Subsets of Topological Spaces

Mirosław Wysocki Warsaw Uniwersity Białystok Agata Darmochwał¹ Warsaw University Białystok

Summary. The article contains some theorems about open and closed sets. The following topological operations on sets are defined: closure, interior and frontier. The following notions are introduced: dense set, boundary set, nowheredense set and set being domain (closed domain and open domain), and some basic facts concerning them are proved.

The papers [4], [5], [3], [1], and [2] provide the notation and terminology for this paper. For simplicity we adopt the following convention: TS denotes an object of the type TopSpace; x denotes an object of the type Any; P, Q, G denote objects of the type Subset **of** TS; p denotes an object of the type Point **of** TS. One can prove the following propositions:

- (1) $x \in P$ implies x is Point of TS,
- (2) $P \cup \Omega TS = \Omega TS \& \Omega TS \cup P = \Omega TS,$
- $P \cap \Omega TS = P \& \Omega TS \cap P = P,$
- (4) $P \cap \emptyset TS = \emptyset TS \& \ \emptyset TS \cap P = \emptyset TS,$
- (5) $P^{c} = \Omega TS \setminus P,$
- (6) $P^{c} = (P \text{ qua Subset of the carrier of } TS)^{c},$
- (7) $p \in P^{c} \text{ iff not } p \in P,$
- (8) $(\Omega TS)^{c} = \emptyset TS,$
- (9) $\Omega TS = (\emptyset TS)^{c},$

(10)
$$(P^{c})^{c} = P$$

¹Supported by RPBP.III-24.C1.

231

© 1990 Fondation Philippe le Hodey ISSN 0777-4028

(11)
$$P \cup P^{c} = \Omega TS \& P^{c} \cup P = \Omega TS,$$

(12)
$$P \cap P^{c} = \emptyset TS \& P^{c} \cap P = \emptyset TS,$$

(13)
$$(P \cup Q)^{c} = (P^{c}) \cap (Q^{c}),$$

(14)
$$(P \cap Q)^{c} = (P^{c}) \cup (Q^{c}),$$

(15)
$$P \subseteq Q \text{ iff } Q^{c} \subseteq P^{c},$$

(16)
$$P \setminus Q = P \cap Q^c,$$

(17)
$$(P \setminus Q)^{c} = P^{c} \cup Q,$$

(18)
$$P \subseteq Q^{c} \text{ implies } Q \subseteq P^{c},$$

(19)
$$P^{c} \subseteq Q$$
 implies $Q^{c} \subseteq P$,

$$(20) P \subseteq Q ext{ iff } P \cap Q^c = \emptyset,$$

(21)
$$P^{c} = Q^{c} \text{ implies } P = Q,$$

$$\emptyset TS$$
 is_closed,

(23)
$$\operatorname{Cl}(\emptyset TS) = \emptyset TS,$$

$$(24) P \subseteq \operatorname{Cl} P,$$

$$(25) P \subseteq Q \text{ implies } \operatorname{Cl} P \subseteq \operatorname{Cl} Q,$$

(26)
$$\operatorname{Cl}(\operatorname{Cl} P) = \operatorname{Cl} P,$$

(27)
$$\operatorname{Cl}(\Omega TS) = \Omega TS,$$

(28)
$$\Omega TS \text{ is_closed},$$

(29)
$$P \text{ is_closed iff } P^{c} \text{ is_open},$$

(30)
$$P \text{ is_open iff } P^{c} \text{ is_closed},$$

(31)
$$Q \text{ is_closed } \& P \subseteq Q \text{ implies } \operatorname{Cl} P \subseteq Q,$$

(32)
$$\operatorname{Cl} P \setminus \operatorname{Cl} Q \subseteq \operatorname{Cl} (P \setminus Q),$$

(33)
$$\operatorname{Cl}(P \cap Q) \subseteq \operatorname{Cl} P \cap \operatorname{Cl} Q,$$

(34)
$$P \text{ is_closed } \& Q \text{ is_closed } \operatorname{\mathbf{implies}} \operatorname{Cl}(P \cap Q) = \operatorname{Cl} P \cap \operatorname{Cl} Q,$$

$$(35) P \text{ is_closed \& } Q \text{ is_closed implies } P \cap Q \text{ is_closed },$$

(22)

- (36) $P \text{ is_closed } \& Q \text{ is_closed } \text{implies } P \cup Q \text{ is_closed},$
- (37) $P \text{ is_open } \& Q \text{ is_open } \text{implies } P \cup Q \text{ is_open },$
- (38) P is_open & Q is_open implies $P \cap Q$ is_open,
- (39) $p \in \operatorname{Cl} P$ iff for G st G is open holds $p \in G$ implies $P \cap G \neq \emptyset$,
- (40) Q is_open implies $Q \cap \operatorname{Cl} P \subseteq \operatorname{Cl} (Q \cap P)$,

(41)
$$Q$$
 is_open implies $Cl(Q \cap ClP) = Cl(Q \cap P)$.

