The Well Ordering Relations

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. Some theorems about well ordering relations are proved. The goal of the article is to prove that every two well ordering relations are either isomorphic or one of them is isomorphic to a segment of the other. The following concepts are defined: the segment of a relation induced by an element, well founded relations, well ordering relations, the restriction of a relation to a set, and the isomorphism of two relations. A number of simple facts is presented.

The terminology and notation used here are introduced in the following papers: [2], [3], [4], [5], and [1]. For simplicity we adopt the following convention: a, b, c, x denote objects of the type Any; X, Y, Z denote objects of the type set. The scheme Extensionality concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a unary predicate \mathcal{P} and states that the following holds

$$
\mathcal{A}=\mathcal{B}
$$

provided the parameters satisfy the following conditions:

$$
\begin{aligned}
& \text { for } a \text { holds } a \in \mathcal{A} \text { iff } \mathcal{P}[a], \\
& \text { for } a \text { holds } a \in \mathcal{B} \text { iff } \mathcal{P}[a] .
\end{aligned}
$$

In the sequel R, S, T will have the type Relation. Let us consider R, a. The functor

$$
R-\operatorname{Seg} a,
$$

with values of the type set, is defined by

$$
x \in \text { it iff } x \neq a \&\langle x, a\rangle \in R .
$$

One can prove the following propositions:
(1) for R, Y, a holds $Y=R-\operatorname{Seg}(a)$ iff for b holds $b \in Y$ iff $b \neq a \&\langle b, a\rangle \in R$,

[^0] ISSN 0777-4028
$$
x \in \text { field } R \text { or } R-\operatorname{Seg}(x)=\emptyset .
$$

We now define two new predicates. Let us consider R. The predicate

$$
R \text { is_well_founded }
$$

is defined by

$$
\text { for } Y \text { st } Y \subseteq \text { field } R \& Y \neq \emptyset \text { ex } a \text { st } a \in Y \& R-\operatorname{Seg}(a) \cap Y=\emptyset .
$$

Let us consider X. The predicate

$$
R \text { is_well_founded_in } X
$$

is defined by

$$
\text { for } Y \text { st } Y \subseteq X \& Y \neq \emptyset \text { ex } a \text { st } a \in Y \& R-\operatorname{Seg}(a) \cap Y=\emptyset
$$

One can prove the following three propositions:

for R holds R is_well_founded

iff for Y st $Y \subseteq$ field $R \& Y \neq \emptyset$ ex a st $a \in Y \& R-\operatorname{Seg}(a) \cap Y=\emptyset$,

for R, X holds R is_well_founded_in X

$$
\begin{equation*}
\text { iff for } Y \text { st } Y \subseteq X \& Y \neq \emptyset \text { ex } a \text { st } a \in Y \& R-\operatorname{Seg}(a) \cap Y=\emptyset \tag{4}
\end{equation*}
$$ R is_well_founded $\mathbf{i f f} R$ is_well_founded_in field R.

We now define two new predicates. Let us consider R. The predicate R is_well-ordering-relation
is defined by

R is_reflexive

$\& R$ is_transitive $\& R$ is_antisymmetric $\& R$ is_connected $\& R$ is_well_founded.
Let us consider X. The predicate

$$
R \text { well_orders } X
$$

is defined by

$$
R \text { is_reflexive_in } X \& R \text { is_transitive_in } X
$$

$\& R$ is_antisymmetric_in $X \& R$ is_connected_in $X \& R$ is_well_founded_in X.
The following propositions are true:

for R holds R is_well-ordering-relation $\mathbf{i f f} R$ is_reflexive

$\& R$ is_transitive $\& R$ is_antisymmetric $\& R$ is_connected $\& R$ is_well_founded,
(7) for R, X holds R well_orders X iff R is_reflexive_in X \& R is_transitive_in X $\& R$ is_antisymmetric_in $X \& R$ is_connected_in $X \& R$ is_well_founded_in X,

$$
\begin{equation*}
R \text { well_orders field } R \text { iff } R \text { is_well-ordering-relation, } \tag{8}
\end{equation*}
$$

