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Summary. A lattice is defined as an algebra on a nonempty set with binary
operations join and meet which are commutative and associative, and satisfy the
absorption identities. The following kinds of lattices are considered: distributive,
modular, bounded (with zero and unit elements), complemented, and Boolean (with
complement). The article includes also theorems which immediately follow from
definitions.

The terminology and notation used in this paper are introduced in the papers [1] and

[2]. The scheme BooleDomBinOpLam deals with a constant A that has the type

BOOLE DOMAIN and a binary functor F yielding values of the type Element of A

and states that the following holds

ex o being Binary Operation of A

st for a,b being Element of A holds o.(a, b) = F(a, b)

for all values of the parameters.

We consider structures LattStr, which are systems

〈〈carrier , join , meet〉〉

where carrier has the type DOMAIN, and join, meet have the type Binary Operation

of the carrier. In the sequel G has the type LattStr; p, q, r have the type Element

of the carrier of G. We now define two new functors. Let us consider G, p, q. The

functor

p ⊔ q,

yields the type Element of the carrier of G and is defined by

it = (the join of G).(p, q).

1Supported by RPBP.III-24.C1.
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The functor

p ⊓ q,

with values of the type Element of the carrier of G, is defined by

it = (the meet of G).(p, q).

The following propositions are true:

(1) p ⊔ q = (the join of G).(p, q),

(2) p ⊓ q = (the meet of G).(p, q).

Let us consider G, p, q. The predicate

p ⊑ q is defined by p ⊔ q = q.

We now state a proposition

(3) p ⊑ q iff p ⊔ q = q.

The mode

Lattice ,

which widens to the type LattStr, is defined by

(for a,b being Element of the carrier of it holds a ⊔ b = b ⊔ a) &

(for a,b,c being Element of the carrier of it holds a ⊔ (b ⊔ c) = (a ⊔ b) ⊔ c) &

(for a,b being Element of the carrier of it holds (a ⊓ b) ⊔ b = b) &

(for a,b being Element of the carrier of it holds a ⊓ b = b ⊓ a) &

(for a,b,c being Element of the carrier of it holds a ⊓ (b ⊓ c) = (a ⊓ b) ⊓ c)

& for a,b being Element of the carrier of it holds a ⊓ (a ⊔ b) = a.

One can prove the following proposition

(4) (for p,q holds p ⊔ q = q ⊔ p) & (for p,q,r holds p ⊔ (q ⊔ r) = (p ⊔ q) ⊔ r) &

(for p,q holds (p ⊓ q) ⊔ q = q) & (for p,q holds p ⊓ q = q ⊓ p)

& (for p,q,r holds p ⊓ (q ⊓ r) = (p ⊓ q) ⊓ r) & (for p,q holds p ⊓ (p ⊔ q) = p)

implies G is Lattice .

In the sequel L has the type Lattice; a, b, c have the type Element of the carrier of L.

One can prove the following propositions:

(5) a ⊔ b = b ⊔ a,

(6) a ⊓ b = b ⊓ a,

(7) a ⊔ (b ⊔ c) = (a ⊔ b) ⊔ c,
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(8) a ⊓ (b ⊓ c) = (a ⊓ b) ⊓ c,

(9) (a ⊓ b) ⊔ b = b & b ⊔ (a ⊓ b) = b & b ⊔ (b ⊓ a) = b & (b ⊓ a) ⊔ b = b,

(10) a ⊓ (a ⊔ b) = a & (a ⊔ b) ⊓ a = a & (b ⊔ a) ⊓ a = a & a ⊓ (b ⊔ a) = a.

The mode

Distributive Lattice ,

which widens to the type Lattice, is defined by

for a,b,c being Element of the carrier of it holds a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c).

Next we state a proposition

(11) (for a,b,c holds a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c))

implies L is Distributive Lattice .

The mode

Modular Lattice ,

which widens to the type Lattice, is defined by

for a,b,c being Element of the carrier of it st a ⊑ c holds a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ c.

One can prove the following proposition

(12) (for a,b,c st a ⊑ c holds a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ c)

implies L is Modular Lattice .

The mode

Lower Bound Lattice ,

which widens to the type Lattice, is defined by

ex c being Element of the carrier of it

st for a being Element of the carrier of it holds c ⊓ a = c.

Next we state a proposition

(13) (ex c st for a holds c ⊓ a = c) implies L is Lower Bound Lattice .

The mode

Upper Bound Lattice ,

which widens to the type Lattice, is defined by

ex c being Element of the carrier of it

st for a being Element of the carrier of it holds c ⊔ a = c.
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One can prove the following proposition

(14) (ex c st for a holds c ⊔ a = c) implies L is Upper Bound Lattice .

The mode

Bound Lattice ,

which widens to the type Lattice, is defined by

it is Lower Bound Lattice & it is Upper Bound Lattice .

Next we state a proposition

(15) L is Lower Bound Lattice & L is Upper Bound Lattice

implies L is Bound Lattice .

Let us consider L. Assume that the following holds

ex c st for a holds c ⊓ a = c.

The functor

⊥L,

yields the type Element of the carrier of L and is defined by

it ⊓ a = it .

Let L have the type Lower Bound Lattice. Let us note that it makes sense to consider

the following functor on a restricted area. Then

⊥L is Element of the carrier of L.

Let us consider L. Assume that the following holds

ex c st for a holds c ⊔ a = c.

The functor

⊤L,

with values of the type Element of the carrier of L, is defined by

it ⊔ a = it .

Let L have the type Upper Bound Lattice. Let us note that it makes sense to consider

the following functor on a restricted area. Then

⊤L is Element of the carrier of L.

