# Relations and Their Basic Properties 

Edmund Woronowicz ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. We define here: mode Relation as a set of pairs, the domain, the codomain, and the field of relation, the empty and the identity relations, the composition of relations, the image and the inverse image of a set under a relation. Two predicates $=$ and $\subseteq$, and three functions $\cup, \cap$ and $\backslash$ are redefined. Basic facts about the above mentioned notions are presented.


The terminology and notation used in this paper have been introduced in the articles [1] and [2]. For simplicity we adopt the following convention: $A, B, X, Y, Y 1, Y 2$ denote objects of the type set; $a, b, c, d, x, y, z$ denote objects of the type Any. The mode

> Relation,
which widens to the type set, is defined by

$$
x \in \text { it implies ex } y, z \text { st } x=\langle y, z\rangle .
$$

One can prove the following proposition
(1) for $R$ being set st for $x$ st $x \in R$ ex $y, z$ st $x=\langle y, z\rangle$ holds $R$ is Relation.

In the sequel $P, P 1, P 2, Q, R, S$ will have the type Relation. Next we state several propositions:

$$
\begin{equation*}
x \in R \text { implies ex } y, z \text { st } x=\langle y, z\rangle \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
A \subseteq R \text { implies } A \text { is Relation } \tag{3}
\end{equation*}
$$

$$
\{\langle x, y\rangle\} \text { is Relation }
$$

$$
\{\langle a, b\rangle,\langle c, d\rangle\} \text { is Relation, }
$$

$$
\begin{equation*}
[: X, Y:] \text { is Relation. } \tag{6}
\end{equation*}
$$

[^0]The scheme Rel_Existence deals with a constant $\mathcal{A}$ that has the type set, a constant $\mathcal{B}$ that has the type set and a binary predicate $\mathcal{P}$ and states that the following holds
ex $R$ being Relation st for $x, y$ holds $\langle x, y\rangle \in R$ iff $x \in \mathcal{A} \& y \in \mathcal{B} \& \mathcal{P}[x, y]$
for all values of the parameters.
Let us consider $P, R$. Let us note that one can characterize the predicate

$$
P=R
$$

by the following (equivalent) condition:

$$
\text { for } a, b \text { holds }\langle a, b\rangle \in P \text { iff }\langle a, b\rangle \in R .
$$

The following proposition is true

$$
\begin{equation*}
P=R \text { iff for } a, b \text { holds }\langle a, b\rangle \in P \text { iff }\langle a, b\rangle \in R . \tag{7}
\end{equation*}
$$

For convenience we may adopt another formulas defining notions considered in the paper. From now on we shall treat them as new definitions.

Let us consider $P, R$. Let us note that it makes sense to consider the following functors on restricted areas. Then

| $P \cap R$ | is | Relation, |
| :--- | :--- | :--- |
| $P \cup R$ | is | Relation, |
| $P \backslash R$ | is | Relation. |

Let us note that one can characterize the predicate

$$
P \subseteq R
$$

by the following (equivalent) condition:

$$
\text { for } a, b \text { holds }\langle a, b\rangle \in P \text { implies }\langle a, b\rangle \in R \text {. }
$$

The following three propositions are true:

$$
\begin{equation*}
P \subseteq R \text { iff for } a, b \text { holds }\langle a, b\rangle \in P \text { implies }\langle a, b\rangle \in R, \tag{8}
\end{equation*}
$$ $X \cap R$ is Relation \& $R \cap X$ is Relation,

$$
R \backslash X \text { is Relation. }
$$

Let us consider $R$. The functor

$$
\operatorname{dom} R,
$$

with values of the type set, is defined by

$$
x \in \mathbf{i t} \mathbf{i f f} \mathbf{e x} y \text { st }\langle x, y\rangle \in R .
$$

