Properties of Subsets

Zinaida Trybulec¹ Warsaw University Białystok

Summary. The text includes theorems concerning properties of subsets, and some operations on sets. The functions yielding improper subsets of a set, i.e. the empty set and the set itself are introduced. Functions and predicates introduced for sets are redefined. Some theorems about enumerated sets are proved.

The articles [2], [3], and [1] provide the terminology and notation for this paper. In the sequel E, X denote objects of the type set; x denotes an object of the type Any. One can prove the following propositions:

(1) $E \neq \emptyset$ implies (x is Element of E iff $x \in E$),

(2) $x \in E$ implies x is Element of E,

(3)
$$X$$
 is Subset of E iff $X \subseteq E$.

We now define two new functors. Let us consider E. The functor

 $\emptyset E$,

yields the type Subset of E and is defined by

 $\mathbf{it} = \emptyset.$

The functor

$\Omega \, E,$

with values of the type Subset **of** E, is defined by

 $\mathbf{it} = E.$

We now state two propositions:

(4)

 \emptyset is Subset of X,

¹Supported by RPBP.III-24.C1.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

(5)
$$X$$
 is Subset of X .

In the sequel A, B, C denote objects of the type Subset of E. Next we state several propositions:

(6)
$$x \in A$$
 implies x is Element of E ,

- (7) (for x being Element of E holds $x \in A$ implies $x \in B$) implies $A \subseteq B$,
- (8) (for x being Element of E holds $x \in A$ iff $x \in B$) implies A = B,

(9)
$$x \in A \text{ implies } x \in E,$$

(10)
$$A \neq \emptyset$$
 iff ex x being Element of E st $x \in A$.

Let us consider E, A. The functor

 A^{c} ,

yields the type Subset of E and is defined by

$$\mathbf{it} = E \setminus A.$$

Let us consider B. Let us note that it makes sense to consider the following functors on restricted areas. Then

Subset of E ,	is	$A \cup B$
Subset of E ,	is	$A\cap B$
Subset of E ,	is	$A \setminus B$
Subset of E .	is	$A \doteq B$

One can prove the following propositions:

(11)
$$x \in A \cap B$$
 implies x is Element of A & x is Element of B,

- (12) $x \in A \cup B$ implies x is Element of A or x is Element of B,
- (13) $x \in A \setminus B$ implies x is Element of A,
- (14) $x \in A \doteq B$ implies x is Element of A or x is Element of B,

(15) (for x being Element of E holds
$$x \in A$$
 iff $x \in B$ or $x \in C$)
implies $A = B \cup C$,

(16) (for x being Element of E holds
$$x \in A$$
 iff $x \in B \& x \in C$)
implies $A = B \cap C$,

(17) (for x being Element of E holds
$$x \in A$$
 iff $x \in B$ & not $x \in C$)
implies $A = B \setminus C$,

68

(18) (for x being Element of E holds
$$x \in A$$
 iff not $(x \in B$ iff $x \in C)$)
implies $A = B \div C$,
(19) $\emptyset E = \emptyset$,
(20) $\Omega E = E$,
(21) $\emptyset E = (\Omega E)^c$,
(22) $\Omega E = (\emptyset E)^c$,
(23) $A^c = E \setminus A$,
(24) $A^{c c} = A$,
(25) $A \cup A^c = \Omega E \& A^c \cup A = \Omega E$,
(26) $A \cap A^c = \emptyset E \& A^c \cap A = \emptyset E$,
(27) $A \cap \emptyset E = \emptyset E \& \emptyset E \cap A = \emptyset E$,
(28) $A \cup \Omega E = \Omega E \& \Omega E \cup A = \Omega E$,
(29) $(A \cup B)^c = A^c \cap B^c$,
(30) $(A \cap B)^c = A^c \cup B^c$,
(31) $A \subseteq B$ iff $B^c \subseteq A^c$,
(32) $A \setminus B = A \cap B \cup A^c \cap B^c$,
(33) $(A \setminus B)^c = A^c \cup B$,
(34) $(A \doteq B)^c = A \cap B \cup A^c \cap B^c$,
(35) $A \subseteq B^c$ implies $B \subseteq A^c$,
(36) $A^c \subseteq B$ implies $B \subseteq A^c$,
(37) $\emptyset E \subseteq E$,
(38) $A \subseteq A^c$ iff $A = \emptyset E$,
(39) $A^c \subseteq A$ iff $A = \emptyset E$,
(39) $A^c \subseteq A$ iff $A = \Omega E$,
(40) $X \subseteq A \& X \subseteq A^c$ implies $X = \emptyset$,
(41) $(A \cup B)^c \subseteq A^c \& (A \cup B)^c \subseteq B^c$,

