The Fundamental Properties of Natural Numbers

Grzegorz Bancerek¹ Warsaw University Białystok

Summary. Some fundamental properties of addition, multiplication, order relations, exact division, the remainder, divisibility, the least common multiple, the greatest common divisor are presented. A proof of Euclid algorithm is also given.

The article [1] provides the terminology and notation for this paper. For simplicity we adopt the following convention: x will denote an object of the type Real; k, l, m, n will denote objects of the type Nat; X will denote an object of the type set of Real. One can prove the following propositions:

(1)
$$x ext{ is Nat implies } x + 1 ext{ is Nat},$$

- (2) for X st $0 \in X$ & for x st $x \in X$ holds $x + 1 \in X$ for k holds $k \in X$,
- (3) k+n=n+k,
- (4) k + m + n = k + (m + n),
- (5) k + 0 = k & 0 + k = k,

(6)
$$k \cdot n = n \cdot k,$$

(7) $k \cdot (m \cdot n) = (k \cdot m) \cdot n,$

$$(8) k \cdot 1 = k \& 1 \cdot k = k$$

(9)
$$k \cdot (n+m) = k \cdot n + k \cdot m \& (n+m) \cdot k = n \cdot k + m \cdot k,$$

(10)
$$k + m = n + m \text{ or } k + m = m + n \text{ or } m + k = m + n \text{ implies } k = n$$

¹Supported by RPBP III.24 C1

© 1990 Fondation Philippe le Hodey ISSN 0777-4028

(11)
$$k \cdot 0 = 0 \& 0 \cdot k = 0.$$

Let us consider n, k. Let us note that it makes sense to consider the following functor on a restricted area. Then

n+k is Nat.

The scheme Ind deals with a unary predicate \mathcal{P} states that the following holds

for k holds
$$\mathcal{P}[k]$$

provided the parameter satisfies the following conditions:

• $\mathcal{P}[0],$ • for k st $\mathcal{P}[k]$ holds $\mathcal{P}[k+1].$

Let us consider n, k. Let us note that it makes sense to consider the following functor on a restricted area. Then

 $n \cdot k$ is Nat.

One can prove the following propositions:

12)
$$k \le n \& n \le k \text{ implies } k = n,$$

(13)
$$k \le n \& n \le m \text{ implies } k \le m,$$

(14)
$$k \le n \text{ or } n \le k,$$

$$(15) k \le k,$$

(16)
$$k \le n$$
 implies

$$k + m \le n + m \& k + m \le m + n \& m + k \le m + n \& m + k \le n + m,$$

(17)
$$k+m \le n+m \text{ or } k+m \le m+n \text{ or } m+k \le m+n \text{ or } m+k \le n+m$$

implies $k \le n$,

(18) for
$$k$$
 holds $0 \le k$,

(19)
$$0 \neq k \text{ implies } 0 < k,$$

(20) $k \le n$ implies $k \cdot m \le n \cdot m \& k \cdot m \le m \cdot n \& m \cdot k \le n \cdot m \& m \cdot k \le m \cdot n$,

$$(21) 0 \neq k+1,$$

(22) $k = 0 \text{ or } \mathbf{ex} \, n \, \mathbf{st} \, k = n+1,$

(23)
$$k+n=0$$
 implies $k=0$ & $n=0$,

(24) $k \neq 0 \& (n \cdot k = m \cdot k \text{ or } n \cdot k = k \cdot m \text{ or } k \cdot n = k \cdot m)$ implies n = m,

42

(

(25)
$$k \cdot n = 0 \text{ implies } k = 0 \text{ or } n = 0.$$

The scheme Def_by_Ind concerns a constant \mathcal{A} that has the type Nat, a binary functor \mathcal{F} yielding values of the type Nat and a binary predicate \mathcal{P} and states that the following holds

$$(\mathbf{for}\,k\,\mathbf{ex}\,n\,\mathbf{st}\;\mathcal{P}[k,n])\,\&\,\mathbf{for}\,k,n,m\,\mathbf{st}\;\mathcal{P}[k,n]\,\&\,\mathcal{P}[k,m]\,\mathbf{holds}\;n=m$$

provided the parameters satisfy the following condition:

for
$$k, n$$
 holds

$$\mathcal{P}[k,n]$$
 iff $k = 0 \& n = \mathcal{A}$ or $ex m, l$ st $k = m + 1 \& \mathcal{P}[m,l] \& n = \mathcal{F}(k,l)$.

