Tuples, Projections and Cartesian Products

Andrzej Trybulec ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The purpose of this article is to define projections of ordered pairs, and to introduce triples and quadruples, and their projections. The theorems in this paper may be roughly divided into two groups: theorems describing basic properties of introduced concepts and theorems related to the regularity, analogous to those proved for ordered pairs by Cz. Byliński [1]. Cartesian products of subsets are redefined as subsets of Cartesian products.

The notation and terminology used here are introduced in the following papers: [3], [4], and [2]. For simplicity we adopt the following convention: $v, x, x 1, x 2, x 3, x 4, y, y 1$, $y 2, y 3, y 4, z$ denote objects of the type Any; $X, X 1, X 2, X 3, X 4, Y, Y 1, Y 2, Y 3, Y 4$, $Y 5, Z$ denote objects of the type set. One can prove the following propositions:

$$
\begin{equation*}
X \neq \emptyset \text { implies ex } Y \text { st } Y \in X \& Y \text { misses } X \tag{1}
\end{equation*}
$$

(2) $\quad X \neq \emptyset$ implies ex Y st $Y \in X \&$ for $Y 1$ st $Y 1 \in Y$ holds $Y 1$ misses X,
(3)

$$
X \neq \emptyset \text { implies }
$$

ex Y st $Y \in X \&$ for $Y 1, Y 2$ st $Y 1 \in Y 2 \& Y 2 \in Y$ holds $Y 1$ misses X,

$$
\begin{equation*}
X \neq \emptyset \text { implies ex } Y \text { st } Y \in X \tag{4}
\end{equation*}
$$

\& for $Y 1, Y 2, Y 3$ st $Y 1 \in Y 2 \& Y 2 \in Y 3 \& Y 3 \in Y$ holds $Y 1$ misses X,
(5)
$X \neq \emptyset$ implies ex Y st $Y \in X \&$ for $Y 1, Y 2, Y 3, Y 4$
st $Y 1 \in Y 2 \& Y 2 \in Y 3 \& Y 3 \in Y 4 \& Y 4 \in Y$ holds $Y 1$ misses X,
(6)
$X \neq \emptyset$ implies ex Y st $Y \in X$ \& for $Y 1, Y 2, Y 3, Y 4, Y 5$ st
$Y 1 \in Y 2 \& Y 2 \in Y 3 \& Y 3 \in Y 4 \& Y 4 \in Y 5 \& Y 5 \in Y$ holds $Y 1$ misses X.

[^0]We now define two new functors. Let us consider x. Assume there exist $x 1, x 2$, of the type Any such that

$$
x=\langle x 1, x 2\rangle .
$$

The functor

$$
x_{1}
$$

is defined by

$$
x=\langle y 1, y 2\rangle \text { implies it }=y 1 .
$$

The functor

$$
x_{2}
$$

is defined by

$$
x=\langle y 1, y 2\rangle \text { implies it }=y 2
$$

We now state a number of propositions:

$$
\begin{equation*}
\langle x, y\rangle_{\mathbf{1}}=x \&\langle x, y\rangle_{\mathbf{2}}=y \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
(\mathbf{e x} x, y \text { st } z=\langle x, y\rangle) \text { implies }\left\langle z_{\mathbf{1}}, z_{\mathbf{2}}\right\rangle=z \tag{8}
\end{equation*}
$$

(9) $X \neq \emptyset$ implies ex v st $v \in X \& \operatorname{not} \operatorname{ex} x, y$ st $(x \in X$ or $y \in X) \& v=\langle x, y\rangle$,