We now state several propositions:

$$
\begin{equation*}
X=\operatorname{dom} R \text { iff for } x \text { holds } x \in X \text { iff ex } y \text { st }\langle x, y\rangle \in R \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& x \in \operatorname{dom} R \mathrm{iff} \operatorname{ex} y \text { st }\langle x, y\rangle \in R,  \tag{12}\\
& \operatorname{dom}(P \cup R)=\operatorname{dom} P \cup \operatorname{dom} R,  \tag{13}\\
& \operatorname{dom}(P \cap R) \subseteq \operatorname{dom} P \cap \operatorname{dom} R, \\
& \operatorname{dom} P \backslash \operatorname{dom} R \subseteq \operatorname{dom}(P \backslash R)
\end{align*}
$$

Let us consider $R$. The functor

$$
\operatorname{rng} R,
$$

yields the type set and is defined by

$$
y \in \text { it iff ex } x \text { st }\langle x, y\rangle \in R .
$$

One can prove the following propositions:

$$
\begin{equation*}
X=\operatorname{rng} R \text { iff for } x \text { holds } x \in X \text { iff ex } y \text { st }\langle y, x\rangle \in R, \tag{16}
\end{equation*}
$$

$$
\begin{gather*}
x \in \operatorname{rng} R \operatorname{iff} \text { ex } y \text { st }\langle y, x\rangle \in R,  \tag{17}\\
x \in \operatorname{dom} R \text { implies ex } y \text { st } y \in \operatorname{rng} R,  \tag{18}\\
y \in \operatorname{rng} R \text { implies ex } x \text { st } x \in \operatorname{dom} R, \tag{19}
\end{gather*}
$$

$$
\begin{equation*}
\langle x, y\rangle \in R \text { implies } x \in \operatorname{dom} R \& y \in \operatorname{rng} R \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
R \subseteq: \operatorname{dom} R, \text { rng } R: \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
R \cap[\operatorname{dom} R, \operatorname{rng} R:=R, \tag{22}
\end{equation*}
$$

$$
R=\{\langle x, y\rangle\} \text { implies dom } R=\{x\} \& \operatorname{rng} R=\{y\}
$$

$$
\begin{gather*}
R=\{\langle a, b\rangle,\langle x, y\rangle\} \text { implies } \operatorname{dom} R=\{a, x\} \& \operatorname{rng} R=\{b, y\},  \tag{24}\\
P \subseteq R \text { implies } \operatorname{dom} P \subseteq \operatorname{dom} R \& \operatorname{rng} P \subseteq \operatorname{rng} R  \tag{25}\\
\operatorname{rng}(P \cup R)=\operatorname{rng} P \cup \operatorname{rng} R  \tag{26}\\
\operatorname{rng}(P \cap R) \subseteq \operatorname{rng} P \cap \operatorname{rng} R,  \tag{27}\\
\operatorname{rng} P \backslash \operatorname{rng} R \subseteq \operatorname{rng}(P \backslash R) \tag{28}
\end{gather*}
$$

Let us consider $R$. The functor
yields the type set and is defined by

$$
\mathbf{i t}=\operatorname{dom} R \cup \operatorname{rng} R .
$$

We now state several propositions:

$$
\begin{equation*}
\text { field } R=\operatorname{dom} R \cup \operatorname{rng} R, \tag{29}
\end{equation*}
$$

$\langle a, b\rangle \in R$ implies $a \in$ field $R \& b \in$ field $R$,

$$
\begin{equation*}
P \subseteq R \text { implies field } P \subseteq \text { field } R, \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
R=\{\langle x, y\rangle\} \text { implies field } R=\{x, y\}, \tag{32}
\end{equation*}
$$

field $(P \cup R)=$ field $P \cup$ field $R$,
field $(P \cap R) \subseteq$ field $P \cap$ field $R$.
Let us consider $R$. The functor

$$
R^{\sim},
$$

yields the type Relation and is defined by

$$
\langle x, y\rangle \in \text { it iff }\langle y, x\rangle \in R .
$$

One can prove the following propositions:

$$
\begin{equation*}
R=P^{\sim} \text { iff for } x, y \text { holds }\langle x, y\rangle \in R \text { iff }\langle y, x\rangle \in P, \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\langle x, y\rangle \in P^{\sim} \operatorname{iff}\langle y, x\rangle \in P, \tag{36}
\end{equation*}
$$

$$
\left(R^{\sim}\right)^{\sim}=R,
$$

$$
\begin{equation*}
\text { field } R=\text { field }\left(R^{\sim}\right), \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
(P \cap R)^{\sim}=P^{\sim} \cap R^{\sim}, \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
(P \cup R)^{\sim}=P^{\sim} \cup R^{\sim}, \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
(P \backslash R)^{\sim}=P^{\sim} \backslash R^{\sim} \tag{41}
\end{equation*}
$$

Let us consider $P, R$. The functor

$$
P \cdot R,
$$

with values of the type Relation, is defined by

$$
\langle x, y\rangle \in \text { it iff ex } z \text { st }\langle x, z\rangle \in P \&\langle z, y\rangle \in R .
$$

We now state a number of propositions:

$$
\begin{equation*}
Q=P \cdot R \text { iff for } x, y \text { holds }\langle x, y\rangle \in Q \text { iff ex } z \text { st }\langle x, z\rangle \in P \&\langle z, y\rangle \in R, \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dom}(P \cdot R) \subseteq \operatorname{dom} P \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
\langle x, y\rangle \in P \cdot R \text { iff ex } z \text { st }\langle x, z\rangle \in P \&\langle z, y\rangle \in R, \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{rng}(P \cdot R) \subseteq \operatorname{rng} R \tag{45}
\end{equation*}
$$

$$
\begin{equation*}
P \subseteq R \text { implies } Q \cdot P \subseteq Q \cdot R \tag{47}
\end{equation*}
$$

$$
\begin{equation*}
P \subseteq Q \text { implies } P \cdot R \subseteq Q \cdot R, \tag{48}
\end{equation*}
$$

$$
\begin{equation*}
P \subseteq R \& Q \subseteq S \text { implies } P \cdot Q \subseteq R \cdot S \tag{49}
\end{equation*}
$$

$$
\begin{equation*}
P \cdot(R \cup Q)=(P \cdot R) \cup(P \cdot Q) \tag{50}
\end{equation*}
$$

$$
\begin{equation*}
P \cdot(R \cap Q) \subseteq(P \cdot R) \cap(P \cdot Q) \tag{51}
\end{equation*}
$$

$$
\begin{equation*}
(P \cdot R) \backslash(P \cdot Q) \subseteq P \cdot(R \backslash Q) \tag{52}
\end{equation*}
$$

$$
\begin{equation*}
(P \cdot R)^{\sim}=R^{\sim} \cdot P^{\sim} \tag{53}
\end{equation*}
$$

$$
\begin{equation*}
(P \cdot R) \cdot Q=P \cdot(R \cdot Q) \tag{54}
\end{equation*}
$$

The constant $\varnothing$ has the type Relation, and is defined by

$$
\boldsymbol{\operatorname { n o t }}\langle x, y\rangle \in \mathbf{i t} .
$$

One can prove the following propositions:

$$
\begin{equation*}
R=\emptyset \text { iff for } x, y \text { holds } \operatorname{not}\langle x, y\rangle \in R, \tag{56}
\end{equation*}
$$

$$
\begin{equation*}
\varnothing \subseteq: A, B:], \tag{57}
\end{equation*}
$$

$$
\begin{equation*}
\emptyset \subseteq R, \tag{58}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dom} \emptyset=\emptyset \& \operatorname{rng} \emptyset=\emptyset \tag{59}
\end{equation*}
$$

$$
\begin{equation*}
\emptyset \cap R=\emptyset \& \emptyset \cup R=R, \tag{61}
\end{equation*}
$$

