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Summary. The article contains some theorems about open and closed sets.
The following topological operations on sets are defined: closure, interior and fron-
tier. The following notions are introduced: dense set, boundary set, nowheredense
set and set being domain (closed domain and open domain), and some basic facts
concerning them are proved.

The papers [4], [5], [3], [1], and [2] provide the notation and terminology for this paper.

For simplicity we adopt the following convention: TS denotes an object of the type

TopSpace; x denotes an object of the type Any; P , Q, G denote objects of the type

Subset of TS; p denotes an object of the type Point of TS. One can prove the

following propositions:

(1) x ∈ P implies x is Point of TS,

(2) P ∪ Ω TS = Ω TS & Ω TS ∪ P = Ω TS,

(3) P ∩ Ω TS = P & Ω TS ∩ P = P,

(4) P ∩ ∅TS = ∅TS & ∅TS ∩ P = ∅TS,

(5) P c = Ω TS \ P,

(6) P c = (P qua Subset of the carrier of TS) c ,

(7) p ∈ P c iff not p ∈ P,

(8) (Ω TS) c = ∅TS,

(9) Ω TS = (∅TS) c ,

(10) (P c) c = P,
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(11) P ∪ P c = Ω TS & P c ∪ P = Ω TS,

(12) P ∩ P c = ∅TS & P c ∩ P = ∅TS,

(13) (P ∪ Q) c = (P c) ∩ (Q c),

(14) (P ∩ Q) c = (P c) ∪ (Q c),

(15) P ⊆ Q iff Q c ⊆ P c ,

(16) P \ Q = P ∩ Q c ,

(17) (P \ Q) c = P c ∪ Q,

(18) P ⊆ Q c implies Q ⊆ P c ,

(19) P c ⊆ Q implies Q c ⊆ P,

(20) P ⊆ Q iff P ∩ Q c = ∅,

(21) P c = Q c implies P = Q,

(22) ∅TS is closed ,

(23) Cl (∅TS) = ∅TS,

(24) P ⊆ Cl P,

(25) P ⊆ Q implies Cl P ⊆ Cl Q,

(26) Cl (Cl P ) = Cl P,

(27) Cl (Ω TS) = Ω TS,

(28) Ω TS is closed ,

(29) P is closed iff P c is open ,

(30) P is open iff P c is closed ,

(31) Q is closed & P ⊆ Q implies Cl P ⊆ Q,

(32) Cl P \ Cl Q ⊆ Cl (P \ Q),

(33) Cl (P ∩ Q) ⊆ Cl P ∩ Cl Q,

(34) P is closed & Q is closed implies Cl (P ∩ Q) = Cl P ∩ Cl Q,

(35) P is closed & Q is closed implies P ∩ Q is closed ,
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(36) P is closed & Q is closed implies P ∪ Q is closed ,

(37) P is open & Q is open implies P ∪ Q is open ,

(38) P is open & Q is open implies P ∩ Q is open ,

(39) p ∈ Cl P iff forG st G is open holds p ∈ G implies P ∩ G 6= ∅,

(40) Q is open implies Q ∩ Cl P ⊆ Cl (Q ∩ P ),

(41) Q is open implies Cl (Q ∩ Cl P ) = Cl (Q ∩ P ).

Let us consider TS, P . The functor

Int P,

yields the type Subset of TS and is defined by

it = (Cl (P c)) c .

One can prove the following propositions:

(42) Int P = (Cl P c) c ,

(43) Int (Ω TS) = Ω TS,

(44) Int P ⊆ P,

(45) Int (Int P ) = Int P,

(46) Int P ∩ Int Q = Int (P ∩ Q),

(47) Int (∅TS) = ∅TS,

(48) P ⊆ Q implies Int P ⊆ Int Q,

(49) Int P ∪ Int Q ⊆ Int (P ∪ Q),

(50) Int (P \ Q) ⊆ Int P \ Int Q,

(51) Int P is open ,

(52) ∅TS is open ,

(53) Ω TS is open ,

(54) x ∈ Int P iff exQ st Q is open & Q ⊆ P & x ∈ Q,

(55) P is open iff Int P = P,

(56) Q is open & Q ⊆ P implies Q ⊆ Int P,
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(57) P is open iff forx holds x ∈ P iff exQ st Q is open & Q ⊆ P & x ∈ Q,

(58) Cl (Int P ) = Cl (Int (Cl (Int P ))),

(59) P is open implies Cl (Int (Cl P )) = Cl P.

Let us consider TS, P . The functor

Fr P,

yields the type Subset of TS and is defined by

it = Cl P ∩ Cl (P c).

