},
```

(106) Subformulae
$$\forall (x, H) =$$
Subformulae $H \cup \{\forall (x, H)\},\$

(107) H is_atomic **iff** Subformulae $H = \{H\},\$

(108)
$$H$$
 is_negative

implies Subformulae
$$H$$
 = Subformulae the_argument_of $H \cup \{H\}$,

(109)
$$H$$
 is_conjunctive **implies** Subformulae $H =$ Subformulae
the_left_argument_of $H \cup$ Subformulae the_right_argument_of $H \cup \{H\}$,

(110) H is universal **implies** Subformulae H = Subformulae the scope of $H \cup \{H\}$,

(111) $(H \text{ is_immediate_constituent_of } G$

or H is_proper_subformula_of G or H is_subformula_of G)

&
$$G \in \text{Subformulae} F$$

implies $H \in \text{Subformulae } F$.

In the article we present several logical schemes. The scheme ZF_Ind deals with a unary predicate \mathcal{P} states that the following holds

for *H* holds $\mathcal{P}[H]$

provided the parameter satisfies the following conditions:

- for H st H is_atomic holds $\mathcal{P}[H]$,
- for H st H is_negative & \mathcal{P} [the_argument_of H] holds $\mathcal{P}[H]$,
- for H st H is_conjunctive & $\mathcal{P}[\text{the_left_argument_of }H] \& \mathcal{P}[\text{the_right_argument_of }H]$ holds $\mathcal{P}[H]$,

• for H st H is universal & $\mathcal{P}[\text{the scope_of } H]$ holds $\mathcal{P}[H]$.

The scheme $ZF_CompInd$ deals with a unary predicate $\mathcal P$ states that the following holds

for H holds $\mathcal{P}[H]$

provided the parameter satisfies the following condition:

• for H st for F st F is_proper_subformula_of H holds $\mathcal{P}[F]$ holds $\mathcal{P}[H]$.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1, 1990.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
- [6] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received April 4, 1989