Properties of Binary Relations

Edmund Woronowicz¹ Warsaw University Białystok Anna Zalewska² Warsaw University Białystok

Summary. The paper contains definitions of some properties of binary relations: reflexivity, irreflexivity, symmetry, asymmetry, antisymmetry, connectedness, strong connectedness, and transitivity. Basic theorems relating the above mentioned notions are given.

The terminology and notation used here have been introduced in the following articles: [1], [2], and [3]. For simplicity we adopt the following convention: X will have the type set; x, y, z will have the type Any; P, R will have the type Relation. We now define several new predicates. Let us consider R, X. The predicate

R is_reflexive_in *X* is defined by $x \in X$ implies $\langle x, x \rangle \in R$.

The predicate

R is irreflexive in X is defined by $x \in X$ implies not $\langle x, x \rangle \in R$.

The predicate

```
R is_symmetric_in X
```

is defined by

$$x \in X \& y \in X \& \langle x, y \rangle \in R$$
 implies $\langle y, x \rangle \in R$.

The predicate

R is_antisymmetric_in X

is defined by

$$x \in X \& y \in X \& \langle x, y \rangle \in R \& \langle y, x \rangle \in R$$
 implies $x = y$.

¹Supported by RPBP III.24 C1.

²Supported by RPBP III.24 C1.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 The predicate

R is_asymmetric_in X

is defined by

$$x \in X \& y \in X \& \langle x, y \rangle \in R$$
 implies not $\langle y, x \rangle \in R$

The predicate

R is_connected_in X

is defined by

$$x \in X \& y \in X \& x \neq y$$
 implies $\langle x, y \rangle \in R$ or $\langle y, x \rangle \in R$.

The predicate

R is_strongly_connected_in X

is defined by

$$x \in X \& y \in X$$
 implies $\langle x, y \rangle \in R$ or $\langle y, x \rangle \in R$.

The predicate

R is_transitive_in X

is defined by

$$x \in X \& y \in X \& z \in X \& \langle x, y \rangle \in R \& \langle y, z \rangle \in R$$
 implies $\langle x, z \rangle \in R$.

We now state several propositions:

(1)	R is_reflexive_in X iff for x st $x \in X$ holds $\langle x, x \rangle \in R$,
(2)	R is_irreflexive_in X iff for x st $x \in X$ holds not $\langle x, x \rangle \in R$,
(3)	$R \text{ is_symmetric_in } X$ iff for x, y st $x \in X \& y \in X \& \langle x, y \rangle \in R$ holds $\langle y, x \rangle \in R$,
(4)	$R \text{ is_antisymmetric_in } X$ iff for x, y st $x \in X \& y \in X \& \langle x, y \rangle \in R \& \langle y, x \rangle \in R$ holds $x = y$,
(5)	$R \text{ is_asymmetric_in } X$ iff for x, y st $x \in X \& y \in X \& \langle x, y \rangle \in R$ holds not $\langle y, x \rangle \in R$,
(6)	$R \text{ is_connected_in } X$ iff for $x, y \text{ st } x \in X \& y \in X \& x \neq y \text{ holds } \langle x, y \rangle \in R \text{ or } \langle y, x \rangle \in R$,
(7)	R is_strongly_connected_in X

86

R is_transitive_in X iff for x, y, z

st $x \in X \& y \in X \& z \in X \& \langle x, y \rangle \in R \& \langle y, z \rangle \in R$ holds $\langle x, z \rangle \in R$. We now define several new predicates. Let us consider R. The predicate R is_reflexive is defined by R is_reflexive_in field R. The predicate R is_irreflexive is defined by R is_irreflexive_in field R. The predicate R is_symmetric is defined by R is_symmetric_in field R. The predicate R is_antisymmetric is defined by R is_antisymmetric_in field R. The predicate R is_asymmetric is defined by R is_asymmetric_in field R. The predicate

R is_connected

(8)

The predicate				
R is strongly connected	is defined by	R is_strongly_connected_in field R .		

is defined by

R is_connected_in field R.

