Families of Sets

Beata Padlewska ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The article contains definitions of the following concepts: family of sets, family of subsets of a set, the intersection of a family of sets. Functors \cup, \cap, and \backslash are redefined for families of subsets of a set. Some properties of these notions are presented.

The terminology and notation used in this paper are introduced in the following papers: [1], [3], and [2]. For simplicity we adopt the following convention: $X, Y, Z, Z 1, D$ will denote objects of the type set; x, y will denote objects of the type Any. Let us consider X. The functor

$$
\cap x,
$$

with values of the type set, is defined by
for x holds $x \in$ it iff for Y holds $Y \in X$ implies $x \in Y$, if $\quad X \neq \emptyset$,

$$
\text { it }=\emptyset, \quad \text { otherwise } .
$$

The following propositions are true:
(1) $\quad X \neq \emptyset$ implies for x holds $x \in \bigcap X$ iff for Y st $Y \in X$ holds $x \in Y$,

$$
\begin{equation*}
\bigcap \emptyset=\emptyset, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\bigcap x \subseteq \bigcup X, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
Z \in X \text { implies } \bigcap X \subseteq Z \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\emptyset \in X \text { implies } \bigcap X=\emptyset, \tag{5}
\end{equation*}
$$

(6) $\quad X \neq \emptyset \&($ for $Z 1$ st $Z 1 \in X$ holds $Z \subseteq Z 1)$ implies $Z \subseteq \bigcap X$,

[^0] ISSN 0777-4028
\[

$$
\begin{equation*}
X \neq \emptyset \& X \subseteq Y \text { implies } \bigcap Y \subseteq \bigcap X \tag{7}
\end{equation*}
$$

\]

$$
\begin{equation*}
X \in Y \& X \subseteq Z \text { implies } \bigcap Y \subseteq Z \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
X \in Y \& X \cap Z=\emptyset \text { implies } \bigcap Y \cap Z=\emptyset, \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
X \neq \emptyset \& Y \neq \emptyset \text { implies } \bigcap(X \cup Y)=\bigcap X \cap \bigcap Y \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\bigcap\{x\}=x, \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\bigcap\{X, Y\}=X \cap Y . \tag{12}
\end{equation*}
$$

Set-Family stands for set.
In the sequel $S F X, S F Y, S F Z$ will have the type Set-Family. One can prove the following two propositions:

$$
\begin{equation*}
x \text { is Set-Family }, \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
S F X=S F Y \text { iff for } X \text { holds } X \in S F X \text { iff } X \in S F Y \tag{14}
\end{equation*}
$$

We now define two new predicates. Let us consider $S F X, S F Y$. The predicate $S F X$ is_finer_than $S F Y$
is defined by

$$
\text { for } X \text { st } X \in S F X \text { ex } Y \text { st } Y \in S F Y \& X \subseteq Y
$$

The predicate $S F X$ is_coarser_than $S F Y$
is defined by

$$
\text { for } Y \text { st } Y \in S F Y \text { ex } X \text { st } X \in S F X \& X \subseteq Y \text {. }
$$

Next we state several propositions:
(15) $S F X$ is_finer_than $S F Y$ iff for X st $X \in S F X$ ex Y st $Y \in S F Y \& X \subseteq Y$,
$S F X$ is_coarser_than $S F Y$
iff for Y st $Y \in S F Y$ ex X st $X \in S F X \& X \subseteq Y$,
$S F X \subseteq S F Y$ implies $S F X$ is_finer_than $S F Y$,
$S F X$ is_finer_than $S F Y$ implies $\bigcup S F X \subseteq \bigcup S F Y$,
(19) $\quad S F Y \neq \emptyset \& S F X$ is_coarser_than $S F Y$ implies $\bigcap S F X \subseteq \bigcap S F Y$.

Let us note that it makes sense to consider the following constant. Then \emptyset is Set-Family. Let us consider x. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x\} \quad \text { is } \quad \text { Set-Family. }
$$

Let us consider y. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x, y\} \quad \text { is } \quad \text { Set-Family. }
$$

One can prove the following propositions:

$$
\begin{gather*}
\emptyset \text { is_finer_than } S F X, \tag{20}\\
S F X \text { is_finer_than } \emptyset \text { implies } S F X=\emptyset, \tag{21}\\
S F X \text { is_finer_than } S F X, \tag{22}\\
S F X \text { is_finer_than } S F Y \& S F Y \text { is_finer_than } S F Z \tag{23}\\
\text { implies } S F X \text { is_finer_than } S F Z, \\
S F X \text { is_finer_than }\{Y\} \text { implies for } X \text { st } X \in S F X \text { holds } X \subseteq Y, \tag{24}\\
S F X \text { is_finer_than }\{X, Y\} \tag{25}\\
\text { implies for } Z \text { st } Z \in S F X \text { holds } Z \subseteq X \text { or } Z \subseteq Y .
\end{gather*}
$$

We now define three new functors. Let us consider $S F X, S F Y$. The functor

$$
\text { UNION }(S F X, S F Y),
$$

yields the type Set-Family and is defined by

$$
Z \in \text { it iff ex } X, Y \text { st } X \in S F X \& Y \in S F Y \& Z=X \cup Y
$$

The functor

$$
\text { INTERSECTION }(S F X, S F Y) \text {, }
$$

with values of the type Set-Family, is defined by

$$
Z \in \text { it iff ex } X, Y \text { st } X \in S F X \& Y \in S F Y \& Z=X \cap Y
$$

