Families of Sets

Beata Padlewska¹ Warsaw University Białystok

Summary. The article contains definitions of the following concepts: family of sets, family of subsets of a set, the intersection of a family of sets. Functors \cup , \cap , and \setminus are redefined for families of subsets of a set. Some properties of these notions are presented.

The terminology and notation used in this paper are introduced in the following papers: [1], [3], and [2]. For simplicity we adopt the following convention: X, Y, Z, Z1, D will denote objects of the type set; x, y will denote objects of the type Any. Let us consider X. The functor

$$\bigcap X,$$

with values of the type set, is defined by

 $\begin{array}{ll} \text{for}\,x \text{ holds } x \in \text{it iff for}\,Y \text{ holds } Y \in X \text{ implies } x \in Y, & \text{if} & X \neq \emptyset, \\ & \text{it} = \emptyset, & \text{otherwise}. \end{array}$

The following propositions are true:

(1)
$$X \neq \emptyset$$
 implies for x holds $x \in \bigcap X$ iff for Y st $Y \in X$ holds $x \in Y$,

(2) $\bigcap \emptyset = \emptyset,$

$$(3) \qquad \qquad \bigcap X \subseteq \bigcup X$$

(4)
$$Z \in X$$
 implies $\bigcap X \subseteq Z$,

(5)
$$\emptyset \in X \text{ implies } \bigcap X = \emptyset,$$

(6)
$$X \neq \emptyset \& \text{ (for } Z1 \text{ st } Z1 \in X \text{ holds } Z \subseteq Z1 \text{) implies } Z \subseteq \bigcap X,$$

¹Supported by RPBP.III-24.C1.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 BEATA PADLEWSKA

(7)
$$X \neq \emptyset \& X \subseteq Y \text{ implies } \bigcap Y \subseteq \bigcap X,$$

(8)
$$X \in Y \& X \subseteq Z \text{ implies } \bigcap Y \subseteq Z,$$

(9)
$$X \in Y \& X \cap Z = \emptyset \text{ implies } \bigcap Y \cap Z = \emptyset,$$

(10)
$$X \neq \emptyset \& Y \neq \emptyset \text{ implies } \bigcap (X \cup Y) = \bigcap X \cap \bigcap Y,$$

(11)
$$\bigcap\{x\} = x,$$

(12)
$$\bigcap \{X, Y\} = X \cap Y.$$

Set-Family stands for set.

In the sequel SFX, SFY, SFZ will have the type Set-Family. One can prove the following two propositions:

(13)
$$x$$
 is Set-Family,

(14)
$$SFX = SFY$$
 iff for X holds $X \in SFX$ iff $X \in SFY$.

We now define two new predicates. Let us consider SFX, SFY. The predicate

SFX is_finer_than SFY

is defined by

for
$$X$$
 st $X \in SFX$ ex Y st $Y \in SFY$ & $X \subseteq Y$.

The predicate

$$SFX$$
 is_coarser_than SFY

is defined by

for
$$Y$$
 st $Y \in SFY$ ex X st $X \in SFX$ & $X \subseteq Y$.

Next we state several propositions:

(15)
$$SFX$$
 is_finer_than SFY iff for X st $X \in SFX$ ex Y st $Y \in SFY$ & $X \subseteq Y$,

(16)
$$SFX$$
 is_coarser_than SFY

iff for
$$Y$$
 st $Y \in SFY$ ex X st $X \in SFX \& X \subseteq Y$,

(17)
$$SFX \subseteq SFY$$
 implies SFX is_finer_than SFY ,

(18)
$$SFX$$
 is finer than SFY implies $|SFX \subseteq |SFY|$,

(18)
$$SFX$$
 is_finer_than SFY implies $\bigcup SFX \subseteq \bigcup SFY$,
(19) $SFY \neq \emptyset \& SFX$ is_coarser_than SFY implies $\bigcap SFX \subseteq \bigcap SFY$.

148

Let us note that it makes sense to consider the following constant. Then \emptyset is Set-Family. Let us consider x. Let us note that it makes sense to consider the following functor on a restricted area. Then

 $\{x\}$ is Set-Family.

Let us consider y. Let us note that it makes sense to consider the following functor on a restricted area. Then

 $\{x, y\}$ is Set-Family.

One can prove the following propositions:

(20)
$$\emptyset$$
 is_finer_than SFX ,

(21) $SFX \text{ is_finer_than } \emptyset \text{ implies } SFX = \emptyset,$

$$SFX \text{ is_finer_than } SFX,$$

(23)
$$SFX$$
 is_finer_than $SFY \& SFY$ is_finer_than SFZ
implies SFX is_finer_than SFZ ,

(24)
$$SFX$$
 is_finer_than $\{Y\}$ implies for X st $X \in SFX$ holds $X \subseteq Y$,

(25)
$$SFX$$
 is_finer_than $\{X, Y\}$

implies for
$$Z$$
 st $Z \in SFX$ holds $Z \subseteq X$ or $Z \subseteq Y$.