$$
\begin{equation*}
z \in\left[: X, Y: \text { implies } z_{1} \in X \& z_{2} \in Y\right. \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
(\mathbf{e x} x, y \mathbf{s t} z=\langle x, y\rangle) \& z_{\mathbf{1}} \in X \& z_{\mathbf{2}} \in Y \text { implies } z \in[: X, Y:] \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
z \in[:\{x\},\{y\}:] \text { implies } z_{1}=x \& z_{\mathbf{2}}=y \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
z \in\left[:\{x 1, x 2\}, Y: \text { implies }\left(z_{1}=x 1 \text { or } z_{1}=x 2\right) \& z_{2} \in Y\right. \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
z \in\left\{:\{x 1, x 2\},\{y\}: \text { implies }\left(z_{1}=x 1 \text { or } z_{1}=x 2\right) \& z_{2}=y,\right. \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
z \in\left\{:\{x\},\{y 1, y 2\}: \text { implies } z_{1}=x \&\left(z_{2}=y 1 \text { or } z_{2}=y 2\right),\right. \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
z \in: X,\{y 1, y 2\}: \text { implies } z_{1} \in X \&\left(z_{\mathbf{2}}=y 1 \text { or } z_{\mathbf{2}}=y 2\right), \tag{15}
\end{equation*}
$$

$$
\begin{gather*}
z \in:\{x 1, x 2\},\{y 1, y 2\}: \tag{19}\\
\text { implies }\left(z_{1}=x 1 \text { or } z_{1}=x 2\right) \&\left(z_{2}=y 1 \text { or } z_{2}=y 2\right)
\end{gather*}
$$

$$
\begin{equation*}
(\mathbf{e x} y, z \text { st } x=\langle y, z\rangle) \text { implies } x \neq x_{\mathbf{1}} \& x \neq x_{\mathbf{2}} . \tag{20}
\end{equation*}
$$

In the sequel $x x$ will have the type Element of $X ; y y$ will have the type Element of Y. One can prove the following propositions:

$$
\begin{gather*}
X \neq \emptyset \& Y \neq \emptyset \text { implies }\langle x x, y y\rangle \in[: X, Y: \tag{21}\\
X \neq \emptyset \& Y \neq \emptyset \text { implies }\langle x x, y y\rangle \text { is Element of }: X, Y:], \tag{22}\\
x \in\left[: X, Y: \text { implies } x=\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}\right\rangle,\right. \tag{23}
\end{gather*}
$$

(24) $\quad X \neq \emptyset \& Y \neq \emptyset$ implies for x being Element of $\left\{: X, Y:\right.$ holds $x=\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}\right\rangle$,

$$
\begin{gather*}
:\{x 1, x 2\},\{y 1, y 2\}:=\{\langle x 1, y 1\rangle,\langle x 1, y 2\rangle,\langle x 2, y 1\rangle,\langle x 2, y 2\rangle\}, \tag{25}\\
 \tag{26}\\
X \neq \emptyset \& Y \neq \emptyset
\end{gather*}
$$

implies for x being Element of $: X, Y$: holds $x \neq x_{1} \& x \neq x_{\mathbf{2}}$.
Let us consider $x 1, x 2, x 3$. The functor

$$
\langle x 1, x 2, x 3\rangle,
$$

is defined by

$$
\mathbf{i t}=\langle\langle x 1, x 2\rangle, x 3\rangle .
$$

One can prove the following three propositions:

$$
\begin{equation*}
\langle x 1, x 2, x 3\rangle=\langle\langle x 1, x 2\rangle, x 3\rangle, \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\langle x 1, x 2, x 3\rangle=\langle y 1, y 2, y 3\rangle \text { implies } x 1=y 1 \& x 2=y 2 \& x 3=y 3 \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
X \neq \emptyset \tag{29}
\end{equation*}
$$

implies ex v st $v \in X \&$ not ex x, y, z st $(x \in X$ or $y \in X) \& v=\langle x, y, z\rangle$.
Let us consider $x 1, x 2, x 3, x 4$. The functor

$$
\langle x 1, x 2, x 3, x 4\rangle
$$

is defined by

$$
\mathbf{i t}=\langle\langle x 1, x 2, x 3\rangle, x 4\rangle
$$

The following propositions are true:

