Properties of Subsets

Zinaida Trybulec ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The text includes theorems concerning properties of subsets, and some operations on sets. The functions yielding improper subsets of a set, i.e. the empty set and the set itself are introduced. Functions and predicates introduced for sets are redefined. Some theorems about enumerated sets are proved.

The articles [2], [3], and [1] provide the terminology and notation for this paper. In the sequel E, X denote objects of the type set; x denotes an object of the type Any. One can prove the following propositions:

$$
\begin{equation*}
E \neq \emptyset \text { implies }(x \text { is Element of } E \text { iff } x \in E) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x \in E \text { implies } x \text { is Element of } E, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
X \text { is Subset of } E \text { iff } X \subseteq E \text {. } \tag{3}
\end{equation*}
$$

We now define two new functors. Let us consider E. The functor

$$
\emptyset E,
$$

yields the type Subset of E and is defined by

$$
\text { it }=\emptyset
$$

The functor

$$
\Omega E
$$

with values of the type Subset of E, is defined by

$$
\mathbf{i t}=E
$$

We now state two propositions:
(4) \emptyset is Subset of X,
${ }^{1}$ Supported by RPBP.III-24.C1. X is Subset of X.

In the sequel A, B, C denote objects of the type Subset of E. Next we state several propositions:

$$
\begin{equation*}
x \in A \text { implies } x \text { is Element of } E, \tag{6}
\end{equation*}
$$

(7) (for x being Element of E holds $x \in A$ implies $x \in B$) implies $A \subseteq B$,
(8) (for x being Element of E holds $x \in A$ iff $x \in B$) implies $A=B$,

$$
\begin{equation*}
x \in A \text { implies } x \in E, \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
A \neq \emptyset \text { iff ex } x \text { being Element of } E \text { st } x \in A \tag{10}
\end{equation*}
$$

Let us consider E, A. The functor

$$
A^{\mathrm{c}}
$$

yields the type Subset of E and is defined by

$$
\mathbf{i t}=E \backslash A
$$

Let us consider B. Let us note that it makes sense to consider the following functors on restricted areas. Then

$A \cup B$	is	Subset of E,
$A \cap B$	is	Subset of E,
$A \backslash B$	is	Subset of E,
$A-B$	is	Subset of E.

One can prove the following propositions:

$$
\begin{gather*}
x \in A \cap B \text { implies } x \text { is Element of } A \& x \text { is Element of } B, \tag{11}\\
x \in A \cup B \text { implies } x \text { is Element of } A \text { or } x \text { is Element of } B, \\
x \in A \backslash B \text { implies } x \text { is Element of } A, \\
x \in A \dot{-} \text { implies } x \text { is Element of } A \text { or } x \text { is Element of } B, \\
(\text { for } x \text { being Element of } E \text { holds } x \in A \text { iff } x \in B \text { or } x \in C) \\
\text { implies } A=B \cup C, \\
(\text { for } x \text { being Element of } E \text { holds } x \in A \text { iff } x \in B \& x \in C) \\
\qquad \quad \operatorname{implies} A=B \cap C, \\
(\text { for } x \text { being Element of } E \text { holds } x \in A \text { iff } x \in B \& \text { not } x \in C \text {) } \\
\text { implies } A=B \backslash C,
\end{gather*}
$$

(18) (for x being Element of E holds $x \in A$ iff $\operatorname{not}(x \in B$ iff $x \in C))$

$$
\text { implies } A=B \div C \text {, }
$$

$$
\begin{equation*}
\emptyset E=\emptyset, \tag{19}
\end{equation*}
$$

$$
\Omega E=E,
$$

$$
\emptyset E=(\Omega E)^{\mathrm{c}},
$$

$$
\Omega E=(\emptyset E)^{\mathrm{c}},
$$

$$
A^{\mathrm{c}}=E \backslash A,
$$

$$
A^{\mathrm{cc}}=A,
$$

$$
\begin{equation*}
A \cup A^{\mathrm{c}}=\Omega E \& A^{\mathrm{c}} \cup A=\Omega E, \tag{25}
\end{equation*}
$$

$$
A \cap A^{\mathrm{c}}=\emptyset E \& A^{\mathrm{c}} \cap A=\emptyset E
$$

$$
A \cap \emptyset E=\emptyset E \& \emptyset E \cap A=\emptyset E,
$$

$$
A \cup \Omega E=\Omega E \& \Omega E \cup A=\Omega E
$$

$$
(A \cup B)^{\mathrm{c}}=A^{\mathrm{c}} \cap B^{\mathrm{c}},
$$

$$
(A \cap B)^{\mathrm{c}}=A^{\mathrm{c}} \cup B^{\mathrm{c}}
$$

$$
\emptyset E \subseteq E,
$$

$$
\begin{equation*}
A \subseteq A^{\mathrm{c}} \text { iff } A=\emptyset E \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
A^{\mathrm{c}} \subseteq A \text { iff } A=\Omega E, \tag{39}
\end{equation*}
$$

$X \subseteq A \& X \subseteq A^{\mathrm{c}}$ implies $X=\emptyset$,

In the sequel $x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8$ will have the type Element of X. One can prove the following propositions:

$$
\begin{gather*}
X \neq \emptyset \text { implies }\{x 1\} \text { is Subset of } X, \tag{54}\\
X \neq \emptyset \text { implies }\{x 1, x 2\} \text { is Subset of } X
\end{gather*}
$$

$$
X \neq \emptyset \text { implies }\{x 1, x 2, x 3\} \text { is Subset of } X
$$

$$
X \neq \emptyset \text { implies }\{x 1, x 2, x 3, x 4\} \text { is Subset of } X
$$

$$
X \neq \emptyset \text { implies }\{x 1, x 2, x 3, x 4, x 5\} \text { is Subset of } X
$$

$$
X \neq \emptyset \text { implies }\{x 1, x 2, x 3, x 4, x 5, x 6\} \text { is Subset of } X
$$

$$
\begin{equation*}
X \neq \emptyset \text { implies }\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} \text { is Subset of } X \tag{61}
\end{equation*}
$$

In the sequel $x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8$ denote objects of the type Any. We now state several propositions:

$$
\begin{equation*}
x 1 \in X \text { implies }\{x 1\} \text { is Subset of } X \tag{62}
\end{equation*}
$$ $x 1 \in X \& x 2 \in X \& x 3 \in X$ implies $\{x 1, x 2, x 3\}$ is Subset of X, (65) $x 1 \in X \& x 2 \in X \& x 3 \in X \& x 4 \in X$ implies $\{x 1, x 2, x 3, x 4\}$ is Subset of X, $x 1 \in X \& x 2 \in X \& x 3 \in X \& x 4 \in X \& x 5 \in X \& x 6 \in X$ implies $\{x 1, x 2, x 3, x 4, x 5, x 6\}$ is Subset of X,

(68) $\quad x 1 \in X \& x 2 \in X \& x 3 \in X \& x 4 \in X \& x 5 \in X \& x 6 \in X \& x 7 \in X$ implies $\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\}$ is Subset of X,

$$
x 1 \in X
$$

$\& x 2 \in X \& x 3 \in X \& x 4 \in X \& x 5 \in X \& x 6 \in X \& x 7 \in X \& x 8 \in X$ implies $\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\}$ is Subset of X.

The scheme Subset_Ex concerns a constant \mathcal{A} that has the type set and a unary predicate \mathcal{P} and states that the following holds
ex X being Subset of \mathcal{A} st for x holds $x \in X$ iff $x \in \mathcal{A} \& \mathcal{P}[x]$
for all values of the parameters.

References

[1] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[3] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