Let us consider TS, P. The functor

Int P,

yields the type Subset of TS and is defined by

$$\mathbf{it} = (\mathrm{Cl}(P^{\mathrm{c}}))^{\mathrm{c}}.$$

One can prove the following propositions:

- (42) $\operatorname{Int} P = (\operatorname{Cl} P^{\,\mathrm{c}})^{\,\mathrm{c}} \,,$
- (43) $\operatorname{Int}\left(\Omega TS\right) = \Omega TS,$
- (44) $\operatorname{Int} P \subseteq P,$
- (45) $\operatorname{Int}\left(\operatorname{Int}P\right) = \operatorname{Int}P,$
- (46) $\operatorname{Int} P \cap \operatorname{Int} Q = \operatorname{Int} (P \cap Q),$
- (47) $\operatorname{Int}\left(\emptyset TS\right) = \emptyset TS,$
- (48) $P \subseteq Q$ implies Int $P \subseteq Int Q$,
- (49) $\operatorname{Int} P \cup \operatorname{Int} Q \subseteq \operatorname{Int} (P \cup Q),$
- (50) $\operatorname{Int}(P \setminus Q) \subseteq \operatorname{Int} P \setminus \operatorname{Int} Q,$
- (51) $\operatorname{Int} P \operatorname{is_open},$
- (52) $\emptyset TS \text{ is_open},$
- (53) ΩTS is_open,
- (54) $x \in \operatorname{Int} P \text{ iff ex } Q \text{ st } Q \text{ is_open } \& Q \subseteq P \& x \in Q,$
- (55) $P \text{ is_open iff } \text{Int } P = P,$
- (56) Q is_open & $Q \subseteq P$ implies $Q \subseteq Int P$,

(57) P is_open iff for x holds $x \in P$ iff ex Q st Q is_open & $Q \subseteq P$ & $x \in Q$,

(58)
$$\operatorname{Cl}(\operatorname{Int} P) = \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int} P))),$$

(59)
$$P$$
 is_open implies $Cl(Int(Cl P)) = Cl P$.

Let us consider TS, P. The functor

 $\operatorname{Fr} P$,

yields the type Subset of TS and is defined by

$$\mathbf{it} = \operatorname{Cl} P \cap \operatorname{Cl} (P^{c}).$$

We now state a number of propositions:

(60)
$$\operatorname{Fr} P = \operatorname{Cl} P \cap \operatorname{Cl} (P^{c}),$$

- (61) $p \in \operatorname{Fr} P$ iff for Q st Q is open & $p \in Q$ holds $P \cap Q \neq \emptyset$ & $P^{c} \cap Q \neq \emptyset$,
- (62) $\operatorname{Fr} P = \operatorname{Fr} \left(P^{\,\mathrm{c}} \right),$

(63)
$$\operatorname{Fr} P \subseteq \operatorname{Cl} P,$$

(64)
$$\operatorname{Fr} P = \operatorname{Cl} (P^{c}) \cap P \cup (\operatorname{Cl} P \setminus P),$$

(65) $\operatorname{Cl} P = P \cup \operatorname{Fr} P,$

(66)
$$\operatorname{Fr}(P \cap Q) \subseteq \operatorname{Fr} P \cup \operatorname{Fr} Q,$$

(67)
$$\operatorname{Fr}(P \cup Q) \subseteq \operatorname{Fr} P \cup \operatorname{Fr} Q,$$

(68) $\operatorname{Fr}(\operatorname{Fr} P) \subseteq \operatorname{Fr} P$,

(69)
$$P \text{ is_closed implies Fr } P \subseteq P,$$

(70)
$$\operatorname{Fr} P \cup \operatorname{Fr} Q = \operatorname{Fr} (P \cup Q) \cup \operatorname{Fr} (P \cap Q) \cup (\operatorname{Fr} P \cap \operatorname{Fr} Q),$$

(71) $\operatorname{Fr}(\operatorname{Int} P) \subseteq \operatorname{Fr} P,$

(72)
$$\operatorname{Fr}(\operatorname{Cl} P) \subseteq \operatorname{Fr} P,$$

(73)
$$\operatorname{Int} P \cap \operatorname{Fr} P = \emptyset,$$

(74)
$$\operatorname{Int} P = P \setminus \operatorname{Fr} P,$$

(75)
$$\operatorname{Fr}\left(\operatorname{Fr}(\operatorname{Fr} P)\right) = \operatorname{Fr}\left(\operatorname{Fr} P\right),$$

(76)
$$P \text{ is_open iff } \operatorname{Fr} P = \operatorname{Cl} P \setminus P,$$

(77)
$$P \text{ is_closed iff } \operatorname{Fr} P = P \setminus \operatorname{Int} P.$$

234

Let us consider TS, P. The predicate

P is_dense is defined by $\operatorname{Cl} P = \Omega TS$.