ZINAIDA TRYBULEC

(42)	$A^{c} \subseteq (A \cap B)^{c} \& B^{c} \subseteq (A \cap B)^{c},$	
(43)	$A \text{ misses } B \text{ iff } A \subseteq B^{c}$,	
(44)	$A \text{ misses } B^{c} \text{ iff } A \subseteq B,$	
(45)	$A \text{ misses } A^{c},$	
(46)	A misses $B \& A^{c}$ misses B^{c} implies $A = B^{c}$,	
(47)	$A \subseteq B \& C$ misses B implies $A \subseteq C^{c}$,	
(48)	(for a being Element of A holds $a \in B$) implies $A \subseteq B$,	
(49)	(for x being Element of E holds $x \in A$) implies $E = A$,	
(50)	$E \neq \emptyset$ implies for A, B	
	holds $A = B^{c}$ iff for x being Element of E holds $x \in A$ iff not $x \in B$,	
(51)	$E \neq \emptyset$ implies for A, B	
	holds $A = B^{c}$ iff for x being Element of E holds not $x \in A$ iff $x \in B$,	
(52)	$E \neq \emptyset$ implies for A, B	
	holds $A = B^{c}$ iff for x being Element of E holds not $(x \in A \text{ iff } x \in B)$,	
(53)	$x \in A^{c}$ implies not $x \in A$.	
	the sequel $x1, x2, x3, x4, x5, x6, x7, x8$ will have the type Element of X. prove the following propositions:	One
(54)	$X \neq \emptyset$ implies $\{x1\}$ is Subset of X,	
(55)	$X \neq \emptyset$ implies $\{x1, x2\}$ is Subset of X,	
(56)	$X \neq \emptyset$ implies {x1,x2,x3} is Subset of X,	

(57)
$$X \neq \emptyset$$
 implies $\{x1, x2, x3, x4\}$ is Subset of X,

(58)
$$X \neq \emptyset$$
 implies $\{x1, x2, x3, x4, x5\}$ is Subset of X ,

(59)
$$X \neq \emptyset$$
 implies $\{x1, x2, x3, x4, x5, x6\}$ is Subset of X ,

(60)
$$X \neq \emptyset$$
 implies $\{x1, x2, x3, x4, x5, x6, x7\}$ is Subset of X ,

(61)
$$X \neq \emptyset$$
 implies { $x1, x2, x3, x4, x5, x6, x7, x8$ } is Subset of X.

In the sequel x1, x2, x3, x4, x5, x6, x7, x8 denote objects of the type Any. We now state several propositions:

(62)
$$x1 \in X$$
 implies $\{x1\}$ is Subset of X ,

70

(63)
$$x1 \in X \& x2 \in X \text{ implies } \{x1, x2\} \text{ is Subset of } X,$$

(64)
$$x1 \in X \& x2 \in X \& x3 \in X \text{ implies } \{x1, x2, x3\} \text{ is Subset of } X$$

(65) $x1 \in X \& x2 \in X \& x3 \in X \& x4 \in X$ implies $\{x1, x2, x3, x4\}$ is Subset of X,

(66)
$$x1 \in X \& x2 \in X \& x3 \in X \& x4 \in X \& x5 \in X$$

implies {x1,x2,x3,x4,x5} is Subset of X,

(67)
$$x1 \in X \& x2 \in X \& x3 \in X \& x4 \in X \& x5 \in X \& x6 \in X$$

implies $\{x1, x2, x3, x4, x5, x6\}$ is Subset of X,

(68)
$$x1 \in X \& x2 \in X \& x3 \in X \& x4 \in X \& x5 \in X \& x6 \in X \& x7 \in X$$

implies $\{x1, x2, x3, x4, x5, x6, x7\}$ is Subset of X ,

$$\& x2 \in X \& x3 \in X \& x4 \in X \& x5 \in X \& x6 \in X \& x7 \in X \& x8 \in X$$

implies $\{x1, x2, x3, x4, x5, x6, x7, x8\}$ is Subset of X.

 $x1 \in X$

The scheme Subset_Ex concerns a constant \mathcal{A} that has the type set and a unary predicate $\mathcal P$ and states that the following holds

ex X being Subset of \mathcal{A} st for x holds $x \in X$ iff $x \in \mathcal{A} \& \mathcal{P}[x]$

for all values of the parameters.

References

- [1] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.
- [2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
- [3] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received March 4, 1989