$$
\varnothing \cdot R=\varnothing \& R \cdot \varnothing=\varnothing
$$

$$
\begin{equation*}
R \cdot \emptyset=\varnothing \cdot R \tag{63}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dom} R=\emptyset \text { or } \operatorname{rng} R=\emptyset \text { implies } R=\emptyset \tag{64}
\end{equation*}
$$

$$
\operatorname{dom} R=\emptyset \text { iff rng } R=\emptyset
$$

$$
\begin{equation*}
\varnothing^{\sim}=\varnothing, \tag{67}
\end{equation*}
$$

$\operatorname{rng} R \cap \operatorname{dom} P=\emptyset$ implies $R \cdot P=\emptyset$.
Let us consider $X$. The functor

$$
\triangle X
$$

with values of the type Relation, is defined by

$$
\langle x, y\rangle \in \text { it iff } x \in X \& x=y
$$

The following propositions are true:

$$
\begin{equation*}
P=\triangle X \text { iff for } x, y \text { holds }\langle x, y\rangle \in P \text { iff } x \in X \& x=y \tag{68}
\end{equation*}
$$

$$
\begin{equation*}
\langle x, y\rangle \in \triangle X \text { iff } x \in X \& x=y \tag{69}
\end{equation*}
$$

$$
\begin{equation*}
x \in X \text { iff }\langle x, x\rangle \in \triangle X \tag{70}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dom} \triangle X=X \& \operatorname{rng} \triangle X=X \tag{71}
\end{equation*}
$$

$$
\begin{equation*}
(\triangle X)^{\sim}=\triangle X \tag{72}
\end{equation*}
$$

$$
\text { (for } x \text { st } x \in X \text { holds }\langle x, x\rangle \in R \text { ) implies } \triangle X \subseteq R \text {, }
$$

$$
\begin{gather*}
\langle x, y\rangle \in(\triangle X) \cdot R \text { iff } x \in X \&\langle x, y\rangle \in R \\
\langle x, y\rangle \in R \cdot \triangle Y \text { iff } y \in Y \&\langle x, y\rangle \in R \\
R \cdot(\triangle X) \subseteq R \&(\triangle X) \cdot R \subseteq R \tag{77}
\end{gather*}
$$

$(\triangle \operatorname{dom} R) \cdot R=R$,
$\operatorname{rng} R \subseteq Y$ implies $R \cdot(\triangle Y)=R$,

$$
R \cdot(\triangle \operatorname{rng} R)=R,
$$

$$
\begin{equation*}
\triangle \emptyset=\emptyset, \tag{81}
\end{equation*}
$$

(82) $\quad \operatorname{dom} R=X \& \operatorname{rng} P 2 \subseteq X \& P 2 \cdot R=\triangle(\operatorname{dom} P 1) \& R \cdot P 1=\triangle X$ implies $P 1=P 2$, $\operatorname{dom} R=X \& \operatorname{rng} P 2=X \& P 2 \cdot R=\triangle(\operatorname{dom} P 1) \& R \cdot P 1=\triangle X$ implies $P 1=P 2$.

Let us consider $R, X$. The functor

$$
R \mid X
$$

with values of the type Relation, is defined by

$$
\langle x, y\rangle \in \text { it iff } x \in X \&\langle x, y\rangle \in R .
$$

We now state a number of propositions:

$$
\begin{equation*}
P=R \mid X \text { iff for } x, y \text { holds }\langle x, y\rangle \in P \text { iff } x \in X \&\langle x, y\rangle \in R, \tag{84}
\end{equation*}
$$

$$
\begin{equation*}
\langle x, y\rangle \in R \mid X \text { iff } x \in X \&\langle x, y\rangle \in R, \tag{85}
\end{equation*}
$$

$$
\begin{equation*}
x \in \operatorname{dom}(R \mid X) \operatorname{iff} x \in X \& x \in \operatorname{dom} R \tag{86}
\end{equation*}
$$

$$
\begin{gather*}
\operatorname{dom}(R \mid X) \subseteq X,  \tag{87}\\
R \mid X \subseteq R \tag{88}
\end{gather*}
$$

$$
\begin{equation*}
\operatorname{dom}(R \mid X) \subseteq \operatorname{dom} R \tag{89}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dom}(R \mid X)=\operatorname{dom} R \cap X \tag{90}
\end{equation*}
$$