Next we state several propositions:

(26) for
$$k, n$$
 st $k \le n+1$ holds $k \le n$ or $k = n+1$,

(27) for
$$n,k$$
 st $n \le k \& k \le n+1$ holds $n = k$ or $k = n+1$,

(28)
$$\mathbf{for}\,k,n\,\mathbf{st}\,k \le n\,\mathbf{ex}\,m\,\mathbf{st}\,n = k + m,$$

$$(29) k \le k+m,$$

$$k < n \text{ iff } k \le n \& k \ne n$$

$$\mathbf{not}\,k<0.$$

Now we present three schemes. The scheme $Comp_Ind$ deals with a unary predicate \mathcal{P} states that the following holds

for k holds
$$\mathcal{P}[k]$$

provided the parameter satisfies the following condition:

•

•

•

for k st for n st
$$n < k$$
 holds $\mathcal{P}[n]$ holds $\mathcal{P}[k]$.

The scheme Min concerns a unary predicate \mathcal{P} states that the following holds

$$\mathbf{ex} k \mathbf{st} \mathcal{P}[k] \& \mathbf{for} n \mathbf{st} \mathcal{P}[n] \mathbf{holds} k \leq n$$

provided the parameter satisfies the following condition:

$$\mathbf{ex} \, k \, \mathbf{st} \, \mathcal{P}[k].$$

The scheme Max concerns a unary predicate \mathcal{P} and a constant \mathcal{A} that has the type Nat, and states that the following holds

$$\mathbf{ex} k \mathbf{st} \mathcal{P}[k] \& \mathbf{for} n \mathbf{st} \mathcal{P}[n] \mathbf{holds} n \leq k$$

provided the parameters satisfy the following conditions:

for
$$k$$
 st $\mathcal{P}[k]$ holds $k \leq \mathcal{A}$,

•
$$\mathbf{ex} k \mathbf{st} \mathcal{P}[k].$$

We now state a number of propositions:

(32)
$$not (k < n \& n < k),$$

k < n & n < m implies k < m,

$$k < n \text{ or } k = n \text{ or } n < k,$$

$$\mathbf{not}\,k < k,$$

(36)
$$k < n$$
 implies

k + m < n + m & k + m < m + n & m + k < m + n & m + k < n + m,

(37)
$$k \le n \text{ implies } k \le n+m,$$

$$k < n+1 \text{ iff } k \le n,$$

$$(39) k \le n \& n < m \text{ or } k < n \& n \le m \text{ or } k < n \& n < m \text{ implies } k < m,$$

(40)
$$k \cdot n = 1$$
 implies $k = 1 \& n = 1$,

$$(41) k+1 \le n \text{ iff } k < n.$$

The scheme Regr concerns a unary predicate $\mathcal P$ states that the following holds

$$\mathcal{P}[0]$$

provided the parameter satisfies the following conditions:

ex k st P[k],
for k st k ≠ 0 & P[k] ex n st n < k & P[n].

In the sequel k1, t, t1 will denote objects of the type Nat. The following propositions are true:

(42)
$$\mathbf{for} \ m \ \mathbf{st} \ 0 < m \ \mathbf{for} \ n \ \mathbf{ex} \ k, t \ \mathbf{st} \ n = (m \cdot k) + t \ \& \ t < m,$$

(43) **for**
$$n,m,k,k1,t,t1$$

$$\mathbf{st} \ n = m \cdot k + t \ \& \ t < m \ \& \ n = m \cdot k 1 + t 1 \ \& \ t 1 < m \ \mathbf{holds} \ k = k 1 \ \& \ t = t 1.$$

We now define two new functors. Let k, l have the type Nat. The functor

 $k \div l$,

yields the type Nat and is defined by

$$(\mathbf{ex} t \mathbf{st} k = l \cdot \mathbf{it} + t \& t < l) \mathbf{or} \mathbf{it} = 0 \& l = 0.$$