R well_orders X implies for Y st $Y \subseteq X \& Y \neq \emptyset$ ex a st $a \in Y \&$ for b st $b \in Y$ holds $\langle a, b\rangle \in R$, R is_well-ordering-relation implies for Y st $Y \subseteq$ field $R \& Y \neq \emptyset$ ex a st $a \in Y \&$ for b st $b \in Y$ holds $\langle a, b\rangle \in R$,

$$
\begin{equation*}
\text { for } R \text { st } R \text { is_well-ordering-relation \& field } R \neq \emptyset \tag{11}
\end{equation*}
$$ ex a st $a \in$ field $R \&$ for b st $b \in$ field R holds $\langle a, b\rangle \in R$,

(12) for R st R is_well-ordering-relation \& field $R \neq \emptyset$ for a st $a \in$ field R holds (for b st $b \in$ field R holds $\langle b, a\rangle \in R$) or ex b st $b \in$ field R $\&\langle a, b\rangle \in R \&$ for c st $c \in$ field $R \&\langle a, c\rangle \in R$ holds $c=a$ or $\langle b, c\rangle \in R$.

In the sequel F, G have the type Function. Next we state a proposition

$$
\begin{equation*}
R-\operatorname{Seg}(a) \subseteq \text { field } R \tag{13}
\end{equation*}
$$

Let us consider R, Y. The functor

$$
\left.R\right|^{2} Y
$$

yields the type Relation and is defined by

$$
\mathbf{i t}=R \cap[Y, Y:]
$$

We now state a number of propositions:

$$
\begin{gather*}
\left.R\right|^{2} Y=R \cap\{Y, Y:, \tag{14}\\
\left.\left.R\right|^{2} X \subseteq R \& R\right|^{2} X \subseteq: X, X:, \tag{15}\\
\left.x \in R\right|^{2} X \text { iff } x \in R \& x \in[X, X:, \tag{16}\\
\left.R\right|^{2} X=X|R| X, \tag{17}\\
\left.R\right|^{2} X=X \mid(R \mid X), \tag{18}
\end{gather*}
$$

$x \in$ field $\left(\left.R\right|^{2} X\right)$ implies $x \in$ field $R \& x \in X$,

$$
\begin{equation*}
\text { field }\left(\left.R\right|^{2} X\right) \subseteq \text { field } R \& \text { field }\left(\left.R\right|^{2} X\right) \subseteq X \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\left(\left.R\right|^{2} X\right)-\operatorname{Seg}(a) \subseteq R-\operatorname{Seg}(a) \tag{20}
\end{equation*}
$$

R is_reflexive implies $\left.R\right|^{2} X$ is_reflexive,

$$
\begin{equation*}
\left.\left(\left.R\right|^{2} X\right)\right|^{2} Y=\left.\left(\left.R\right|^{2} Y\right)\right|^{2} X \tag{26}
\end{equation*}
$$ R is_well-ordering-relation implies $\left.R\right|^{2} Y$ is_well-ordering-relation,

(34) R is_well-ordering-relation implies $\left.R\right|^{2}(R-\operatorname{Seg}(a))$ is_well-ordering-relation,

$$
\begin{equation*}
\left.\left(\left.R\right|^{2} X\right)\right|^{2} Y=\left.R\right|^{2}(X \cap Y) \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\left.\left(\left.R\right|^{2} Y\right)\right|^{2} Y=\left.R\right|^{2} Y \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
Z \subseteq Y \text { implies }\left.\left(\left.R\right|^{2} Y\right)\right|^{2} Z=\left.R\right|^{2} Z \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\left.R\right|^{2} \text { field } R=R \tag{29}
\end{equation*}
$$

$$
\begin{align*}
& R \text { is_well-ordering-relation } \& a \in \text { field } R \& b \in R-\operatorname{Seg}(a) \tag{35}\\
& \quad \text { implies }\left(\left.R\right|^{2}(R-\operatorname{Seg}(a))\right)-\operatorname{Seg}(b)=R-\operatorname{Seg}(b)
\end{align*}
$$