We now state a number of propositions:

(60) Fr P = Cl P ∩ Cl (P c),

(61) p ∈ Fr P iff forQ st Q is open & p ∈ Q holds P ∩ Q 6= ∅ & P c ∩ Q 6= ∅,

(62) Fr P = Fr (P c),

(63) Fr P ⊆ Cl P,

(64) Fr P = Cl (P c) ∩ P ∪ (Cl P \ P ),

(65) Cl P = P ∪ Fr P,

(66) Fr (P ∩ Q) ⊆ Fr P ∪ Fr Q,

(67) Fr (P ∪ Q) ⊆ Fr P ∪ Fr Q,

(68) Fr (Fr P ) ⊆ Fr P,

(69) P is closed implies Fr P ⊆ P,

(70) Fr P ∪ Fr Q = Fr (P ∪ Q) ∪ Fr (P ∩ Q) ∪ (Fr P ∩ Fr Q),

(71) Fr (Int P ) ⊆ Fr P,

(72) Fr (Cl P ) ⊆ Fr P,

(73) Int P ∩ Fr P = ∅,

(74) Int P = P \ Fr P,

(75) Fr (Fr (Fr P )) = Fr (Fr P ),

(76) P is open iff Fr P = Cl P \ P,

(77) P is closed iff Fr P = P \ Int P.
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Let us consider TS, P . The predicate

P is dense is defined by Cl P = Ω TS.

We now state several propositions:

(78) P is dense iff Cl P = Ω TS,

(79) P is dense & P ⊆ Q implies Q is dense ,

(80) P is dense iff forQ st Q 6= ∅ & Q is open holds P ∩ Q 6= ∅,

(81) P is dense implies forQ holds Q is open implies Cl Q = Cl (Q ∩ P ),

(82) P is dense & Q is dense & Q is open implies P ∩ Q is dense .

Let us consider TS, P . The predicate

P is boundary is defined by P c is dense .

Next we state several propositions:

(83) P is boundary iff P c is dense ,

(84) P is boundary iff Int P = ∅,

(85) P is boundary & Q is boundary & Q is closed implies P ∪ Q is boundary ,

(86) P is boundary iff forQ st Q ⊆ P & Q is open holds Q = ∅,

(87) P is closed implies (P is boundary iff forQ

st Q 6= ∅ & Q is open exG st G ⊆ Q & G 6= ∅ & G is open & P ∩ G = ∅),

(88) P is boundary iff P ⊆ Fr P.

Let us consider TS, P . The predicate

P is nowheredense is defined by Cl P is boundary .

One can prove the following propositions:

(89) P is nowheredense iff Cl P is boundary ,

(90) P is nowheredense & Q is nowheredense implies P ∪ Q is nowheredense ,

(91) P is nowheredense implies P c is dense ,

(92) P is nowheredense implies P is boundary ,

(93) Q is boundary & Q is closed implies Q is nowheredense ,
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(94) P is closed implies (P is nowheredense iff P = Fr P ),

(95) P is open implies Fr P is nowheredense ,

(96) P is closed implies Fr P is nowheredense ,

(97) P is open & P is nowheredense implies P = ∅.

We now define three new predicates. Let us consider TS, P . The predicate

P is domain is defined by Int (Cl P ) ⊆ P & P ⊆ Cl (Int P ).

The predicate

P is closed domain is defined by P = Cl (Int P ).

The predicate

P is open domain is defined by P = Int (Cl P ).

The following propositions are true:

(98) P is domain iff Int (Cl P ) ⊆ P & P ⊆ Cl (Int P ),

(99) P is closed domain iff P = Cl (Int P ),

(100) P is open domain iff P = Int (Cl P ),

(101) P is open domain iff P c is closed domain ,

(102) P is closed domain implies Fr (Int P ) = Fr P,

(103) P is closed domain implies Fr P ⊆ Cl (Int P ),

(104) P is open domain implies Fr P = Fr (Cl P ) & Fr (Cl P ) = Cl P \ P,

(105) P is open & P is closed implies (P is closed domain iff P is open domain),

(106) P is closed & P is domain iff P is closed domain ,

(107) P is open & P is domain iff P is open domain ,

(108) P is closed domain & Q is closed domain implies P ∪ Q is closed domain ,

(109) P is open domain & Q is open domain implies P ∩ Q is open domain ,

(110) P is domain implies Int (Fr P ) = ∅,

(111) P is domain implies Int P is domain & Cl P is domain .



Subsets of Topological Spaces 237

References

[1] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.

[2] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous func-

tions. Formalized Mathematics, 1, 1990.

[3] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1, 1990.

[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[5] Zinaida Trybulec and Halina Świe
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