The functor

 $k \mod l$,

yields the type Nat and is defined by

$$(\mathbf{ex} t \mathbf{st} k = l \cdot t + \mathbf{it} \& \mathbf{it} < l) \mathbf{or} \mathbf{it} = 0 \& l = 0.$$

,

Next we state four propositions:

(44) for
$$k, l, n$$
 being Nat
holds $n = k \div l$ iff (ex t st $k = l \cdot n + t \& t < l$) or $n = 0 \& l = 0$,

(45) for
$$k, l, n$$
 being Nat

holds $n = k \mod l$ iff (ex t st $k = l \cdot t + n \& n < l$) or n = 0 & l = 0,

(46) for
$$m, n$$
 st $0 < m$ holds $n \mod m < m$,

(47) for
$$n,m$$
 st $0 < m$ holds $n = m \cdot (n \div m) + (n \mod m)$.

Let k, l have the type Nat. The predicate

 $k \mid l$ is defined by $\mathbf{ex} t \mathbf{st} l = k \cdot t.$

Next we state a number of propositions:

(48) for
$$k, l$$
 being Nat holds $k \mid l$ iff ex t st $l = k \cdot t$,
(49)

for n,m holds $m \mid n$ iff $n = m \cdot (n \div m)$, (49)

(50) for
$$n$$
 holds $n \mid n$,

(51)
$$\mathbf{for} \ n, m, l \ \mathbf{st} \ n \mid m \ \& \ m \mid l \ \mathbf{holds} \ n \mid l,$$

for n,m st $n \mid m \& m \mid n$ holds n = m, (52)

(53)
$$k \mid 0 \& 1 \mid k,$$

(54)
$$\mathbf{for} \ n,m \ \mathbf{st} \ 0 < m \ \& \ n \mid m \ \mathbf{holds} \ n \le m,$$

for n, m, l st $n \mid m \& n \mid l$ holds $n \mid m + l$, (55)

(56)
$$n \mid k \text{ implies } n \mid k \cdot m,$$

(57)
$$\mathbf{for} \ n,m,l \ \mathbf{st} \ n \mid m \ \& \ n \mid m+l \ \mathbf{holds} \ n \mid l,$$

(58)
$$n \mid m \& n \mid k \text{ implies } n \mid m \mod k.$$

Let us consider k, n. The functor

 $k \operatorname{lcm} n$,

with values of the type Nat, is defined by

 $k \mid \mathbf{it} \& n \mid \mathbf{it} \& \mathbf{for} m \mathbf{st} k \mid m \& n \mid m \mathbf{holds} \mathbf{it} \mid m.$

Next we state a proposition

(59)

for M being Nat

holds $M = k \operatorname{lcm} n$ iff $k \mid M \& n \mid M \&$ for m st $k \mid m \& n \mid m$ holds $M \mid m$.

Let us consider k, n. The functor

 $k \gcd n$,

yields the type Nat and is defined by

it | k & it | n & for m st m | k & m | n holds m | it.

We now state a proposition

(60)

for M being Nat holds $M = k \operatorname{gcd} n$ iff $M \mid k \& M \mid n \&$ for m st $m \mid k \& m \mid n$ holds $m \mid M$.

The scheme *Euklides* deals with a unary functor \mathcal{F} yielding values of the type Nat, a constant \mathcal{A} that has the type Nat and a constant \mathcal{B} that has the type Nat, and states that the following holds

$$\mathbf{ex} \, n \, \mathbf{st} \, \mathcal{F}(n) = \mathcal{A} \, \mathrm{gcd} \, \mathcal{B} \, \& \, \mathcal{F}(n+1) = 0$$

provided the parameters satisfy the following conditions:

- $0 < \mathcal{B} \& \mathcal{B} < \mathcal{A},$
- $\mathcal{F}(0) = \mathcal{A} \& \mathcal{F}(1) = \mathcal{B},$
- for *n* holds $\mathcal{F}(n+2) = \mathcal{F}(n) \mod \mathcal{F}(n+1)$.

References

 Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1, 1990.

Received January 11, 1989

46