$$
\begin{gather*}
\langle x 1, x 2, x 3, x 4\rangle=\langle\langle x 1, x 2, x 3\rangle, x 4\rangle, \tag{30}\\
\langle x 1, x 2, x 3, x 4\rangle=\langle\langle\langle x 1, x 2\rangle, x 3\rangle, x 4\rangle, \tag{31}\\
\langle x 1, x 2, x 3, x 4\rangle=\langle\langle x 1, x 2\rangle, x 3, x 4\rangle, \tag{32}\\
\langle x 1, x 2, x 3, x 4\rangle=\langle y 1, y 2, y 3, y 4\rangle \tag{33}\\
\text { implies } x 1=y 1 \& x 2=y 2 \& x 3=y 3 \& x 4=y 4,
\end{gather*}
$$

$$
\begin{equation*}
X \neq \emptyset \text { implies ex } v \tag{34}
\end{equation*}
$$

st $v \in X \&$ not ex $x 1, x 2, x 3, x 4$ st $(x 1 \in X$ or $x 2 \in X) \& v=\langle x 1, x 2, x 3, x 4\rangle$,

$$
\begin{equation*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \text { iff }[: X 1, X 2, X 3:] \neq \emptyset \tag{35}
\end{equation*}
$$

In the sequel $x x 1$ has the type Element of $X 1 ; x x 2$ has the type Element of $X 2$; $x x 3$ has the type Element of $X 3$. One can prove the following propositions:

$$
\begin{equation*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \text { implies } \tag{36}
\end{equation*}
$$

$$
([: X 1, X 2, X 3:]=[: Y 1, Y 2, Y 3] \text { implies } X 1=Y 1 \& X 2=Y 2 \& X 3=Y 3)
$$

$$
\begin{equation*}
: X 1, X 2, X 3:] \neq \emptyset \&[: X 1, X 2, X 3:]=[: Y 1, Y 2, Y 3:] \tag{37}
\end{equation*}
$$

$$
\text { implies } X 1=Y 1 \& X 2=Y 2 \& X 3=Y 3
$$

$$
\begin{gather*}
: X, X, X:=[: Y, Y, Y: \text { implies } X=Y, \tag{38}\\
:\{x 1\},\{x 2\},\{x 3\}:]=\{\langle x 1, x 2, x 3\rangle\}, \tag{39}
\end{gather*}
$$

$$
\begin{equation*}
:\{x 1, y 1\},\{x 2\},\{x 3\}:]=\{\langle x 1, x 2, x 3\rangle,\langle y 1, x 2, x 3\rangle\} \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
[:\{x 1\},\{x 2, y 2\},\{x 3\}:]=\{\langle x 1, x 2, x 3\rangle,\langle x 1, y 2, x 3\rangle\} \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
[:\{x 1\},\{x 2\},\{x 3, y 3\}:]=\{\langle x 1, x 2, x 3\rangle,\langle x 1, x 2, y 3\rangle\} \tag{42}
\end{equation*}
$$

(43) $\quad:\{x 1, y 1\},\{x 2, y 2\},\{x 3\}:]=\{\langle x 1, x 2, x 3\rangle,\langle y 1, x 2, x 3\rangle,\langle x 1, y 2, x 3\rangle,\langle y 1, y 2, x 3\rangle\}$,
(44) $\quad:\{x 1, y 1\},\{x 2\},\{x 3, y 3\}:]=\{\langle x 1, x 2, x 3\rangle,\langle y 1, x 2, x 3\rangle,\langle x 1, x 2, y 3\rangle,\langle y 1, x 2, y 3\rangle\}$,
(45) $\quad:\{x 1\},\{x 2, y 2\},\{x 3, y 3\}:]=\{\langle x 1, x 2, x 3\rangle,\langle x 1, y 2, x 3\rangle,\langle x 1, x 2, y 3\rangle,\langle x 1, y 2, y 3\rangle\}$,

$$
\begin{gather*}
:\{x 1, y 1\},\{x 2, y 2\},\{x 3, y 3\}:]=\{\langle x 1, x 2, x 3\rangle, \tag{46}\\
\langle x 1, y 2, x 3\rangle,\langle x 1, x 2, y 3\rangle,\langle x 1, y 2, y 3\rangle,\langle y 1, x 2, x 3\rangle,\langle y 1, y 2, x 3\rangle,\langle y 1, x 2, y 3\rangle,\langle y 1, y 2, y 3\rangle\} .
\end{gather*}
$$

