Introduction to Lattice Theory

Stanisław Żukowski¹ Warsaw University Białystok

Summary. A lattice is defined as an algebra on a nonempty set with binary operations join and meet which are commutative and associative, and satisfy the absorption identities. The following kinds of lattices are considered: distributive, modular, bounded (with zero and unit elements), complemented, and Boolean (with complement). The article includes also theorems which immediately follow from definitions.

The terminology and notation used in this paper are introduced in the papers [1] and [2]. The scheme *BooleDomBinOpLam* deals with a constant \mathcal{A} that has the type BOOLE_DOMAIN and a binary functor \mathcal{F} yielding values of the type Element of \mathcal{A} and states that the following holds

 $ex \ o \ being \ Binary \ Operation \ of \ \mathcal{A}$

st for a, b being Element of \mathcal{A} holds $o.(a, b) = \mathcal{F}(a, b)$

for all values of the parameters.

We consider structures LattStr, which are systems

 $\langle\!\langle \text{carrier}, \text{join}, \text{meet} \rangle\!\rangle$

where carrier has the type DOMAIN, and join, meet have the type Binary_Operation of the carrier. In the sequel G has the type LattStr; p, q, r have the type Element of the carrier of G. We now define two new functors. Let us consider G, p, q. The functor

 $p \sqcup q$,

yields the type Element of the carrier of G and is defined by

 $\mathbf{it} = (\mathbf{the join of } G).(p,q).$

¹Supported by RPBP.III-24.C1.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 The functor

$$p \sqcap q$$

with values of the type Element of the carrier of G, is defined by

 $\mathbf{it} = (\mathbf{the meet of } G).(p,q).$

The following propositions are true:

(1)
$$p \sqcup q = (\mathbf{the join of } G).(p,q),$$

(2)
$$p \sqcap q = ($$
the meet of G $). (p,q) .$

Let us consider G, p, q. The predicate

$$p \sqsubseteq q$$
 is defined by $p \sqcup q = q$.

We now state a proposition

$$(3) p \sqsubseteq q \text{ iff } p \sqcup q = q.$$

The mode

Lattice,

which widens to the type LattStr, is defined by

(for a, b being Element of the carrier of it holds $a \sqcup b = b \sqcup a$) & (for a, b, c being Element of the carrier of it holds $a \sqcup (b \sqcup c) = (a \sqcup b) \sqcup c$) & (for a, b being Element of the carrier of it holds $(a \sqcap b) \sqcup b = b$) & (for a, b being Element of the carrier of it holds $a \sqcap b = b \sqcap a$) & (for a, b, c being Element of the carrier of it holds $a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c$) & for a, b being Element of the carrier of it holds $a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c$)

One can prove the following proposition

(4) (for
$$p,q$$
 holds $p \sqcup q = q \sqcup p$) & (for p,q,r holds $p \sqcup (q \sqcup r) = (p \sqcup q) \sqcup r$) &
(for p,q holds $(p \sqcap q) \sqcup q = q$) & (for p,q holds $p \sqcap q = q \sqcap p$)
& (for p,q,r holds $p \sqcap (q \sqcap r) = (p \sqcap q) \sqcap r$) & (for p,q holds $p \sqcap (p \sqcup q) = p$)
implies G is Lattice.

In the sequel L has the type Lattice; a, b, c have the type Element of the carrier of L. One can prove the following propositions:

- (5) $a \sqcup b = b \sqcup a,$
- (6) $a \sqcap b = b \sqcap a,$
- (7) $a \sqcup (b \sqcup c) = (a \sqcup b) \sqcup c,$

216

INTRODUCTION TO LATTICE THEORY

(8)
$$a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c,$$

(9)
$$(a \sqcap b) \sqcup b = b \& b \sqcup (a \sqcap b) = b \& b \sqcup (b \sqcap a) = b \& (b \sqcap a) \sqcup b = b,$$

$$(10) a \sqcap (a \sqcup b) = a \& (a \sqcup b) \sqcap a = a \& (b \sqcup a) \sqcap a = a \& a \sqcap (b \sqcup a) = a$$

The mode

Distributive_Lattice,

which widens to the type Lattice, is defined by

for a, b, c being Element of the carrier of it holds $a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)$.

