The Contraction Lemma

Grzegorz Bancerek¹ Warsaw University Białystok

Summary. The article includes the proof of the contraction lemma which claims that every class in which the axiom of extensionality is valid is isomorphic with a transitive class. In this article the isomorphism (wrt membership relation) of two sets is defined. It is based on [6].

The articles [7], [8], [4], [1], [5], [3], and [2] provide the terminology and notation for this paper. For simplicity we adopt the following convention: X, Y, Z denote objects of the type set; x, y denote objects of the type Any; E denotes an object of the type SET_DOMAIN; A, B, C denote objects of the type Ordinal; L denotes an object of the type Transfinite-Sequence; f denotes an object of the type Function; d, d1, d' denote objects of the type Element of E. Let us consider E, A. The functor

 $M_{\mu}(E, A),$

with values of the type set, is defined by

$$\mathbf{ex} L \mathbf{st} \mathbf{it} = \{ d : \mathbf{for} \, d1 \mathbf{st} \, d1 \in d \mathbf{ex} B \mathbf{st} B \in \mathrm{dom} L \& d1 \in \bigcup \{L.B\} \} \& \mathrm{dom} L = A \& \mathbf{for} B \mathbf{st} B \in A$$

holds $L.B = \{ d1 : \text{for } d \text{ st } d \in d1 \text{ ex } C \text{ st } C \in \text{dom} (L | B) \& d \in \bigcup \{L | B.C\} \}.$

One can prove the following propositions:

(1) $M_{\mu}(E, A) = \{ d : \text{for } d1 \text{ st } d1 \in d \text{ ex } B \text{ st } B \in A \& d1 \in M_{\mu}(E, B) \},\$

(2)
$$\operatorname{\mathbf{not}}(\operatorname{\mathbf{ex}} d1 \operatorname{\mathbf{st}} d1 \in d) \operatorname{\mathbf{iff}} d \in \mathrm{M}_{\mu}(E, \mathbf{0}),$$

(3)
$$d \cap E \subseteq \mathcal{M}_{\mu}(E, A) \text{ iff } d \in \mathcal{M}_{\mu}(E, \operatorname{succ} A),$$

(4)
$$A \subseteq B \text{ implies } M_{\mu}(E, A) \subseteq M_{\mu}(E, B),$$

¹Supported by RPBP.III-24.C1.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 Grzegorz Bancerek

(5)
$$\mathbf{ex} A \mathbf{st} d \in \mathcal{M}_{\mu} (E, A),$$

(6)
$$d' \in d \& d \in \mathcal{M}_{\mu}(E, A)$$

implies $d' \in M_{\mu}(E, A)$ & ex B st $B \in A$ & $d' \in M_{\mu}(E, B)$,

- (7) $M_{\mu}(E,A) \subseteq E,$
- (8) $\mathbf{ex} A \mathbf{st} E = \mathbf{M}_{\mu} (E, A),$

(9)
$$\mathbf{ex} f \mathbf{st} \operatorname{dom} f = E \& \mathbf{for} d \mathbf{holds} f \cdot d = f^{\circ} d \mathbf{st}$$

Let us consider f, X, Y. The predicate

 $f \text{ is}_{\in}\text{-isomorphism_of } X, Y$

is defined by

$$\operatorname{dom} f = X \& \operatorname{rng} f = Y \& f \text{ is_one-to-one } \& \operatorname{for} x, y$$

st $x \in X \& y \in X$ holds (ex Z st $Z = y \& x \in Z$) iff ex Z st $f.y = Z \& f.x \in Z$.

Next we state a proposition

(10)
$$f$$
 is_ \in -isomorphism_of X, Y iff dom $f = X$ & rng $f = Y$ & f is_one-to-one &
for x, y st $x \in X$ & $y \in X$
holds (ex Z st $Z = y$ & $x \in Z$) iff ex Z st $f.y = Z$ & $f.x \in Z$.

Let us consider X, Y. The predicate

 $X, Y \text{ are}_{\in}\text{-isomorphic}$ is defined by $\mathbf{ex} f \mathbf{st} f$ is_ \in -isomorphism_of X, Y.

Next we state two propositions:

(11) $X, Y \text{ are}_{\in} \text{-isomorphic iff } \mathbf{ex} f \mathbf{st} f \text{ is}_{\in} \text{-isomorphism}_{of} X, Y,$

(12) $\operatorname{dom} f = E \& (\operatorname{for} d \operatorname{holds} f \cdot d = f \circ d) \operatorname{implies} \operatorname{rng} f \operatorname{is}_{\in} \operatorname{-transitive}_{\circ}$

In the sequel u, v, w will denote objects of the type Element of E. Next we state two propositions:

(13) $E \models \text{the}_axiom_of_extensionality}$

implies for u, v st for w holds $w \in u$ iff $w \in v$ holds u = v,

(14) $E \models \text{the_axiom_of_extensionality}$

implies ex X **st** X is_ \in -transitive & E, X are_ \in -isomorphic.

202

References

- Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1, 1990.
- [2] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.
- [6] Andrzej Mostowski. Constructible Sets. North Holland, 1970.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
- [8] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received April 14, 1989