Topological Spaces and Continuous Functions

Beata Padlewska¹ Warsaw University Białystok Agata Darmochwał² Warsaw University Białystok

Summary. The paper contains a definition of topological space. The following notions are defined: point of topological space, subset of topological space, subspace of topological space, and continuous function.

The articles [5], [7], [6], [1], [4], [2], and [3] provide the terminology and notation for this paper. We consider structures TopStruct, which are systems

 $\langle\!\langle carrier, topology \rangle\!\rangle$

where carrier has the type DOMAIN, and topology has the type Subset-Family of the carrier. In the sequel T has the type TopStruct. The mode

TopSpace,

which widens to the type TopStruct, is defined by

the carrier of it \in the topology of it &

(for a being Subset-Family of the carrier of it

st $a \subseteq$ the topology of it holds $\bigcup a \in$ the topology of it)

& for a, b being Subset of the carrier of it

st $a \in$ the topology of it & $b \in$ the topology of it holds $a \cap b \in$ the topology of it.

We now state a proposition

(1)

the carrier of $T \in$ the topology of T &

(for a being Subset-Family of the carrier of T

¹Supported by RPBP.III-24.C1.

²Supported by RPBP.III-24.C1.

223

© 1990 Fondation Philippe le Hodey ISSN 0777-4028 st $a \subseteq$ the topology of T holds $\bigcup a \in$ the topology of T) & (for p,q being Subset of the carrier of T st $p \in$ the topology of T & $q \in$ the topology of Tholds $p \cap q \in$ the topology of T) implies T is TopSpace.

In the sequel T, S, GX will have the type TopSpace. Let us consider T.

Point of T stands for Element of the carrier of T.

The following proposition is true

(2) for x being Element of the carrier of T holds x is Point of T.

Let us consider T.

Subset of T stands for set of Point of T.

We now state a proposition

(3) for P being Subset of the carrier of T holds P is Subset of T.

In the sequel P, Q will have the type Subset of T; p will have the type Point of T. Let us consider T.

Subset-Family of T stands for Subset-Family of the carrier of T.

Next we state a proposition

(4) for F being Subset-Family of the carrier of Tholds F is Subset-Family of T.

In the sequel F will denote an object of the type Subset-Family of T. The scheme SubFamEx1 concerns a constant A that has the type TopSpace and a unary predicate \mathcal{P} and states that the following holds

ex *F* being Subset-Family of *A* st for *B* being Subset of *A* holds $B \in F$ iff $\mathcal{P}[B]$

for all values of the parameters.

(7)

One can prove the following propositions:

- (5) $\emptyset \in \mathbf{the} \text{ topology of } T,$
- (6) **the** carrier of $T \in$ **the** topology of T,

for a being Subset-Family of T

st $a \subseteq$ the topology of T holds $\bigcup a \in$ the topology of T,

(8)
$$P \in$$
 the topology of $T \& Q \in$ the topology of T
implies $P \cap Q \in$ the topology of T .

We now define two new functors. Let us consider T. The functor

 $\emptyset T$,

with values of the type Subset of T, is defined by

 $\mathbf{it} = \emptyset \, \mathbf{the} \, \mathrm{carrier} \, \mathbf{of} \, T.$

The functor

 ΩT ,

with values of the type Subset of T, is defined by

 $\mathbf{it} = \Omega \mathbf{the} \operatorname{carrier} \mathbf{of} T.$

One can prove the following four propositions:

(9)
$$\emptyset T = \emptyset \mathbf{the carrier of } T,$$

(10)
$$\Omega T = \Omega \mathbf{the} \operatorname{carrier} \mathbf{of} T,$$

(11)
$$\emptyset(T) = \emptyset,$$

(12)
$$\Omega(T) = \mathbf{the} \operatorname{carrier} \mathbf{of} T.$$

Let us consider T, P. The functor

 P^{c} ,

yields the type Subset of T and is defined by

$$\mathbf{it} = P^{\,\mathrm{c}}$$
.

Let us consider T, P, Q. Let us note that it makes sense to consider the following functors on restricted areas. Then

$P \cup Q$	is	Subset of T ,
$P\cap Q$	is	Subset of T ,
$P \setminus Q$	is	Subset of T ,
$P \doteq Q$	is	Subset of T .