We now define three new functors. Let us consider $X 1, X 2, X 3$. Assume that the following holds

$$
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset
$$

Let x have the type Element of $: X 1, X 2, X 3]$. The functor

$$
x_{1}
$$

with values of the type Element of $X 1$, is defined by

$$
x=\langle x 1, x 2, x 3\rangle \text { implies it }=x 1 .
$$

The functor

$$
x_{2}
$$

yields the type Element of $X 2$ and is defined by

$$
x=\langle x 1, x 2, x 3\rangle \text { implies it }=x 2 .
$$

The functor

$$
x_{\mathbf{3}}
$$

with values of the type Element of $X 3$, is defined by

$$
x=\langle x 1, x 2, x 3\rangle \text { implies it }=x 3 .
$$

One can prove the following propositions:
(47) $\quad X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset$ implies for x being Element of $: X 1, X 2, X 3$]

$$
\text { for } x 1, x 2, x 3 \text { st } x=\langle x 1, x 2, x 3\rangle \text { holds } x_{\mathbf{1}}=x 1 \& x_{\mathbf{2}}=x 2 \& x_{\mathbf{3}}=x 3,
$$

$$
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset
$$

implies for x being Element of $: X 1, X 2, X 3:$ holds $x=\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}, x_{\mathbf{3}}\right\rangle$,
(49) $\quad X \subseteq: X, Y, Z:]$ or $X \subseteq: Y, Z, X:$ or $X \subseteq[Z, X, Y:$ implies $X=\emptyset$,
(50) $\quad X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset$ implies for x being Element of : $X 1, X 2, X 3$: holds $x_{1}=(x \text { qua Any })_{11} \& x_{\mathbf{2}}=(x \text { qua Any })_{12} \& x_{\mathbf{3}}=(x \text { qua Any })_{2}$,

$$
\begin{equation*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \text { implies } \tag{51}
\end{equation*}
$$ for x being Element of $: X 1, X 2, X 3:]$ holds $x \neq x_{\mathbf{1}} \& x \neq x_{\mathbf{2}} \& x \neq x_{\mathbf{3}}$,

$$
\begin{equation*}
[: X 1, X 2, X 3] \text { meets }[Y 1, Y 2, Y 3:] \tag{52}
\end{equation*}
$$

implies $X 1$ meets $Y 1 \& X 2$ meets $Y 2 \& X 3$ meets $Y 3$,

$$
\begin{equation*}
[: X 1, X 2, X 3, X 4:]=[:[: X 1, X 2:], X 3], X 4:], \tag{53}
\end{equation*}
$$

$$
\begin{equation*}
[:: X 1, X 2], X 3, X 4]=[: X 1, X 2, X 3, X 44], \tag{54}
\end{equation*}
$$

$$
\begin{equation*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \text { iff }: X 1, X 2, X 3, X 4:] \neq \emptyset \tag{55}
\end{equation*}
$$

implies $X 1=Y 1 \& X 2=Y 2 \& X 3=Y 3 \& X 4=Y 4$),

$$
\begin{equation*}
[: X 1, X 2, X 3, X 4:] \neq \emptyset \&[: X 1, X 2, X 3, X 4]=[: Y 1, Y 2, Y 3, Y 4:] \tag{57}
\end{equation*}
$$

$$
\begin{equation*}
\text { implies } X 1=Y 1 \& X 2=Y 2 \& X 3=Y 3 \& X 4=Y 4 \tag{58}
\end{equation*}
$$

