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Summary. The article includes theorems concerning properties of relations
defined as a subset of the Cartesian product of two sets (mode Relation of X,Y
where X,Y are sets). Some notions, introduced in [3] such as domain, codomain,
field of a relation, composition of relations, image and inverse image of a set under
a relation are redefined.

The articles [1], [2], and [3] provide the terminology and notation for this paper. For

simplicity we adopt the following convention: A, B, X , X1, Y , Y 1, Z will denote

objects of the type set; a, x, y will denote objects of the type Any. Let us consider

X , Y . The mode

Relation of X, Y,

which widens to the type Relation, is defined by

it ⊆ [:X, Y :].

The following proposition is true

(1) forR being Relation holds R ⊆ [:X, Y :] iff R is Relation of X, Y.

In the sequel P , R will denote objects of the type Relation of X , Y . The following

propositions are true:

(2) A ⊆ R implies A ⊆ [:X, Y :],

(3) A ⊆ [:X, Y :] implies A is Relation of X, Y,

(4) A ⊆ R implies A is Relation of X, Y,

(5) [:X, Y :] is Relation of X, Y,
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(6) a ∈ R implies exx,y st a = 〈x, y〉 & x ∈ X & y ∈ Y,

(7) 〈x, y〉 ∈ R implies x ∈ X & y ∈ Y,

(8) x ∈ X & y ∈ Y implies {〈x, y〉} is Relation of X, Y,

(9) forR being Relation st domR ⊆ X holds R is Relation of X, rngR,

(10) forR being Relation st rngR ⊆ Y holds R is Relation of domR,Y,

(11) forR being Relation

st domR ⊆ X & rngR ⊆ Y holds R is Relation of X, Y,

(12) domR ⊆ X & rngR ⊆ Y,

(13) domR ⊆ X1 implies R is Relation of X1,Y,

(14) rngR ⊆ Y 1 implies R is Relation of X, Y 1,

(15) X ⊆ X1 implies R is Relation of X1,Y,

(16) Y ⊆ Y 1 implies R is Relation of X, Y 1,

(17) X ⊆ X1 & Y ⊆ Y 1 implies R is Relation of X1,Y 1.

Let us consider X , Y , P , R. Let us note that it makes sense to consider the following

functors on restricted areas. Then

P ∪ R is Relation of X, Y,

P ∩ R is Relation of X, Y,

P \ R is Relation of X, Y.

We now state a proposition

(18) R ∩ [:X, Y :] = R.

Let us consider X , Y , R. Let us note that it makes sense to consider the following

functors on restricted areas. Then

domR is Subset of X,

rngR is Subset of Y.

Next we state several propositions:

(19) fieldR ⊆ X ∪ Y,

(20) forR being Relation holds R is Relation of domR,rngR,
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(21) domR ⊆ X1 & rngR ⊆ Y 1 implies R is Relation of X1,Y 1,

(22) (forx st x ∈ X ex y st 〈x, y〉 ∈ R) iff domR = X,

(23) (for y st y ∈ Y exx st 〈x, y〉 ∈ R) iff rngR = Y.

Let us consider X , Y , R. Let us note that it makes sense to consider the following

functor on a restricted area. Then

R˜ is Relation of Y, X.

The arguments of the notions defined below are the following: X , Y , Z which are

objects of the type reserved above; P which is an object of the type Relation of X , Y ;

R which is an object of the type Relation of Y , Z. Let us note that it makes sense to

consider the following functor on a restricted area. Then

P · R is Relation of X, Z.

One can prove the following propositions:

(24) dom (R )̃ = rngR & rng (R )̃ = domR,

(25) Ø is Relation of X, Y,

(26) R is Relation of ∅,Y implies R = Ø ,

(27) R is Relation of X, ∅ implies R = Ø ,

(28) △X ⊆ [:X, X :],

(29) △X is Relation of X, X,

(30) △A ⊆ R implies A ⊆ domR & A ⊆ rngR,

(31) △X ⊆ R implies X = domR & X ⊆ rngR,

(32) △Y ⊆ R implies Y ⊆ domR & Y = rngR.