The following propositions are true:

$$(13) p \in \Omega(T),$$

$$(14) P \subseteq \Omega\left(T\right).$$

(15)
$$P \cap \Omega\left(T\right) = P,$$

(16) for A being set holds $A \subseteq \Omega(T)$ implies A is Subset of T,

(17)
$$P^{c} = \Omega(T) \setminus P,$$

(18) $P \cup P^{c} = \Omega(T),$

(19)
$$P \subseteq Q \text{ iff } Q^{c} \subseteq P^{c},$$

$$(20) P = P^{\,c\,c}\,,$$

$$(21) P \subseteq Q^{c} ext{ iff } P \cap Q = \emptyset,$$

(22)
$$\Omega(T) \setminus (\Omega(T) \setminus P) = P,$$

(23) $P \neq \Omega(T) \text{ iff } \Omega(T) \setminus P \neq \emptyset,$

(24)
$$\Omega(T) \setminus P = Q \text{ implies } \Omega(T) = P \cup Q,$$

(25)
$$\Omega(T) = P \cup Q \& P \cap Q = \emptyset \text{ implies } Q = \Omega(T) \setminus P,$$

$$(26) P \cap P^{c} = \emptyset(T),$$

(27)
$$\Omega(T) = (\emptyset T)^{c}.$$

$$(28) P \setminus Q = P \cap Q^{c},$$

(29)
$$P = Q \text{ implies } \Omega(T) \setminus P = \Omega(T) \setminus Q.$$

Let us consider T, P. The predicate

P is_open is defined by $P \in \mathbf{the}$ topology of T.

One can prove the following proposition

(30)
$$P$$
 is_open iff $P \in$ the topology of T .

Let us consider T, P. The predicate

 $P ext{ is closed}$ is defined by $\Omega(T) \setminus P ext{ is open }$.

One can prove the following proposition

(31)
$$P \text{ is_closed iff } \Omega(T) \setminus P \text{ is_open}.$$

Let us consider T, P. The predicate

P is_open_closed is defined by P is_open & P is_closed.

We now state a proposition

(32)
$$P$$
 is_open_closed iff P is_open & P is_closed.

Let us consider T, F. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$\int F$$
 is Subset of T.

Let us consider T, F. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$\bigcap F$$
 is Subset of T.

Let us consider T, F. The predicate

$$F$$
 is_a_cover_of T is defined by $\Omega(T) = \bigcup_{r=1}^{\infty} F$

The following proposition is true

(33)
$$F \text{ is_a_cover_of } T \text{ iff } \Omega(T) = \bigcup F$$

Let us consider T. The mode

SubSpace of T,

which widens to the type TopSpace, is defined by

 $\Omega(\mathbf{it}) \subseteq \Omega(T) \& \text{ for } P \text{ being Subset of it holds } P \in \mathbf{the} \text{ topology of it}$ iff ex Q being Subset of T st $Q \in \mathbf{the}$ topology of $T \& P = Q \cap \Omega(\mathbf{it}).$

Next we state two propositions:

- (34) $\Omega(S) \subseteq \Omega(T)$ & (for P being Subset of S holds $P \in$ the topology of S iff ex Q being Subset of T st $Q \in$ the topology of T & $P = Q \cap \Omega(S)$) implies S is SubSpace of T,
- (35) for V being SubSpace of T holds $\Omega(V) \subseteq \Omega(T)$ & for P being Subset of V holds $P \in$ the topology of V

iff ex Q **being** Subset **of** T **st**
$$Q \in$$
 the topology **of** T & $P = Q \cap \Omega(V)$

Let us consider T, P. Assume that the following holds

$$P \neq \emptyset(T).$$

The functor

$$T \mid P,$$

with values of the type SubSpace of T, is defined by

 $\Omega\left(\mathbf{it}\right) = P.$

One can prove the following proposition

(36)
$$P \neq \emptyset(T)$$
 implies for S being SubSpace of T holds $S = T \mid P$ iff $\Omega(S) = P$.