$X \subseteq \operatorname{dom} R$ implies $\operatorname{dom}(R \mid X)=X$,

$$
\begin{equation*}
(R \mid X) \cdot P \subseteq R \cdot P \tag{91}
\end{equation*}
$$

$$
\begin{equation*}
P \cdot(R \mid X) \subseteq P \cdot R \tag{93}
\end{equation*}
$$

$$
\begin{equation*}
R \mid X=(\triangle X) \cdot R \tag{94}
\end{equation*}
$$

$$
\begin{equation*}
R \mid X=\emptyset \operatorname{iff}(\operatorname{dom} R) \cap X=\emptyset \tag{95}
\end{equation*}
$$

$$
\begin{equation*}
R \mid X=R \cap: X, \operatorname{rng} R:, \tag{96}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dom} R \subseteq X \text { implies } R \mid X=R \tag{97}
\end{equation*}
$$

$$
R \mid \operatorname{dom} R=R
$$

$$
\begin{equation*}
\operatorname{rng}(R \mid X) \subseteq \operatorname{rng} R \tag{99}
\end{equation*}
$$

$$
\begin{equation*}
(R \mid X)|Y=R|(X \cap Y) \tag{100}
\end{equation*}
$$

$$
\begin{equation*}
(R \mid X)|X=R| X \tag{101}
\end{equation*}
$$

$$
\begin{equation*}
X \subseteq Y \text { implies }(R \mid X)|Y=R| X \tag{102}
\end{equation*}
$$

$$
\begin{equation*}
Y \subseteq X \text { implies }(R \mid X)|Y=R| Y \tag{103}
\end{equation*}
$$

$$
\begin{equation*}
X \subseteq Y \text { implies } R|X \subseteq R| Y \tag{104}
\end{equation*}
$$

$$
\begin{equation*}
P \subseteq R \text { implies } P|X \subseteq R| X \tag{105}
\end{equation*}
$$

$$
\begin{equation*}
P \subseteq R \& X \subseteq Y \text { implies } P|X \subseteq R| Y \tag{106}
\end{equation*}
$$

$$
\begin{gather*}
R \mid(X \cup Y)=(R \mid X) \cup(R \mid Y),  \tag{107}\\
R \mid(X \cap Y)=(R \mid X) \cap(R \mid Y),  \tag{108}\\
R|(X \backslash Y)=R| X \backslash R \mid Y \\
R \mid \emptyset=\emptyset \\
\emptyset \mid X=\emptyset
\end{gather*}
$$

$$
\begin{equation*}
(P \cdot R) \mid X=(P \mid X) \cdot R \tag{112}
\end{equation*}
$$

Let us consider $Y, R$. The functor

$$
Y \mid R
$$

yields the type Relation and is defined by

$$
\langle x, y\rangle \in \mathbf{i t} \mathbf{i f f} y \in Y \&\langle x, y\rangle \in R .
$$

The following propositions are true:

$$
\begin{equation*}
P=Y \mid R \text { iff for } x, y \text { holds }\langle x, y\rangle \in P \text { iff } y \in Y \&\langle x, y\rangle \in R \tag{113}
\end{equation*}
$$