In the sequel $x x 4$ will have the type Element of $X 4$. We now define four new functors. Let us consider $X 1, X 2, X 3, X 4$. Assume that the following holds

$$
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset
$$

Let x have the type Element of $: X 1, X 2, X 3, X 4]$. The functor
x_{1},
yields the type Element of $X 1$ and is defined by

$$
x=\langle x 1, x 2, x 3, x 4\rangle \text { implies it }=x 1 .
$$

The functor
x_{2},
with values of the type Element of $X 2$, is defined by

$$
x=\langle x 1, x 2, x 3, x 4\rangle \text { implies it }=x 2 .
$$

The functor

$$
x_{3}
$$

yields the type Element of $X 3$ and is defined by

$$
x=\langle x 1, x 2, x 3, x 4\rangle \text { implies it }=x 3 .
$$

The functor

$$
x_{4},
$$

with values of the type Element of $X 4$, is defined by

$$
x=\langle x 1, x 2, x 3, x 4\rangle \text { implies it }=x 4 .
$$

Next we state several propositions:

$$
\begin{gather*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \text { implies } \tag{59}\\
\text { for } x \text { being Element of }[: X 1, X 2, X 3, X 4: \text { for } x 1, x 2, x 3, x 4 \\
\text { st } x=\langle x 1, x 2, x 3, x 4\rangle \text { holds } x_{\mathbf{1}}=x 1 \& x_{\mathbf{2}}=x 2 \& x_{\mathbf{3}}=x 3 \& x_{\mathbf{4}}=x 4,
\end{gather*}
$$

$$
\begin{equation*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \tag{60}
\end{equation*}
$$

implies for x being Element of $: X 1, X 2, X 3, X 4]$ holds $x=\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}, x_{\mathbf{3}}, x_{\mathbf{4}}\right\rangle$,

$$
\begin{equation*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \text { implies } \tag{61}
\end{equation*}
$$

$$
\text { for } x \text { being Element of }: X 1, X 2, X 3, X 4] \text { holds } x_{\mathbf{1}}=(x \text { qua Any })_{111}
$$

$$
\& x_{2}=(x \text { qua Any })_{112} \& x_{3}=(x \text { qua Any })_{12} \& x_{4}=(x \text { qua Any })_{2}
$$

(63)

$$
\begin{align*}
& X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \text { implies } \tag{62}\\
& \text { for } x \text { being Element of }: X 1, X 2, X 3, X 4: \\
& \text { holds } x \neq x_{\mathbf{1}} \& x \neq x_{\mathbf{2}} \& x \neq x_{\mathbf{3}} \& x \neq x_{\mathbf{4}} \\
& X 1 \subseteq[: X 1, X 2, X 3, X 4: \text { or }
\end{align*}
$$

$X 1 \subseteq: X 2, X 3, X 4, X 1]$ or $X 1 \subseteq[: X 3, X 4, X 1, X 2:$ or $X 1 \subseteq[: X 4, X 1, X 2, X 3:$
implies $X 1=\emptyset$,

$$
[: X 1, X 2, X 3, X 4:] \text { meets }: Y 1, Y 2, Y 3, Y 4:]
$$

implies $X 1$ meets $Y 1 \& X 2$ meets $Y 2 \& X 3$ meets $Y 3 \& X 4$ meets $Y 4$,

$$
\begin{equation*}
[:\{x 1\},\{x 2\},\{x 3\},\{x 4\}:]=\{\langle x 1, x 2, x 3, x 4\rangle\}, \tag{65}
\end{equation*}
$$

(66) $\left[: X, Y: \neq \emptyset\right.$ implies for x being Element of $: X, Y:$ holds $x \neq x_{\mathbf{1}} \& x \neq x_{\mathbf{2}}$,

$$
\begin{equation*}
x \in\left[: X, Y: \text { implies } x \neq x_{\mathbf{1}} \& x \neq x_{\mathbf{2}} .\right. \tag{67}
\end{equation*}
$$

