Relations Defined on Sets

Edmund Woronowicz ${ }^{1}$
Warsaw University
Białystok

Summary. The article includes theorems concerning properties of relations defined as a subset of the Cartesian product of two sets (mode Relation of X, Y where X, Y are sets). Some notions, introduced in [3] such as domain, codomain, field of a relation, composition of relations, image and inverse image of a set under a relation are redefined.

The articles [1], [2], and [3] provide the terminology and notation for this paper. For simplicity we adopt the following convention: $A, B, X, X 1, Y, Y 1, Z$ will denote objects of the type set; a, x, y will denote objects of the type Any. Let us consider X, Y. The mode

$$
\text { Relation of } X, Y,
$$

which widens to the type Relation, is defined by

$$
\mathbf{i t} \subseteq[: X, Y:] .
$$

The following proposition is true
(1) \quad for R being Relation holds $R \subseteq[: X, Y:]$ iff R is Relation of X, Y.

In the sequel P, R will denote objects of the type Relation of X, Y. The following propositions are true:

$$
\begin{equation*}
A \subseteq R \text { implies } A \subseteq: X, Y: \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
A \subseteq[: X, Y: \text { implies } A \text { is Relation of } X, Y, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
A \subseteq R \text { implies } A \text { is Relation of } X, Y \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
[X, Y: \text { is Relation of } X, Y, \tag{5}
\end{equation*}
$$

[^0](6)
$$
a \in R \text { implies ex } x, y \text { st } a=\langle x, y\rangle \& x \in X \& y \in Y
$$
\[

$$
\begin{equation*}
\langle x, y\rangle \in R \text { implies } x \in X \& y \in Y \tag{7}
\end{equation*}
$$

\]

$$
\begin{equation*}
x \in X \& y \in Y \text { implies }\{\langle x, y\rangle\} \text { is Relation of } X, Y \tag{8}
\end{equation*}
$$

(9) for R being Relation st $\operatorname{dom} R \subseteq X$ holds R is Relation of $X, \operatorname{rng} R$,
(10) for R being Relation st $\operatorname{rng} R \subseteq Y$ holds R is Relation of dom R, Y,
for R being Relation st $\operatorname{dom} R \subseteq X \& \operatorname{rng} R \subseteq Y$ holds R is Relation of X, Y, $\operatorname{dom} R \subseteq X \& \operatorname{rng} R \subseteq Y$, dom $R \subseteq X 1$ implies R is Relation of $X 1, Y$, rng $R \subseteq Y 1$ implies R is Relation of $X, Y 1$, $X \subseteq X 1$ implies R is Relation of $X 1, Y$,
$Y \subseteq Y 1$ implies R is Relation of $X, Y 1$, $X \subseteq X 1 \& Y \subseteq Y 1$ implies R is Relation of $X 1, Y 1$.

Let us consider X, Y, P, R. Let us note that it makes sense to consider the following functors on restricted areas. Then

$P \cup R$	is	Relation of X, Y,
$P \cap R$	is	Relation of X, Y,
$P \backslash R$	is	Relation of X, Y.

We now state a proposition

$$
\begin{equation*}
R \cap[X, Y:]=R . \tag{18}
\end{equation*}
$$

Let us consider X, Y, R. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{ccc}
\operatorname{dom} R & \text { is } & \text { Subset of } X, \\
\operatorname{rng} R & \text { is } & \text { Subset of } Y .
\end{array}
$$

Next we state several propositions:

$$
\begin{equation*}
\text { field } R \subseteq X \cup Y \tag{19}
\end{equation*}
$$

for R being Relation holds R is Relation of $\operatorname{dom} R, \operatorname{rng} R$,
dom $R \subseteq X 1 \& \operatorname{rng} R \subseteq Y 1$ implies R is Relation of $X 1, Y 1$, $($ for x st $x \in X$ ex y st $\langle x, y\rangle \in R) \mathbf{i f f} \operatorname{dom} R=X$,
$($ for y st $y \in Y$ ex x st $\langle x, y\rangle \in R)$ iff $\operatorname{rng} R=Y$.
Let us consider X, Y, R. Let us note that it makes sense to consider the following functor on a restricted area. Then
$R^{\sim} \quad$ is \quad Relation of Y, X.
The arguments of the notions defined below are the following: X, Y, Z which are objects of the type reserved above; P which is an object of the type Relation of X, Y; R which is an object of the type Relation of Y, Z. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
P \cdot R \quad \text { is } \quad \text { Relation of } X, Z .
$$

One can prove the following propositions:

$$
\begin{equation*}
\operatorname{dom}\left(R^{\sim}\right)=\operatorname{rng} R \& \operatorname{rng}\left(R^{\sim}\right)=\operatorname{dom} R, \tag{24}
\end{equation*}
$$

\varnothing is Relation of X, Y,
R is Relation of \emptyset, Y implies $R=\emptyset$, R is Relation of X, \emptyset implies $R=\emptyset$,

$$
\triangle X \subseteq: X, X:
$$

$\triangle X$ is Relation of X, X,

$$
\triangle A \subseteq R \text { implies } A \subseteq \operatorname{dom} R \& A \subseteq \operatorname{rng} R
$$