$$
\begin{gather*}
\langle x, y\rangle \in Y \mid R \text { iff } y \in Y \&\langle x, y\rangle \in R,  \tag{114}\\
y \in \operatorname{rng}(Y \mid R) \text { iff } y \in Y \& y \in \operatorname{rng} R, \\
\operatorname{rng}(Y \mid R) \subseteq Y, \\
Y \mid R \subseteq R, \\
\operatorname{rng}(Y \mid R) \subseteq \operatorname{rng} R, \\
\operatorname{rng}(Y \mid R)=\operatorname{rng} R \cap Y, \\
Y \subseteq \operatorname{rng} R \text { implies } \operatorname{rng}(Y \mid R)=Y, \\
(Y \mid R) \cdot P \subseteq R \cdot P, \\
P \cdot(Y \mid R) \subseteq P \cdot R, \\
Y \mid R=R \cdot(\triangle Y), \\
Y \mid R=R \cap: \operatorname{dom} R, Y:, \\
\operatorname{rng} R \subseteq Y \text { implies } Y \mid R=R,
\end{gather*}
$$

$$
\begin{gathered}
\operatorname{rng} R \mid R=R, \\
Y|(X \mid R)=(Y \cap X)| R, \\
Y|(Y \mid R)=Y| R, \\
X \subseteq Y \text { implies } Y|(X \mid R)=X| R, \\
Y \subseteq X \text { implies } Y|(X \mid R)=Y| R, \\
X \subseteq Y \text { implies } X|R \subseteq Y| R, \\
P 1 \subseteq P 2 \text { implies } Y|P 1 \subseteq Y| P 2,
\end{gathered}
$$

$$
P 1 \subseteq P 2 \& Y 1 \subseteq Y 2 \text { implies } Y 1|P 1 \subseteq Y 2| P 2
$$

$$
(X \cup Y) \mid R=(X \mid R) \cup(Y \mid R)
$$

$$
(X \cap Y)|R=X| R \cap Y \mid R
$$

$$
(X \backslash Y)|R=X| R \backslash Y \mid R
$$

$$
\emptyset \mid R=\emptyset
$$

$$
Y \mid \varnothing=\varnothing
$$

$$
Y \mid(P \cdot R)=P \cdot(Y \mid R)
$$

$$
(Y \mid R)|X=Y|(R \mid X)
$$

Let us consider $R, X$. The functor

$$
R^{\circ} X
$$

yields the type set and is defined by

$$
y \in \text { it iff ex } x \text { st }\langle x, y\rangle \in R \& x \in X .
$$

One can prove the following propositions:

$$
\begin{equation*}
Y=R^{\circ} X \text { iff for } y \text { holds } y \in Y \text { iff ex } x \text { st }\langle x, y\rangle \in R \& x \in X \tag{141}
\end{equation*}
$$

$$
\begin{equation*}
y \in R^{\circ} X \mathbf{i f f} \mathbf{e x} x \text { st }\langle x, y\rangle \in R \& x \in X \tag{142}
\end{equation*}
$$

$$
\begin{equation*}
y \in R^{\circ} X \text { iff ex } x \text { st } x \in \operatorname{dom} R \&\langle x, y\rangle \in R \& x \in X \tag{143}
\end{equation*}
$$

$$
\begin{gather*}
R^{\circ} X \subseteq \operatorname{rng} R,  \tag{144}\\
R^{\circ} X=R^{\circ}(\operatorname{dom} R \cap X),  \tag{145}\\
R^{\circ} \operatorname{dom} R=\operatorname{rng} R, \tag{146}
\end{gather*}
$$

$$
\begin{gathered}
R^{\circ} X \subseteq R^{\circ}(\operatorname{dom} R) \\
\operatorname{rng}(R \mid X)=R^{\circ} X, \\
R^{\circ} \emptyset=\emptyset \\
\emptyset^{\circ} X=\emptyset
\end{gathered}
$$

$$
R^{\circ} X=\emptyset \text { iff } \operatorname{dom} R \cap X=\emptyset
$$

$$
X \neq \emptyset \& X \subseteq \operatorname{dom} R \text { implies } R^{\circ} X \neq \emptyset
$$