Let us consider X , Y , R, A. Let us note that it makes sense to consider the following

functor on a restricted area. Then

R | A is Relation of X, Y.

Let us consider X , Y , B, R. Let us note that it makes sense to consider the following

functor on a restricted area. Then

B | R is Relation of X, Y.

The following four propositions are true:

(33) R | X1 is Relation of X1,Y,
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(34) X ⊆ X1 implies R | X1 = R,

(35) Y 1 | R is Relation of X, Y 1,

(36) Y ⊆ Y 1 implies Y 1 | R = R.

Let us consider X , Y , R, A. Let us note that it makes sense to consider the following

functors on restricted areas. Then

R ◦ A is Subset of Y,

R -1 A is Subset of X.

Next we state three propositions:

(37) R ◦ A ⊆ Y & R -1 A ⊆ X,

(38) R ◦ X = rngR & R -1 Y = domR,

(39) R ◦ (R -1 Y ) = rngR & R -1 (R ◦ X) = domR.

The scheme Rel On Set Ex deals with a constant A that has the type set, a constant

B that has the type set and a binary predicate P and states that the following holds

exR being Relation of A,B st forx,y holds 〈x, y〉 ∈ R iff x ∈ A & y ∈ B & P [x, y]

for all values of the parameters.

Let us consider X .

Relation of X stands for Relation of X, X.

We now state three propositions:

(40) forR being Relation of X, X holds R ⊆ [:X, X :] iff R is Relation of X,

(41) [:X, X :] is Relation of X,

(42) forR being Relation of X, X holds R is Relation of X.

In the sequel R denotes an object of the type Relation of X . One can prove the

following propositions:

(43) △X is Relation of X,

(44) △X ⊆ R implies X = domR & X = rngR,

(45) R · (△X) = R & (△X) · R = R.

For simplicity we adopt the following convention: D, D1, D2, E, F denote objects

of the type DOMAIN; R denotes an object of the type Relation of D, E; x denotes
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an object of the type Element of D; y denotes an object of the type Element of E.

We now state a proposition

(46) △D 6= Ø .

Let us consider D, E, R. Let us note that it makes sense to consider the following

functors on restricted areas. Then

domR is Element of boolD,

rngR is Element of bool E.

Next we state several propositions:

(47) forx being Element of D

holds x ∈ domR iff ex y being Element of E st 〈x, y〉 ∈ R,

(48) for y being Element of E

holds y ∈ rngR iff exx being Element of D st 〈x, y〉 ∈ R,

(49) forx being Element of D

holds x ∈ domR implies ex y being Element of E st y ∈ rngR,

(50) for y being Element of E

holds y ∈ rngR implies exx being Element of D st x ∈ domR,

(51) forP being Relation of D, E, R being Relation of E, F

forx being Element of D, z being Element of F

holds 〈x, z〉 ∈ P · R iff ex y being Element of E st 〈x, y〉 ∈ P & 〈y, z〉 ∈ R.

Let us consider D, E, R, D1. Let us note that it makes sense to consider the following

functors on restricted areas. Then

R ◦ D1 is Element of boolE,

R -1 D1 is Element of boolD.

We now state two propositions:

(52) y ∈ R ◦ D1 iff exx being Element of D st 〈x, y〉 ∈ R & x ∈ D1,

(53) x ∈ R -1 D2 iff ex y being Element of E st 〈x, y〉 ∈ R & y ∈ D2.

The scheme Rel On Dom Ex concerns a constant A that has the type DOMAIN, a

constant B that has the type DOMAIN and a binary predicate P and states that the

following holds

exR being Relation of A,B st forx being Element of A, y being Element of B

holds 〈x, y〉 ∈ R iff x ∈ A & y ∈ B & P [x, y]

for all values of the parameters.
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