The predicate

R is_transitive	is defined by	R is_transitive_in field R .
-------------------	---------------	----------------------------------

We now state a number of propositions:

(9)	R is_reflexive iff R is_reflexive_in field R ,
(10)	R is_irreflexive iff R is_irreflexive_in field R ,
(11)	R is_symmetric iff R is_symmetric_in field R ,
(12)	R is_antisymmetric iff R is_antisymmetric_in field R ,
(13)	R is_asymmetric iff R is_asymmetric_in field R ,
(14)	R is_connected iff R is_connected_in field R ,
(15)	R is_strongly_connected iff R is_strongly_connected_in field R ,
(16)	R is_transitive iff R is_transitive_in field R ,

(17)	R is reflexive iff \triangle field $R \subseteq R$,
(18)	R is_irreflexive iff \triangle (field R) $\cap R = \emptyset$,
(19)	R is_antisymmetric_in X iff $R \setminus \bigtriangleup X$ is_asymmetric_in $X,$
(20)	R is_asymmetric_in X implies $R \cup \bigtriangleup X$ is_antisymmetric_in X ,
(21)	R is_antisymmetric_in X implies $R \setminus \bigtriangleup X$ is_asymmetric_in X ,
(22)	R is_symmetric & R is_transitive implies R is_reflexive,
(23)	$\triangle X$ is_symmetric & $\triangle X$ is_transitive,
(24)	$\triangle X$ is_antisymmetric & $\triangle X$ is_reflexive,
(25)	$R \mbox{is_irreflexive} \& R \mbox{is_transitive} \ {\bf implies} R \mbox{is_asymmetric} ,$
(26)	R is_asymmetric $\operatorname{\mathbf{implies}}\ R$ is_irreflexive & R is_antisymmetric ,
(27)	R is_reflexive implies R^{\sim} is_reflexive,
(28)	R is_irreflexive implies R^{\sim} is_irreflexive,
(29)	R is_reflexive implies dom $R = dom(R^{\sim}) \& rng R = rng(R^{\sim}),$
(30)	R is_symmetric iff $R = R^{\sim}$,
(31)	$P \text{ is_reflexive \& } R \text{ is_reflexive implies } P \cup R \text{ is_reflexive \& } P \cap R \text{ is_reflexive },$
(32)	P is_irreflexive & R is_irreflexive
	implies $P \cup R$ is_irreflexive & $P \cap R$ is_irreflexive,
(33)	P is_irreflexive implies $P \setminus R$ is_irreflexive,
(34)	R is_symmetric implies R^{\sim} is_symmetric,
(35)	P is_symmetric & R is_symmetric
	implies $P \cup R$ is_symmetric & $P \cap R$ is_symmetric & $P \setminus R$ is_symmetric,
(36)	R is_asymmetric implies R^{\sim} is_asymmetric,
(37)	P is_asymmetric & R is_asymmetric <code>implies</code> $P \cap R$ is_asymmetric ,
(38)	P is_asymmetric implies $P \setminus R$ is_asymmetric,
(39)	R is_antisymmetric iff $R \cap (\tilde{R}) \subseteq \Delta (\operatorname{dom} R)$,
(40)	R is_antisymmetric implies R^{\sim} is_antisymmetric,

PROPERTIES OF BINARY RELATIONS

(41)	$P \text{ is_antisymmetric}$ implies $P \cap R$ is_antisymmetric & $P \setminus R$ is_antisymmetric ,
(42)	R is_transitive implies R^{\sim} is_transitive,
(43)	P is_transitive & R is_transitive implies $P \cap R$ is_transitive,
(44)	R is_transitive iff $R \cdot R \subseteq R$,
(45)	$R \text{ is_connected } \mathbf{iff} \text{ [field } R, \text{field } R \text{]} \setminus \triangle \left(\text{field } R \right) \subseteq R \cup R^{\tilde{-}},$
(46)	$R {\rm is_strongly_connected} \ {\bf implies} R {\rm is_connected} \ \& R {\rm is_reflexive} ,$
(47)	R is_strongly_connected iff [field R , field R] = $R \cup R^{\sim}$.

References

- [1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
- [2] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.
- [3] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1, 1990.

Received March 15, 1989

_