$$
R^{\circ}(X \cup Y)=R^{\circ} X \cup R^{\circ} Y
$$

$$
R^{\circ}(X \cap Y) \subseteq R^{\circ} X \cap R^{\circ} Y
$$

$$
R^{\circ} X \backslash R^{\circ} Y \subseteq R^{\circ}(X \backslash Y)
$$

$$
X \subseteq Y \text { implies } R^{\circ} X \subseteq R^{\circ} Y
$$

$$
P \subseteq R \text { implies } P^{\circ} X \subseteq R^{\circ} X
$$

$$
P \subseteq R \& X \subseteq Y \text { implies } P^{\circ} X \subseteq R^{\circ} Y
$$

$$
(P \cdot R)^{\circ} X=R^{\circ}\left(P^{\circ} X\right)
$$

$$
\operatorname{rng}(P \cdot R)=R^{\circ}(\operatorname{rng} P)
$$

$$
(R \mid X)^{\circ} Y \subseteq R^{\circ} Y
$$

$$
R \mid X=\emptyset \operatorname{iff}(\operatorname{dom} R) \cap X=\emptyset
$$

$$
(\operatorname{dom} R) \cap X \subseteq\left(R^{\sim}\right)^{\circ}\left(R^{\circ} X\right)
$$

Let us consider $R, Y$. The functor

$$
R^{-1} Y
$$

with values of the type set, is defined by

$$
x \in \text { it iff ex } y \text { st }\langle x, y\rangle \in R \& y \in Y .
$$

Next we state a number of propositions:

$$
\begin{equation*}
X=R^{-1} Y \text { iff for } x \text { holds } x \in X \text { iff ex } y \text { st }\langle x, y\rangle \in R \& y \in Y \tag{164}
\end{equation*}
$$

$$
\begin{equation*}
x \in R^{-1} Y \text { iff ex } y \text { st }\langle x, y\rangle \in R \& y \in Y \tag{165}
\end{equation*}
$$

$$
\begin{gather*}
x \in R^{-1} Y \text { iff ex } y \text { st } y \in \operatorname{rng} R \&\langle x, y\rangle \in R \& y \in Y,  \tag{166}\\
R^{-1} Y \subseteq \operatorname{dom} R \tag{167}
\end{gather*}
$$

(168)

$$
R^{-1} Y=R^{-1}(\operatorname{rng} R \cap Y)
$$

$$
R^{-1} \mathrm{rng} R=\operatorname{dom} R
$$

$$
R^{-1} Y \subseteq R^{-1} \operatorname{rng} R
$$

$$
R^{-1} \emptyset=\emptyset
$$

$$
\varnothing^{-1} Y=\emptyset
$$

$$
R^{-1} Y=\emptyset \text { iff rng } R \cap Y=\emptyset
$$

$$
Y \neq \emptyset \& Y \subseteq \operatorname{rng} R \text { implies } R^{-1} Y \neq \emptyset
$$

$$
R^{-1}(X \cup Y)=R^{-1} X \cup R^{-1} Y
$$

$$
R^{-1}(X \cap Y) \subseteq R^{-1} Y \cap R^{-1} Y
$$

$$
R^{-1} X \backslash R^{-1} Y \subseteq R^{-1}(X \backslash Y)
$$

$X \subseteq Y$ implies $R^{-1} X \subseteq R^{-1} Y$,
$P \subseteq R$ implies $P^{-1} Y \subseteq R^{-1} Y$, $P \subseteq R \& X \subseteq Y$ implies $P^{-1} X \subseteq R^{-1} Y$, $(P \cdot R)^{-1} Y=P^{-1}\left(R^{-1} Y\right)$, $\operatorname{dom}(P \cdot R)=P^{-1}(\operatorname{dom} R)$,

$$
(\operatorname{rng} R) \cap Y \subseteq\left(R^{\sim}\right)^{-1}\left(R^{-1} Y\right)
$$

## References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[2] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.


[^0]:    ${ }^{1}$ Supported by RPBP III. 24 C1