Let us consider T, S.

map of T, S stands for Function of (the carrier of T),(the carrier of S).

Next we state a proposition

(37) for f being Function of the carrier of T, the carrier of S holds f is map of T, S.

In the sequel f has the type map of T, S; P1 has the type Subset of S. Let us consider T, S, f, P. Let us note that it makes sense to consider the following functor on a restricted area. Then

 $f^{\circ} P$ is Subset of S.

Let us consider T, S, f, P1. Let us note that it makes sense to consider the following functor on a restricted area. Then

 $f^{-1} P1$ is Subset of T.

Let us consider T, S, f. The predicate

f is_continuous

is defined by

```
for P1 holds P1 is_closed implies f^{-1} P1 is_closed.
```

The following proposition is true

(38) f is continuous **iff for** P1 **holds** P1 is closed **implies** f^{-1} P1 is closed.

The scheme TopAbstr concerns a constant \mathcal{A} that has the type TopSpace and a unary predicate \mathcal{P} and states that the following holds

ex P being Subset of A st for x being Point of A holds $x \in P$ iff $\mathcal{P}[x]$

for all values of the parameters.

One can prove the following propositions:

(39) for X' being SubSpace of GX

for A being Subset of X' holds A is Subset of GX,

(40) for A being Subset of GX, x being Any st $x \in A$ holds x is Point of GX,

(41) for A being Subset of GX st $A \neq \emptyset(GX)$ ex x being Point of GX st $x \in A$,

(42) $\Omega(GX)$ is_closed,

- (43) for X' being SubSpace of GX, B being Subset of X' holds B is_closed iff ex C being Subset of GX st C is_closed & $C \cap (\Omega(X')) = B$,
- (44) for F being Subset-Family of GX st

 $F \neq \emptyset$ & for A being Subset of GX st $A \in F$ holds A is_closed holds $\bigcap F$ is_closed.

The arguments of the notions defined below are the following: GX which is an object of the type TopSpace; A which is an object of the type Subset of GX. The functor

 $\operatorname{Cl} A$,

yields the type Subset of GX and is defined by

for p being Point of GX holds $p \in it$

iff for G being Subset of GX st G is_open holds $p \in G$ implies $A \cap G \neq \emptyset(GX)$.

We now state a number of propositions:

(45) for A being Subset of
$$GX$$
, p being Point of GX holds $p \in ClA$
iff for C being Subset of GX st C is closed holds $A \subseteq C$ implies $p \in C$,

(46) for A being Subset of $GX \ge F$ being Subset-Family of $GX \ge C$ (for C being Subset of GX holds $C \in F$ iff C is_closed & $A \subseteq C$) & Cl $A = \bigcap F$

$$\operatorname{CL} A = [F],$$

(47)

(53)

X' being SubSpace of GX, A being Subset of GX, A1 being Subset of X' st A = A1 holds $Cl A1 = (Cl A) \cap (\Omega(X'))$,

(48) for A being Subset of GX holds $A \subseteq \operatorname{Cl} A$

(49)	for A, B being Subset of GX st $A \subseteq B$ holds $Cl A \subseteq Cl B$	3.
١.	-01	10111,2 soluge subset of all still $= 2$ holds elli $= 012$	- ,

- (50) for A, B being Subset of GX holds $\operatorname{Cl}(A \cup B) = \operatorname{Cl} A \cup \operatorname{Cl} B$,
- (51) for A, B being Subset of GX holds $\operatorname{Cl}(A \cap B) \subseteq (\operatorname{Cl} A) \cap \operatorname{Cl} B$,
- (52) for A being Subset of GX holds A is closed iff Cl A = A,

for
$$A$$
 being Subset of GX

holds A is_open **iff**
$$\operatorname{Cl}(\Omega(GX) \setminus A) = \Omega(GX) \setminus A$$
,

(54) for A being Subset of
$$GX$$
, p being Point of GX holds $p \in ClA$ iff
for G being Subset of GX

st G is_open holds $p \in G$ implies $A \cap G \neq \emptyset(GX)$.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.
- [3] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.
- [4] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1, 1990.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
- [6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1, 1990.
- [7] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received April 14, 1989