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Summary. Some fundamental properties of addition, multiplication, order

relations, exact division, the remainder, divisibility, the least common multiple, the

greatest common divisor are presented. A proof of Euclid algorithm is also given.

The article [1] provides the terminology and notation for this paper. For simplicity we

adopt the following convention: x will denote an object of the type Real; k, l, m, n

will denote objects of the type Nat; X will denote an object of the type set of Real.

One can prove the following propositions:

(1) x is Nat implies x + 1 is Nat ,

(2) forX st 0 ∈ X & forx st x ∈ X holds x + 1 ∈ X for k holds k ∈ X,

(3) k + n = n + k,

(4) k + m + n = k + (m + n),

(5) k + 0 = k & 0 + k = k,

(6) k · n = n · k,

(7) k · (m · n) = (k · m) · n,

(8) k · 1 = k & 1 · k = k,

(9) k · (n + m) = k · n + k · m & (n + m) · k = n · k + m · k,

(10) k + m = n + m or k + m = m + n or m + k = m + n implies k = n,
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(11) k · 0 = 0 & 0 · k = 0.

Let us consider n, k. Let us note that it makes sense to consider the following functor

on a restricted area. Then

n + k is Nat .

The scheme Ind deals with a unary predicate P states that the following holds

for k holds P [k]

provided the parameter satisfies the following conditions:

• P [0],

• for k st P [k] holds P [k + 1].

Let us consider n, k. Let us note that it makes sense to consider the following functor

on a restricted area. Then

n · k is Nat .

One can prove the following propositions:

(12) k ≤ n & n ≤ k implies k = n,

(13) k ≤ n & n ≤ m implies k ≤ m,

(14) k ≤ n or n ≤ k,

(15) k ≤ k,

(16) k ≤ n implies

k + m ≤ n + m & k + m ≤ m + n & m + k ≤ m + n & m + k ≤ n + m,

(17) k + m ≤ n + m or k + m ≤ m + n or m + k ≤ m + n or m + k ≤ n + m

implies k ≤ n,

(18) for k holds 0 ≤ k,

(19) 0 6= k implies 0 < k,

(20) k ≤ n implies k · m ≤ n · m & k · m ≤ m · n & m · k ≤ n · m & m · k ≤ m · n,

(21) 0 6= k + 1,

(22) k = 0 or exn st k = n + 1,

(23) k + n = 0 implies k = 0 & n = 0,

(24) k 6= 0 & (n · k = m · k or n · k = k · m or k · n = k · m) implies n = m,
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(25) k · n = 0 implies k = 0 or n = 0.

The scheme Def by Ind concerns a constant A that has the type Nat, a binary functor

F yielding values of the type Nat and a binary predicate P and states that the following

holds

(for k exn st P [k, n]) & for k,n,m st P [k, n] & P [k, m] holds n = m

provided the parameters satisfy the following condition:

• for k,n holds

P [k, n] iff k = 0 & n = A or exm,l st k = m + 1 & P [m, l] & n = F(k, l).

Next we state several propositions:

(26) for k,n st k ≤ n + 1 holds k ≤ n or k = n + 1,

(27) forn,k st n ≤ k & k ≤ n + 1 holds n = k or k = n + 1,

(28) for k,n st k ≤ n exm st n = k + m,

(29) k ≤ k + m,

(30) k < n iff k ≤ n & k 6= n,

(31) notk < 0.

Now we present three schemes. The scheme Comp Ind deals with a unary predicate

P states that the following holds

for k holds P [k]

provided the parameter satisfies the following condition:

• for k st forn st n < k holds P [n] holds P [k].

The scheme Min concerns a unary predicate P states that the following holds

ex k st P [k] & forn st P [n] holds k ≤ n

provided the parameter satisfies the following condition:

• ex k st P [k].

The scheme Max concerns a unary predicate P and a constant A that has the type

Nat, and states that the following holds

ex k st P [k] & forn st P [n] holds n ≤ k

provided the parameters satisfy the following conditions:

• for k st P [k] holds k ≤ A,
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• ex k st P [k].

We now state a number of propositions:

(32) not (k < n & n < k),

(33) k < n & n < m implies k < m,

(34) k < n or k = n or n < k,

(35) not k < k,

(36) k < n implies

k + m < n + m & k + m < m + n & m + k < m + n & m + k < n + m,

(37) k ≤ n implies k ≤ n + m,

(38) k < n + 1 iff k ≤ n,

(39) k ≤ n & n < m or k < n & n ≤ m or k < n & n < m implies k < m,

(40) k · n = 1 implies k = 1 & n = 1,

(41) k + 1 ≤ n iff k < n.

The scheme Regr concerns a unary predicate P states that the following holds

P [0]

provided the parameter satisfies the following conditions:

• ex k st P [k],

• for k st k 6= 0 & P [k] exn st n < k & P [n].

In the sequel k1, t, t1 will denote objects of the type Nat. The following

propositions are true:

(42) form st 0 < m forn ex k,t st n = (m · k) + t & t < m,

(43) forn,m,k,k1,t,t1

st n = m · k + t & t < m & n = m · k1 + t1 & t1 < m holds k = k1 & t = t1.

We now define two new functors. Let k, l have the type Nat. The functor

k ÷ l,

yields the type Nat and is defined by

(ex t st k = l · it + t & t < l) or it = 0 & l = 0.
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The functor

k mod l,

yields the type Nat and is defined by

(ex t st k = l · t + it & it < l) or it = 0 & l = 0.

Next we state four propositions:

(44) for k,l,n being Nat

holds n = k ÷ l iff (ex t st k = l · n + t & t < l) or n = 0 & l = 0,

(45) for k,l,n being Nat

holds n = k mod l iff (ex t st k = l · t + n & n < l) or n = 0 & l = 0,

(46) form,n st 0 < m holds n mod m < m,

(47) forn,m st 0 < m holds n = m · (n ÷ m) + (n mod m).

Let k, l have the type Nat. The predicate

k | l is defined by ex t st l = k · t.

Next we state a number of propositions:

(48) for k,l being Nat holds k | l iff ex t st l = k · t,

(49) forn,m holds m | n iff n = m · (n ÷ m),

(50) forn holds n | n,

(51) forn,m,l st n | m & m | l holds n | l,

(52) forn,m st n | m & m | n holds n = m,

(53) k | 0 & 1 | k,

(54) forn,m st 0 < m & n | m holds n ≤ m,

(55) forn,m,l st n | m & n | l holds n | m + l,

(56) n | k implies n | k · m,

(57) forn,m,l st n | m & n | m + l holds n | l,

(58) n | m & n | k implies n | m mod k.

Let us consider k, n. The functor

k lcm n,
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with values of the type Nat, is defined by

k | it & n | it & form st k | m & n | m holds it | m.

Next we state a proposition

(59) forM being Nat

holds M = k lcm n iff k | M & n | M & form st k | m & n | m holds M | m.

Let us consider k, n. The functor

k gcd n,

yields the type Nat and is defined by

it | k & it | n & form st m | k & m | n holds m | it .

We now state a proposition

(60) forM being Nat

holds M = k gcd n iff M | k & M | n & form st m | k & m | n holds m | M.

The scheme Euklides deals with a unary functor F yielding values of the type Nat,

a constant A that has the type Nat and a constant B that has the type Nat, and states

that the following holds

exn st F(n) = A gcd B & F(n + 1) = 0

provided the parameters satisfy the following conditions:

• 0 < B & B < A,

• F(0) = A & F(1) = B,

• forn holds F(n + 2) = F(n) mod F(n + 1).
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