For simplicity we adopt the following convention: $A 1$ will denote an object of the type Subset of $X 1 ; A 2$ will denote an object of the type Subset of $X 2 ; A 3$ will denote an object of the type Subset of $X 3 ; A 4$ will denote an object of the type Subset of $X 4 ; x$ will denote an object of the type Element of : $X 1, X 2, X 3$]. We now state a number of propositions:

$$
\begin{gather*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \text { implies } \tag{68}\\
\text { for } x 1, x 2, x 3 \text { st } x=\langle x 1, x 2, x 3\rangle \text { holds } x_{\mathbf{1}}=x 1 \& x_{\mathbf{2}}=x 2 \& x_{\mathbf{3}}=x 3, \\
X 1 \neq \emptyset \& \tag{69}\\
X 2 \neq \emptyset \& X 3 \neq \emptyset \&(\text { for } x x 1, x x 2, x x 3 \text { st } x=\langle x x 1, x x 2, x x 3\rangle \text { holds } y 1=x x 1) \\
\text { implies } y 1=x_{\mathbf{1}}, \\
X 1 \neq \emptyset \& \\
X 2 \neq \emptyset \& X 3 \neq \emptyset \&(\text { for } x x 1, x x 2, x x 3 \text { st } x=\langle x x 1, x x 2, x x 3\rangle \text { holds } y 2=x x 2) \\
\text { implies } y 2=x_{\mathbf{2}}, \\
X 1 \neq \emptyset \& \tag{71}\\
X 2 \neq \emptyset \& X 3 \neq \emptyset \&(\text { for } x x 1, x x 2, x x 3 \text { st } x=\langle x x 1, x x 2, x x 3\rangle \text { holds } y 3=x x 3) \\
\text { implies } y 3=x \mathbf{3}, \\
z \in[X 1, X 2, X 3: \\
\text { implies ex } x 1, x 2, x 3 \text { st } x 1 \in X 1 \& x 2 \in X 2 \& x 3 \in X 3 \& z=\langle x 1, x 2, x 3\rangle, \\
\langle x 1, x 2, x 3\rangle \in[X 1, X 2, X 3: \text { iff } x 1 \in X 1 \& x 2 \in X 2 \& x 3 \in X 3, \tag{74}\\
(\text { for } z \text { holds } \tag{73}
\end{gather*}
$$

$z \in Z$ iff ex $x 1, x 2, x 3$ st $x 1 \in X 1 \& x 2 \in X 2 \& x 3 \in X 3 \& z=\langle x 1, x 2, x 3\rangle)$

$$
\text { implies } Z=[: X 1, X 2, X 3] \text {, }
$$

$$
\begin{equation*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& Y 1 \neq \emptyset \& Y 2 \neq \emptyset \& Y 3 \neq \emptyset \text { implies } \tag{75}
\end{equation*}
$$

for x being Element of $: X 1, X 2, X 3:], y$ being Element of $[Y 1, Y 2, Y 3$:
holds $x=y$ implies $x_{1}=y_{1} \& x_{2}=y_{2} \& x_{3}=y_{3}$,
for x being Element of $: X 1, X 2, X 3$:
st $x \in[: A 1, A 2, A 3]$ holds $x_{\mathbf{1}} \in A 1 \& x_{\mathbf{2}} \in A 2 \& x_{\mathbf{3}} \in A 3$,

$$
\begin{equation*}
X 1 \subseteq Y 1 \& X 2 \subseteq Y 2 \& X 3 \subseteq Y 3 \text { implies }: X 1, X 2, X 3: \subseteq: Y 1, Y 2, Y 3] \tag{77}
\end{equation*}
$$