$\triangle X \subseteq R$ implies $X=\operatorname{dom} R \& X \subseteq \operatorname{rng} R$,
$\triangle Y \subseteq R$ implies $Y \subseteq \operatorname{dom} R \& Y=\operatorname{rng} R$.
Let us consider X, Y, R, A. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
R \mid A \quad \text { is } \quad \text { Relation of } X, Y .
$$

Let us consider X, Y, B, R. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
B \mid R \quad \text { is } \quad \text { Relation of } X, Y .
$$

The following four propositions are true:

$$
\begin{equation*}
R \mid X 1 \text { is Relation of } X 1, Y \tag{33}
\end{equation*}
$$

$$
\begin{gather*}
X \subseteq X 1 \text { implies } R \mid X 1=R \tag{34}\\
Y 1 \mid R \text { is Relation of } X, Y 1 \\
Y \subseteq Y 1 \text { implies } Y 1 \mid R=R
\end{gather*}
$$

Let us consider X, Y, R, A. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{lll}
R^{\circ} A & \text { is } & \text { Subset of } Y \\
R^{-1} A & \text { is } & \text { Subset of } X
\end{array}
$$

Next we state three propositions:

$$
\begin{gather*}
R^{\circ} A \subseteq Y \& R^{-1} A \subseteq X, \tag{37}\\
R^{\circ} X=\operatorname{rng} R \& R^{-1} Y=\operatorname{dom} R, \tag{38}\\
R^{\circ}\left(R^{-1} Y\right)=\operatorname{rng} R \& R^{-1}\left(R^{\circ} X\right)=\operatorname{dom} R . \tag{39}
\end{gather*}
$$

The scheme Rel_On_Set_Ex deals with a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a binary predicate \mathcal{P} and states that the following holds
ex R being Relation of \mathcal{A}, \mathcal{B} st for x, y holds $\langle x, y\rangle \in R$ iff $x \in \mathcal{A} \& y \in \mathcal{B} \& \mathcal{P}[x, y]$
for all values of the parameters.
Let us consider X.

$$
\text { Relation of } X \quad \text { stands for } \quad \text { Relation of } X, X
$$

We now state three propositions:
(40) for R being Relation of X, X holds $R \subseteq: X, X:$ iff R is Relation of X,

$$
\begin{equation*}
: X, X \vdots \text { is Relation of } X, \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
\text { for } R \text { being Relation of } X, X \text { holds } R \text { is Relation of } X \text {. } \tag{42}
\end{equation*}
$$

In the sequel R denotes an object of the type Relation of X. One can prove the following propositions:

$$
\begin{gather*}
\triangle X \text { is Relation of } X, \tag{43}\\
\triangle X \subseteq R \text { implies } X=\operatorname{dom} R \& X=\operatorname{rng} R, \\
R \cdot(\triangle X)=R \&(\triangle X) \cdot R=R \tag{44}
\end{gather*}
$$

For simplicity we adopt the following convention: $D, D 1, D 2, E, F$ denote objects of the type DOMAIN; R denotes an object of the type Relation of $D, E ; x$ denotes
an object of the type Element of $D ; y$ denotes an object of the type Element of E. We now state a proposition
$\triangle D \neq \varnothing$.
Let us consider D, E, R. Let us note that it makes sense to consider the following functors on restricted areas. Then

| $\operatorname{dom} R$ | is \quad Element of bool D, |
| :--- | :--- | :--- |
| $\operatorname{rng} R$ | is \quad Element of bool E. |

Next we state several propositions:
holds $x \in \operatorname{dom} R$ iff ex y being Element of E st $\langle x, y\rangle \in R$,

for y being Element of E

holds $y \in \operatorname{rng} R$ iff ex x being Element of D st $\langle x, y\rangle \in R$,

$$
\begin{equation*}
\text { for } x \text { being Element of } D \tag{49}
\end{equation*}
$$

holds $x \in \operatorname{dom} R$ implies ex y being Element of E st $y \in \operatorname{rng} R$,
for y being Element of E
holds $y \in \operatorname{rng} R$ implies ex x being Element of D st $x \in \operatorname{dom} R$,

> for P being Relation of D, E, R being Relation of E, F
> for x being Element of D, z being Element of F
holds $\langle x, z\rangle \in P \cdot R$ iff ex y being Element of E st $\langle x, y\rangle \in P \&\langle y, z\rangle \in R$.
Let us consider $D, E, R, D 1$. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{lll}
R^{\circ} D 1 & \text { is } & \text { Element of bool } E, \\
R^{-1} D 1 & \text { is } & \text { Element of bool } D .
\end{array}
$$

We now state two propositions:
$y \in R^{\circ} D 1$ iff ex x being Element of D st $\langle x, y\rangle \in R \& x \in D 1$,
$x \in R^{-1} D 2$ iff ex y being Element of E st $\langle x, y\rangle \in R \& y \in D 2$.

The scheme Rel_On_Dom_Ex concerns a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN and a binary predicate \mathcal{P} and states that the following holds
ex R being Relation of \mathcal{A}, \mathcal{B} st for x being Element of \mathcal{A}, y being Element of \mathcal{B}

$$
\text { holds }\langle x, y\rangle \in R \text { iff } x \in \mathcal{A} \& y \in \mathcal{B} \& \mathcal{P}[x, y]
$$

for all values of the parameters.

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[2] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.
[3] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1, 1990.

[^0]: ${ }^{1}$ Supported by RPBP III. 24 C1