R is_well-ordering-relation $\& Y \subseteq$ field R implies

$$
\begin{equation*}
(Y=\text { field } R \text { or }(\text { ex } a \text { st } a \in \text { field } R \& Y=R-\operatorname{Seg}(a)) \tag{36}
\end{equation*}
$$ ($Y=$ field R or (ex a st $a \in$ field $R \& Y=R-\operatorname{Seg}(a))$

$$
\begin{equation*}
\text { iff for } a \text { st } a \in Y \text { for } b \text { st }\langle b, a\rangle \in R \text { holds } b \in Y) \tag{37}
\end{equation*}
$$

iff for a st $a \in Y$ for b st $\langle b, a\rangle \in R$ holds $b \in Y)$,
R is_well-ordering-relation \& $a \in$ field $R \& b \in$ field R
implies $(\langle a, b\rangle \in R$ iff $R-\operatorname{Seg}(a) \subseteq R-\operatorname{Seg}(b))$,
R is_well-ordering-relation \& $a \in$ field $R \& b \in$ field R implies $(R-\operatorname{Seg}(a) \subseteq R-\operatorname{Seg}(b)$ iff $a=b$ or $a \in R-\operatorname{Seg}(b))$,

$$
\begin{equation*}
R \text { is_well-ordering-relation \& } X \subseteq \text { field } R \text { implies field }\left(\left.R\right|^{2} X\right)=X \tag{39}
\end{equation*}
$$

(40) $\quad R$ is_well-ordering-relation implies field $\left(\left.R\right|^{2} R-\operatorname{Seg}(a)\right)=R-\operatorname{Seg}(a)$, R is_connected implies $\left.R\right|^{2} Y$ is_connected, R is_transitive implies $\left.R\right|^{2} Y$ is_transitive, R is_antisymmetric implies $\left.R\right|^{2} Y$ is_antisymmetric,
R is_well_founded implies $\left.R\right|^{2} X$ is_well_founded,

$$
\begin{gather*}
R \text { is_well-ordering-relation } \tag{33}\\
\text { implies } R-\operatorname{Seg}(a) \subseteq R-\operatorname{Seg}(b) \text { or } R-\operatorname{Seg}(b) \subseteq R-\operatorname{Seg}(a),
\end{gather*}
$$

R is_well-ordering-relation implies
for Z st for a st $a \in$ field $R \& R-\operatorname{Seg}(a) \subseteq Z$ holds $a \in Z$ holds field $R \subseteq Z$,
$a \in$ field $R \& b \in$ field $R \&($ for c st $c \in R-\operatorname{Seg}(a)$ holds $\langle c, b\rangle \in R \& c \neq b)$
implies $\langle a, b\rangle \in R$,

$$
\begin{equation*}
R \text { is_well-ordering-relation } \& \operatorname{dom} F=\text { field } R \& \operatorname{rng} F \subseteq \text { field } R \tag{43}
\end{equation*}
$$

$\&($ for a, b st $\langle a, b\rangle \in R \& a \neq b$ holds $\langle F . a, F . b\rangle \in R \& F . a \neq F . b)$
implies for a st $a \in$ field R holds $\langle a, F . a\rangle \in R$.
Let us consider R, S, F. The predicate

$$
F \text { is_isomorphism_of } R, S
$$

is defined by

$$
\operatorname{dom} F=\text { field } R \& \operatorname{rng} F=\text { field } S \&
$$

F is_one-to-one \& for a, b holds $\langle a, b\rangle \in R$ iff $a \in$ field $R \& b \in$ field $R \&\langle F . a, F . b\rangle \in S$.
Next we state two propositions:

$$
\begin{gather*}
F \text { is_isomorphism_of } R, S \text { iff } \operatorname{dom} F=\text { field } R \& \operatorname{rng} F=\text { field } S \& \tag{44}\\
F \text { is_one-to-one }
\end{gather*}
$$

$$
\& \text { for } a, b \text { holds }\langle a, b\rangle \in R \text { iff } a \in \text { field } R \& b \in \text { field } R \&\langle F . a, F . b\rangle \in S,
$$

$$
F \text { is_isomorphism_of } R, S
$$

implies for a, b st $\langle a, b\rangle \in R \& a \neq b$ holds $\langle F . a, F . b\rangle \in S \& F . a \neq F$. b.