In the sequel x has the type Element of $: X 1, X 2, X 3, X 4]$. We now state a number of propositions:

$$
\begin{equation*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \text { implies for } x 1, x 2, x 3, x 4 \tag{78}
\end{equation*}
$$

st $x=\langle x 1, x 2, x 3, x 4\rangle$ holds $x_{\mathbf{1}}=x 1 \& x_{\mathbf{2}}=x 2 \& x_{\mathbf{3}}=x 3 \& x_{\mathbf{4}}=x 4$,

$$
\begin{equation*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& \tag{79}
\end{equation*}
$$

$X 4 \neq \emptyset \&($ for $x x 1, x x 2, x x 3, x x 4$ st $x=\langle x x 1, x x 2, x x 3, x x 4\rangle$ holds $y 1=x x 1)$
implies $y 1=x_{1}$,
$X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \&$
$X 4 \neq \emptyset \&($ for $x x 1, x x 2, x x 3, x x 4$ st $x=\langle x x 1, x x 2, x x 3, x x 4\rangle$ holds $y 2=x x 2)$
implies $y 2=x_{2}$,
$X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \&$
$X 4 \neq \emptyset \&($ for $x x 1, x x 2, x x 3, x x 4$ st $x=\langle x x 1, x x 2, x x 3, x x 4\rangle$ holds $y 3=x x 3)$
implies $y 3=x_{3}$,
$X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \&$
$X 4 \neq \emptyset \&($ for $x x 1, x x 2, x x 3, x x 4$ st $x=\langle x x 1, x x 2, x x 3, x x 4\rangle$ holds $y 4=x x 4)$
implies $y 4=x_{4}$,
$z \in[: X 1, X 2, X 3, X 4]$ implies ex $x 1, x 2, x 3, x 4$ st $x 1 \in X 1 \& x 2 \in X 2 \& x 3 \in X 3 \& x 4 \in X 4 \& z=\langle x 1, x 2, x 3, x 4\rangle$,

$$
\begin{equation*}
\langle x 1, x 2, x 3, x 4\rangle \in[: X 1, X 2, X 3, X 4] \tag{84}
\end{equation*}
$$

iff $x 1 \in X 1 \& x 2 \in X 2 \& x 3 \in X 3 \& x 4 \in X 4$,
(for z holds $z \in Z$ iff ex $x 1, x 2, x 3, x 4$ st $x 1 \in X 1 \& x 2 \in X 2 \& x 3 \in X 3 \& x 4 \in X 4 \& z=\langle x 1, x 2, x 3, x 4\rangle)$
implies $Z=[: X 1, X 2, X 3, X 4]$,
(86)

$$
X 1 \neq \emptyset
$$

$\& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \& Y 1 \neq \emptyset \& Y 2 \neq \emptyset \& Y 3 \neq \emptyset \& Y 4 \neq \emptyset$
implies
for x being Element of : $: X 1, X 2, X 3, X 4]$], y being Element of : $Y 1, Y 2, Y 3, Y 4$:
holds $x=y$ implies $x_{1}=y_{1} \& x_{2}=y_{2} \& x_{3}=y_{3} \& x_{4}=y_{4}$,

$$
\begin{aligned}
& X 1 \subseteq Y 1 \& X 2 \subseteq Y 2 \& X 3 \subseteq Y 3 \& X 4 \subseteq Y 4 \\
& \text { implies }: X 1, X 2, X 3, X 4: \subseteq[: Y 1, Y 2, Y 3, Y 4]
\end{aligned}
$$

Let us consider $X 1, X 2, A 1, A 2$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: A 1, A 2] \quad \text { is } \quad \text { Subset of }[: X 1, X 2] .
$$

Let us consider $X 1, X 2, X 3, A 1, A 2, A 3$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: A 1, A 2, A 3] \quad \text { is } \quad \text { Subset of }: X 1, X 2, X 3]
$$

Let us consider $X 1, X 2, X 3, X 4, A 1, A 2, A 3, A 4$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: A 1, A 2, A 3, A 4:] \quad \text { is } \quad \text { Subset of }[: X 1, X 2, X 3, X 4 ;] .
$$

References

[1] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[4] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1.