We now define three new functors. Let us consider SFX, SFY. The functor

UNION
$$(SFX, SFY)$$
,

yields the type Set-Family and is defined by

$$Z \in$$
it iff ex X, Y **st** $X \in SFX \& Y \in SFY \& Z = X \cup Y.$

The functor

INTERSECTION (SFX, SFY),

with values of the type Set-Family, is defined by

$$Z \in$$
it iff ex X, Y **st** $X \in SFX \& Y \in SFY \& Z = X \cap Y.$

The functor

DIFFERENCE
$$(SFX, SFY)$$
,

with values of the type Set-Family, is defined by

$$Z \in \mathbf{it} \ \mathbf{iff} \ \mathbf{ex} \ X, Y \ \mathbf{st} \ X \in SFX \ \& \ Y \in SFY \ \& \ Z = X \setminus Y.$$

One can prove the following propositions:

(26)
$$Z \in \text{UNION}(SFX,SFY)$$
 iff ex X,Y st $X \in SFX \& Y \in SFY \& Z = X \cup Y$,

Beata Padlewska

(27)	$Z \in \text{INTERSECTION}\left(SFX,SFY\right)$
	$\mathbf{iff} \mathbf{ex} X, Y \mathbf{st} \ X \in SFX \ \& \ Y \in SFY \ \& \ Z = X \cap Y,$
(28)	$Z \in \text{DIFFERENCE}\left(SFX, SFY\right)$
	$\mathbf{iff} \mathbf{ex} X, Y \mathbf{st} \ X \in SFX \ \& \ Y \in SFY \ \& \ Z = X \setminus Y,$
(29)	SFX is_finer_than UNION (SFX , SFX),
(30)	INTERSECTION (SFX, SFX) is_finer_than SFX ,
(31)	DIFFERENCE (SFX, SFX) is_finer_than SFX ,
(32)	UNION (SFX, SFY) = UNION (SFY, SFX),
(33)	$\label{eq:intersection} \text{INTERSECTION}\left(SFX,SFY\right) = \text{INTERSECTION}\left(SFY,SFX\right),$
(34)	$SFX \cap SFY \neq \emptyset$
	implies $\bigcap SFX \cap \bigcap SFY = \bigcap INTERSECTION (SFX, SFY),$
(35)	$SFY \neq \emptyset$ implies $X \cup \bigcap SFY = \bigcap \text{UNION}(\{X\}, SFY),$
(36)	$X \cap \bigcup SFY = \bigcup \text{INTERSECTION} (\{X\}, SFY),$
(37)	$SFY \neq \emptyset$ implies $X \setminus \bigcup SFY = \bigcap$ DIFFERENCE ({X}, SFY),
(38)	$SFY \neq \emptyset$ implies $X \setminus \bigcap SFY = \bigcup$ DIFFERENCE ({X}, SFY),
(39)	$\bigcup \text{INTERSECTION} \left(SFX, SFY \right) \subseteq \bigcup SFX \cap \bigcup SFY,$
(40) $SFX \neq \emptyset \& SFY \neq \emptyset$ implies $\bigcap SFX \cup \bigcap SFY \subseteq \bigcap \text{UNION}(SFX, SFY),$	
(41)	$SFX \neq \emptyset \ \& \ SFY \neq \emptyset$
	implies \bigcap DIFFERENCE (SFX,SFY) \subseteq \bigcap SFX \setminus \bigcap SFY.
Let D have the type set.	

Let D have the type set.

Subset-Family of D stands for Subset of bool D.

We now state a proposition

(42) for F being Subset of bool D holds F is Subset-Family of D.

In the sequel F, G have the type Subset-Family of D; P has the type Subset of D. Let us consider D, F, G. Let us note that it makes sense to consider the following functors on restricted areas. Then

 $F \cup G$ is Subset-Family of D,

150

$$F \cap G$$
 is Subset-Family of D ,
 $F \setminus G$ is Subset-Family of D .

Next we state a proposition

(43)
$$X \in F$$
 implies X is Subset of D.

Let us consider D, F. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$[]F$$
 is Subset of D .

Let us consider D, F. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$\bigcap F$$
 is Subset of D.

The following proposition is true

(44)
$$F = G \text{ iff for } P \text{ holds } P \in F \text{ iff } P \in G.$$

The scheme SubFamEx deals with a constant \mathcal{A} that has the type set and a unary predicate \mathcal{P} and states that the following holds

ex *F* being Subset-Family of *A* st for *B* being Subset of *A* holds $B \in F$ iff $\mathcal{P}[B]$

for all values of the parameters.

Let us consider D, F. The functor

 $F^{\,\mathrm{c}}\,,$

yields the type Subset-Family of D and is defined by

for P being Subset of D holds
$$P \in$$
it iff $P^{c} \in F$.

Next we state four propositions:

(45) for
$$P$$
 holds $P \in F^{c}$ iff $P^{c} \in F$,

(46)
$$F \neq \emptyset$$
 implies $F^{c} \neq \emptyset$,

(47)
$$F \neq \emptyset \text{ implies } \Omega D \setminus \bigcup F = \bigcap (F^{c}),$$

(48)
$$F \neq \emptyset$$
 implies $\bigcup F^{c} = \Omega D \setminus \bigcap F.$

References

- [1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
- [2] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1, 1990.
- [3] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received April 5, 1989