The functor

$$
\text { DIFFERENCE }(S F X, S F Y),
$$

with values of the type Set-Family, is defined by

$$
Z \in \text { it iff ex } X, Y \text { st } X \in S F X \& Y \in S F Y \& Z=X \backslash Y
$$

One can prove the following propositions:
(26) $Z \in \mathrm{UNION}(S F X, S F Y)$ iff ex X, Y st $X \in S F X \& Y \in S F Y \& Z=X \cup Y$,

$$
\begin{gather*}
Z \in \operatorname{INTERSECTION}(S F X, S F Y) \tag{27}\\
\text { iff ex } X, Y \text { st } X \in S F X \& Y \in S F Y \& Z=X \cap Y, \\
Z \in \operatorname{DIFFERENCE}(S F X, S F Y) \\
\text { iff ex } X, Y \text { st } X \in S F X \& Y \in S F Y \& Z=X \backslash Y,
\end{gather*}
$$

$S F X$ is_finer_than UNION $(S F X, S F X)$, INTERSECTION $(S F X, S F X)$ is_finer_than $S F X$, DIFFERENCE (SFX,SFX) is_finer_than $S F X$,

$$
\begin{equation*}
\text { UNION }(S F X, S F Y)=\text { UNION }(S F Y, S F X), \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\text { INTERSECTION }(S F X, S F Y)=\operatorname{INTERSECTION}(S F Y, S F X) \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
S F X \cap S F Y \neq \emptyset \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
\text { implies } \bigcap S F X \cap \bigcap S F Y=\bigcap \text { INTERSECTION }(S F X, S F Y) \text {, } \tag{34}
\end{equation*}
$$

$$
S F Y \neq \emptyset \text { implies } X \cup \bigcap S F Y=\bigcap \mathrm{UNION}(\{X\}, S F Y),
$$

$$
\begin{equation*}
X \cap \bigcup S F Y=\bigcup \text { INTERSECTION }(\{X\}, S F Y) \tag{36}
\end{equation*}
$$

$$
S F Y \neq \emptyset \text { implies } X \backslash \bigcup S F Y=\bigcap \text { DIFFERENCE }(\{X\}, S F Y)
$$

$$
\begin{equation*}
S F Y \neq \emptyset \text { implies } X \backslash \bigcap S F Y=\bigcup \text { DIFFERENCE }(\{X\}, S F Y) \tag{39}
\end{equation*}
$$

$\bigcup \operatorname{INTERSECTION}(S F X, S F Y) \subseteq \bigcup S F X \cap \bigcup S F Y$,
(40) $S F X \neq \emptyset \& S F Y \neq \emptyset$ implies $\bigcap S F X \cup \bigcap S F Y \subseteq \bigcap$ UNION $(S F X, S F Y)$,
(41)

$$
\begin{gathered}
S F X \neq \emptyset \& S F Y \neq \emptyset \\
\text { implies } \bigcap \text { DIFFERENCE }(S F X, S F Y) \subseteq \bigcap S F X \backslash \bigcap S F Y .
\end{gathered}
$$

Let D have the type set.

$$
\text { Subset-Family of } D \text { stands for } \text { Subset of bool } D \text {. }
$$

We now state a proposition
for F being Subset of bool D holds F is Subset-Family of D.
In the sequel F, G have the type Subset-Family of $D ; P$ has the type Subset of D. Let us consider D, F, G. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
F \cup G \quad \text { is } \quad \text { Subset-Family of } D,
$$

$F \cap G$	is \quad Subset-Family of D,
$F \backslash G$	is \quad Subset-Family of D.

Next we state a proposition

$$
\begin{equation*}
X \in F \text { implies } X \text { is Subset of } D \text {. } \tag{43}
\end{equation*}
$$

Let us consider D, F. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\bigcup F \quad \text { is } \quad \text { Subset of } D .
$$

Let us consider D, F. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\bigcap F \quad \text { is } \quad \text { Subset of } D .
$$

The following proposition is true

$$
\begin{equation*}
F=G \text { iff for } P \text { holds } P \in F \text { iff } P \in G . \tag{44}
\end{equation*}
$$

The scheme SubFamEx deals with a constant \mathcal{A} that has the type set and a unary predicate \mathcal{P} and states that the following holds
ex F being Subset-Family of \mathcal{A} st for B being Subset of \mathcal{A} holds $B \in F$ iff $\mathcal{P}[B]$
for all values of the parameters.
Let us consider D, F. The functor

$$
F^{c},
$$

yields the type Subset-Family of D and is defined by

$$
\text { for } P \text { being Subset of } D \text { holds } P \in \text { it iff } P^{\mathrm{c}} \in F \text {. }
$$

Next we state four propositions:

$$
\begin{gather*}
\text { for } P \text { holds } P \in F^{\mathrm{c}} \text { iff } P^{\mathrm{c}} \in F, \tag{45}\\
F \neq \emptyset \text { implies } F^{\mathrm{c}} \neq \emptyset \tag{46}
\end{gather*}
$$

$$
\begin{align*}
F & \neq \emptyset \text { implies } \Omega D \backslash \bigcup F=\bigcap\left(F^{\mathrm{c}}\right) \tag{47}\\
F & \neq \emptyset \text { implies } \bigcup F^{\mathrm{c}}=\Omega D \backslash \bigcap F \tag{48}
\end{align*}
$$

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[2] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1, 1990.
[3] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1.