Next we state a proposition

(11) (for
$$a,b,c$$
 holds $a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)$)

implies *L* **is** Distributive_Lattice.

The mode

Modular_Lattice,

which widens to the type Lattice, is defined by

for a, b, c being Element of the carrier of it st $a \sqsubseteq c$ holds $a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap c$.

One can prove the following proposition

(12) (for
$$a, b, c$$
 st $a \sqsubseteq c$ holds $a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap c$)
implies L is Modular_Lattice.

The mode

Lower_Bound_Lattice,

which widens to the type Lattice, is defined by

ex c being Element of the carrier of it

st for a being Element of the carrier of it holds $c \sqcap a = c$.

Next we state a proposition

(13)
$$(\mathbf{ex} \ c \ \mathbf{st} \ \mathbf{for} \ a \ \mathbf{holds} \ c \sqcap a = c) \ \mathbf{implies} \ L \ \mathbf{is} \ \mathbf{Lower_Bound_Lattice}$$
.

The mode

Upper_Bound_Lattice,

which widens to the type Lattice, is defined by

 $\mathbf{ex} c \mathbf{being}$ Element of the carrier of it

st for a being Element of the carrier of it holds $c \sqcup a = c$.

One can prove the following proposition

(14) $(\mathbf{ex} c \mathbf{st} \mathbf{for} a \mathbf{holds} c \sqcup a = c) \mathbf{implies} L \mathbf{is} \mathbf{Upper}_Bound_Lattice.$

The mode

Bound_Lattice,

which widens to the type Lattice, is defined by

it is Lower_Bound_Lattice & it is Upper_Bound_Lattice.

Next we state a proposition

(15) L is Lower_Bound_Lattice & L is Upper_Bound_Lattice implies L is Bound_Lattice.

Let us consider L. Assume that the following holds

$$\mathbf{ex} c \mathbf{st} \mathbf{for} a \mathbf{holds} c \sqcap a = c.$$

The functor

 $\perp L$,

yields the type Element of the carrier of L and is defined by

 $\mathbf{it} \sqcap a = \mathbf{it}$.

Let L have the type Lower_Bound_Lattice. Let us note that it makes sense to consider the following functor on a restricted area. Then

 $\perp L$ is Element of the carrier of L.

Let us consider L. Assume that the following holds

 $\mathbf{ex} c \mathbf{st} \mathbf{for} a \mathbf{holds} c \sqcup a = c.$

The functor

```
\top L,
```

with values of the type Element of the carrier of L, is defined by

 $\mathbf{it} \sqcup a = \mathbf{it}$.

Let L have the type Upper_Bound_Lattice. Let us note that it makes sense to consider the following functor on a restricted area. Then

 $\top L$ is Element of the carrier of L.

Let L have the type Bound_Lattice. Let us note that it makes sense to consider the following functors on restricted areas. Then

 $\perp L$ is Element of the carrier of L,

218

 $\top L$ is Element of the carrier of L.

Let us consider L, a, b. Assume that the following holds

L is Bound_Lattice.

The predicate

a is_a_complement_of *b* is defined by $a \sqcup b = \top L \& a \sqcap b = \bot L$.

The mode

 ${\tt Lattice_with_Complement}\,,$

which widens to the type Bound_Lattice, is defined by

for b being Element of the carrier of it

$ex a being Element of the carrier of it st a is_a_complement_of b.$

The mode

Boolean_Lattice,

which widens to the type Lattice_with_Complement, is defined by

it is Distributive_Lattice.