We now state several propositions:

(78)
$$P \text{ is_dense iff } \operatorname{Cl} P = \Omega TS,$$

(79)
$$P$$
 is_dense & $P \subseteq Q$ implies Q is_dense,

(80)
$$P$$
 is_dense iff for Q st $Q \neq \emptyset \& Q$ is_open holds $P \cap Q \neq \emptyset$,

(81)
$$P$$
 is_dense **implies for** Q **holds** Q is_open **implies** $\operatorname{Cl} Q = \operatorname{Cl} (Q \cap P)$,

(82)
$$P$$
 is dense & Q is dense & Q is open **implies** $P \cap Q$ is dense.

Let us consider TS, P. The predicate

P is_boundary is defined by P^{c} is_dense.

Next we state several propositions:

(83) P is_boundary **iff** P^{c} is_dense,

(84)
$$P$$
 is_boundary iff Int $P = \emptyset$,

(85) P is_boundary & Q is_boundary & Q is_closed **implies** $P \cup Q$ is_boundary,

(86) P is boundary **iff for** Q **st** $Q \subseteq P \& Q$ is open **holds** $Q = \emptyset$,

(87)
$$P$$
 is_closed **implies** (P is_boundary **iff for** Q

st $Q \neq \emptyset$ & Q is_open ex G st $G \subseteq Q$ & $G \neq \emptyset$ & G is_open & $P \cap G = \emptyset$),

(88)
$$P$$
 is boundary iff $P \subseteq \operatorname{Fr} P$.

Let us consider TS, P. The predicate

P is_nowheredense is defined by Cl P is_boundary.

One can prove the following propositions:

(89)
$$P$$
 is_nowheredense **iff** Cl P is_boundary,

(90)
$$P$$
 is nowheredense & Q is nowheredense implies $P \cup Q$ is nowheredense,

- (91) P is_nowheredense **implies** P^{c} is_dense,
- (92) P is_nowheredense **implies** P is_boundary,
- (93) Q is_boundary & Q is_closed **implies** Q is_nowheredense,

(94)
$$P$$
 is_closed implies (P is_nowheredense iff $P = Fr P$),

(95) P is_open **implies** Fr P is_nowheredense,

(96)
$$P$$
 is_closed **implies** Fr P is_nowheredense,

(97)
$$P$$
 is_open & P is_nowheredense implies $P = \emptyset$.

We now define three new predicates. Let us consider TS, P. The predicate

P is_domain is defined by $Int(Cl P) \subseteq P \& P \subseteq Cl(Int P).$

The predicate

$$P$$
 is_closed_domain is defined by $P = \operatorname{Cl}(\operatorname{Int} P).$

The predicate

$$P$$
 is_open_domain is defined by $P = Int (Cl P).$

The following propositions are true:

(98)
$$P$$
 is_domain **iff** Int (Cl P) $\subseteq P \& P \subseteq$ Cl (Int P),

(99)
$$P \text{ is_closed_domain iff } P = Cl (Int P),$$

(100)
$$P \text{ is_open_domain iff } P = \text{Int}(\text{Cl} P),$$

- (101) P is_open_domain **iff** P^c is_closed_domain,
- (102) P is_closed_domain **implies** Fr(Int P) = Fr P,
- (103) P is_closed_domain **implies** Fr $P \subseteq Cl(Int P)$,
- (104) P is_open_domain implies $\operatorname{Fr} P = \operatorname{Fr} (\operatorname{Cl} P) \& \operatorname{Fr} (\operatorname{Cl} P) = \operatorname{Cl} P \setminus P$,
- (105) *P* is_open & *P* is_closed **implies** (*P* is_closed_domain **iff** *P* is_open_domain),

(106)
$$P$$
 is_closed & P is_domain iff P is_closed_domain p

- (107) P is_open & P is_domain **iff** P is_open_domain,
- (108) P is_closed_domain & Q is_closed_domain implies $P \cup Q$ is_closed_domain,
- (109) P is_open_domain & Q is_open_domain implies $P \cap Q$ is_open_domain,
- (110) $P \text{ is_domain implies Int} (Fr P) = \emptyset,$
- (111) P is_domain **implies** Int P is_domain & Cl P is_domain.

References

- [1] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.
- [2] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1, 1990.
- [3] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1, 1990.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
- [5] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received April 28, 1989