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Summary. This is the first part of the axiomatics of the Mizar system. It
includes the axioms of the Tarski Grothendieck set theory. They are: the axiom
stating that everything is a set, the extensionality axiom, the definitional axiom of
the singleton, the definitional axiom of the pair, the definitional axiom of the union
of a family of sets, the definitional axiom of the boolean (the power set) of a set, the
regularity axiom, the definitional axiom of the ordered pair, the Tarski’s axiom A
introduced in [2] (see also [1]), and the Frænkel scheme. Also, the definition of
equinumerosity is introduced.

For simplicity we adopt the following convention: x, y, z, u will denote objects of the

type Any; N , M , X , Y , Z will denote objects of the type set. Next we state two

axioms:

(1) x is set ,

(2) (for x holds x ∈ X iff x ∈ Y ) implies X = Y.

We now introduce two functors. Let us consider y. The functor

{y},

with values of the type set, is defined by

x ∈ it iff x = y.

Let us consider z. The functor

{y, z},

with values of the type set, is defined by

x ∈ it iff x = y or x = z.
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The following axioms hold:

(3) X = {y} iff forx holds x ∈ X iff x = y,

(4) X = {y, z} iff forx holds x ∈ X iff x = y or x = z.

Let us consider X , Y . The predicate

X ⊆ Y is defined by x ∈ X implies x ∈ Y.

Let us consider X . The functor ⋃
X,

with values of the type set, is defined by

x ∈ it iff exY st x ∈ Y & Y ∈ X.

Then we get

(5) X =
⋃

Y iff forx holds x ∈ X iff exZ st x ∈ Z & Z ∈ Y,

(6) X = boolY iff forZ holds Z ∈ X iff Z ⊆ Y,

The regularity axiom claims that

(7) x ∈ X implies exY st Y ∈ X & not exx st x ∈ X & x ∈ Y.

The scheme Fraenkel deals with a constant A that has the type set and a binary

predicate P and states that the following holds

exX st forx holds x ∈ X iff ex y st y ∈ A & P [y, x]

provided the parameters satisfy the following condition:

• for x,y,z st P [x, y] & P [x, z] holds y = z.

Let us consider x, y. The functor

〈x, y〉,

is defined by

it = {{x, y},{x}}.

According to the definition

(8) 〈x, y〉 = {{x, y},{x}}.

Let us consider X , Y . The predicate

X ≈ Y
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is defined by

exZ st (for x st x ∈ X ex y st y ∈ Y & 〈x, y〉 ∈ Z) &

(for y st y ∈ Y exx st x ∈ X & 〈x, y〉 ∈ Z)

& forx,y,z,u st 〈x, y〉 ∈ Z & 〈z, u〉 ∈ Z holds x = z iff y = u.

The Tarski’s axiom A claims that

(9) exM st N ∈ M & (forX,Y holds X ∈ M & Y ⊆ X implies Y ∈ M) &

(forX holds X ∈ M implies boolX ∈ M)

& forX holds X ⊆ M implies X ≈ M or X ∈ M.
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