Let L have the type Bound Lattice. Let us note that it makes sense to consider the

following functors on restricted areas. Then

⊥L is Element of the carrier of L,
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⊤L is Element of the carrier of L.

Let us consider L, a, b. Assume that the following holds

L is Bound Lattice .

The predicate

a is a complement of b is defined by a ⊔ b = ⊤L & a ⊓ b = ⊥L.

The mode

Lattice with Complement ,

which widens to the type Bound Lattice, is defined by

for b being Element of the carrier of it

ex a being Element of the carrier of it st a is a complement of b.

The mode

Boolean Lattice ,

which widens to the type Lattice with Complement, is defined by

it is Distributive Lattice .

The following propositions are true:

(16) a ⊔ b = b iff a ⊓ b = a,

(17) a ⊔ a = a,

(18) a ⊓ a = a,

(19) forL holds (for a,b,c holds a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c))

iff for a,b,c holds a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c),

(20) a ⊑ b iff a ⊔ b = b,

(21) a ⊑ b iff a ⊓ b = a,

(22) a ⊑ a ⊔ b,

(23) a ⊓ b ⊑ a,

(24) a ⊑ a,

(25) a ⊑ b & b ⊑ c implies a ⊑ c,

(26) a ⊑ b & b ⊑ a implies a = b,

(27) a ⊑ b implies a ⊓ c ⊑ b ⊓ c,
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(28) a ⊑ b implies c ⊓ a ⊑ c ⊓ b,

(29) (for a,b,c holds (a ⊓ b) ⊔ (b ⊓ c) ⊔ (c ⊓ a) = (a ⊔ b) ⊓ (b ⊔ c) ⊓ (c ⊔ a))

implies L is Distributive Lattice .

In the sequel L denotes an object of the type Distributive Lattice; a, b, c de-

note objects of the type Element of the carrier of L. One can prove the following

propositions:

(30) forL holds (for a,b,c holds a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c))

& for a,b,c holds (b ⊔ c) ⊓ a = (b ⊓ a) ⊔ (c ⊓ a),

(31) forL holds (for a,b,c holds a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c))

& for a,b,c holds (b ⊓ c) ⊔ a = (b ⊔ a) ⊓ (c ⊔ a),

(32) c ⊓ a = c ⊓ b & c ⊔ a = c ⊔ b implies a = b,

(33) a ⊓ c = b ⊓ c & a ⊔ c = b ⊔ c implies a = b,

(34) (a ⊔ b) ⊓ (b ⊔ c) ⊓ (c ⊔ a) = (a ⊓ b) ⊔ (b ⊓ c) ⊔ (c ⊓ a),

(35) L is Modular Lattice .

In the sequel L has the type Modular Lattice; a, b, c have the type Element of

the carrier of L. One can prove the following two propositions:

(36) a ⊑ c implies a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ c,

(37) c ⊑ a implies a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ c.

In the sequel L has the type Lower Bound Lattice; a, c have the type Element of

the carrier of L. We now state four propositions:

(38) ex c st for a holds c ⊓ a = c,

(39) ⊥L ⊔ a = a & a ⊔ ⊥L = a,

(40) ⊥L ⊓ a = ⊥L & a ⊓ ⊥L = ⊥L,

(41) ⊥L ⊑ a.

In the sequel L denotes an object of the type Upper Bound Lattice; a, c denote

objects of the type Element of the carrier of L. The following four propositions are

true:

(42) ex c st for a holds c ⊔ a = c,

(43) ⊤L ⊓ a = a & a ⊓ ⊤L = a,
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(44) ⊤L ⊔ a = ⊤L & a ⊔ ⊤L = ⊤L,

(45) a ⊑ ⊤L.

In the sequel L has the type Lattice with Complement; a, b have the type Element

of the carrier of L. One can prove the following proposition

(46) ex a st a is a complement of b.

In the sequel L has the type Lattice. The arguments of the notions defined below

are the following: L which is an object of the type reserved above; x which is an object

of the type Element of the carrier of L. Assume that the following holds

L is Boolean Lattice .

The functor

x c ,

yields the type Element of the carrier of L and is defined by

it is a complement of x.

The arguments of the notions defined below are the following: L which is an object of

the type Boolean Lattice; x which is an object of the type Element of the carrier of L.

Let us note that it makes sense to consider the following functor on a restricted area.

Then

x c is Element of the carrier of L.

In the sequel L will denote an object of the type Boolean Lattice; a, b will denote

objects of the type Element of the carrier of L. We now state several propositions:

(47) a c ⊓ a = ⊥L & a ⊓ a c = ⊥L,

(48) a c ⊔ a = ⊤L & a ⊔ a c = ⊤L,

(49) a c c = a,

(50) (a ⊓ b) c = a c ⊔ b c ,

(51) (a ⊔ b) c = a c ⊓ b c ,

(52) b ⊓ a = ⊥L iff b ⊑ a c ,

(53) a ⊑ b implies b c ⊑ a c .

In the sequel L will have the type Bound Lattice; a, b will have the type Element

of the carrier of L. We now state three propositions:

(54) L is Lower Bound Lattice & L is Upper Bound Lattice ,
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(55) a is a complement of b iff a ⊔ b = ⊤L & a ⊓ b = ⊥L,

(56) (for b ex a st a is a complement of b) implies L is Lattice with Complement .

In the sequel L has the type Lattice with Complement. One can prove the

following proposition

(57) L is Distributive Lattice implies L is Boolean Lattice .

In the sequel L has the type Boolean Lattice. The following two propositions are

true:

(58) L is Lattice with Complement ,

(59) L is Distributive Lattice .
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