Let us consider R, S. The predicate

$$
R, S \text { are_isomorphic } \quad \text { is defined by } \quad \text { ex } F \text { st } F \text { is_isomorphism_of } R, S .
$$

We now state a number of propositions:
R, S are_isomorphic iff ex F st F is_isomorphism_of R, S,
F is_isomorphism_of R, S implies F^{-1} is_isomorphism_of S, R, , S are_isomorphic implies S, R are_isomorphic, F is_isomorphism_of $R, S \& G$ is_isomorphism_of S, T implies $G \cdot F$ is_isomorphism_of R, T,
R, S are_isomorphic \& S, T are_isomorphic implies R, T are_isomorphic,
(53) $\quad F$ is_isomorphism_of R, S implies (R is_reflexive implies S is_reflexive) \&
(R is_transitive implies S is_transitive) \& (R is_connected implies S is_connected) \&
(R is_antisymmetric implies S is_antisymmetric) $\&(R$ is_well_founded implies S is_well_founded), R is_well-ordering-relation \& F is_isomorphism_of R, S implies S is_well-ordering-relation, R is_well-ordering-relation implies for F, G st F is_isomorphism_of $R, S \& G$ is_isomorphism_of R, S holds $F=G$.

Let us consider R, S. Assume that the following holds R is_well-ordering-relation \& R, S are_isomorphic .

The functor

$$
\text { canonical_isomorphism_of }(R, S) \text {, }
$$

yields the type Function and is defined by

$$
\text { it is_isomorphism_of } R, S \text {. }
$$

The following propositions are true:
R is_well-ordering-relation \& R, S are_isomorphic
implies $(F=$ canonical_isomorphism_of (R, S) iff F is_isomorphism_of $R, S)$,

R is_well-ordering-relation

implies for a st $a \in$ field R holds not $R,\left.R\right|^{2}(R-\operatorname{Seg}(a))$ are_isomorphic,
R is_well-ordering-relation $\& a \in$ field $R \& b \in$ field $R \& a \neq b$ implies not $\left.R\right|^{2}(R-\operatorname{Seg}(a)),\left.R\right|^{2}(R-\operatorname{Seg}(b))$ are_isomorphic,
(59) R is_well-ordering-relation \& $Z \subseteq$ field $R \& F$ is_isomorphism_of R, S implies

$$
\begin{aligned}
& F \mid Z \text { is_isomorphism_of }\left.R\right|^{2} Z,\left.S\right|^{2}\left(F^{\circ} Z\right) \\
& \left.\quad \& R\right|^{2} Z,\left.S\right|^{2}\left(F^{\circ} Z\right) \text { are_isomorphic, }
\end{aligned}
$$

(60) $\quad R$ is_well-ordering-relation \& F is_isomorphism_of R, S implies for a st $a \in$ field R ex b st $b \in$ field $S \& F^{\circ}(R-\operatorname{Seg}(a))=S-\operatorname{Seg}(b)$,
(61) $\quad R$ is_well-ordering-relation \& F is_isomorphism_of R, S implies for a st $a \in$ field R
ex b st $b \in$ field $\left.S \& R\right|^{2}(R-\operatorname{Seg}(a)),\left.S\right|^{2}(S-\operatorname{Seg}(b))$ are_isomorphic,
(62) $\quad R$ is_well-ordering-relation \& S is_well-ordering-relation \& $a \in$ field $R \&$ $b \in$ field $S \& c \in$ field $S \& R,\left.S\right|^{2}(S-\operatorname{Seg}(b))$ are_isomorphic $\left.\& R\right|^{2}(R-\operatorname{Seg}(a)),\left.S\right|^{2}(S-\operatorname{Seg}(c))$ are_isomorphic implies $S-\operatorname{Seg}(c) \subseteq S-\operatorname{Seg}(b) \&\langle c, b\rangle \in S$,
(63) R is_well-ordering-relation $\& S$ is_well-ordering-relation implies R, S are_isomorphic or (ex a st $a \in$ field $\left.R \& R\right|^{2}(R-\operatorname{Seg}(a)), S$ are_isomorphic) or ex a st $a \in$ field $S \& R,\left.S\right|^{2}(S-\operatorname{Seg}(a))$ are_isomorphic,
(64) $\quad Y \subseteq$ field $R \& R$ is_well-ordering-relation implies $R,\left.R\right|^{2} Y$ are_isomorphic or ex a st $a \in$ field $\left.R \& R\right|^{2}(R-\operatorname{Seg}(a)),\left.R\right|^{2} Y$ are_isomorphic .

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[3] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.
[4] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1, 1990.
[5] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1, 1990.

[^0]: ${ }^{1}$ Supported by RPBP III. 24 C 1.