The following propositions are true:

(16)
$$a \sqcup b = b \text{ iff } a \sqcap b = a,$$

$$(18) a \sqcap a = a,$$

(19) **for** L **holds** (for
$$a, b, c$$
 holds $a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)$)
iff for a, b, c holds $a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)$,

- (20) $a \sqsubseteq b \text{ iff } a \sqcup b = b,$
- (21) $a \sqsubseteq b \text{ iff } a \sqcap b = a,$

$$(22) a \sqsubseteq a \sqcup b,$$

- $(23) a \sqcap b \sqsubseteq a,$
- $(24) a \sqsubseteq a,$
- (25) $a \sqsubseteq b \& b \sqsubseteq c \text{ implies } a \sqsubseteq c,$
- (26) $a \sqsubseteq b \& b \sqsubseteq a \text{ implies } a = b,$
- (27) $a \sqsubseteq b \text{ implies } a \sqcap c \sqsubseteq b \sqcap c,$

Stanisław Żukowski

(28)
$$a \sqsubseteq b \text{ implies } c \sqcap a \sqsubseteq c \sqcap b,$$

(29)
$$(\mathbf{for} \ a, b, c \ \mathbf{holds} \ (a \sqcap b) \sqcup (b \sqcap c) \sqcup (c \sqcap a) = (a \sqcup b) \sqcap (b \sqcup c) \sqcap (c \sqcup a))$$

implies *L* **is** Distributive_Lattice.

In the sequel L denotes an object of the type Distributive_Lattice; a, b, c denote objects of the type Element of the carrier of L. One can prove the following propositions:

(30) for *L* holds (for *a*,*b*,*c* holds
$$a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)$$
)
& for *a*,*b*,*c* holds $(b \sqcup c) \sqcap a = (b \sqcap a) \sqcup (c \sqcap a)$,

(31) for L holds (for
$$a, b, c$$
 holds $a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c))$
& for a, b, c holds $(b \sqcap c) \sqcup a = (b \sqcup a) \sqcap (c \sqcup a),$

(32)
$$c \sqcap a = c \sqcap b \& c \sqcup a = c \sqcup b \text{ implies } a = b.$$

(33)
$$a \sqcap c = b \sqcap c \& a \sqcup c = b \sqcup c \text{ implies } a = b,$$

$$(34) \qquad (a \sqcup b) \sqcap (b \sqcup c) \sqcap (c \sqcup a) = (a \sqcap b) \sqcup (b \sqcap c) \sqcup (c \sqcap a),$$

In the sequel L has the type Modular Lattice; a, b, c have the type Element of the carrier of L. One can prove the following two propositions:

(36)
$$a \sqsubseteq c \text{ implies } a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap c,$$

(37)
$$c \sqsubseteq a \text{ implies } a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup c.$$

In the sequel L has the type Lower_Bound_Lattice; a, c have the type Element of the carrier of L. We now state four propositions:

(38)
$$\operatorname{ex} c \operatorname{st} \operatorname{for} a \operatorname{holds} c \sqcap a = c,$$

$$(39) \qquad \qquad \bot L \sqcup a = a \& a \sqcup \bot L = a,$$

(40)
$$\perp L \sqcap a = \perp L \& a \sqcap \perp L = \perp L,$$

$$(41) \qquad \qquad \bot L \sqsubseteq a.$$

In the sequel L denotes an object of the type Upper_Bound_Lattice; a, c denote objects of the type Element of the carrier of L. The following four propositions are true:

(42) $\operatorname{ex} c \operatorname{st} \operatorname{for} a \operatorname{holds} c \sqcup a = c,$

$$(43) \qquad \qquad \top L \sqcap a = a \& a \sqcap \top L = a,$$

220

(44)
$$\top L \sqcup a = \top L \& a \sqcup \top L = \top L,$$

$$(45) a \sqsubseteq \top L.$$

In the sequel L has the type Lattice_with_Complement; a, b have the type Element of the carrier of L. One can prove the following proposition

(46)
$$\mathbf{ex} \ a \ \mathbf{st} \ a \ \mathbf{is_a_complement_of} \ b.$$

In the sequel L has the type Lattice. The arguments of the notions defined below are the following: L which is an object of the type reserved above; x which is an object of the type Element of the carrier of L. Assume that the following holds

L is Boolean_Lattice .

The functor

 $x^{\,\mathrm{c}}\,,$

yields the type Element of the carrier of L and is defined by

it is_a_complement_of x.

The arguments of the notions defined below are the following: L which is an object of the type Boolean_Lattice; x which is an object of the type Element of the carrier of L. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$x^{c}$$
 is Element of the carrier of L.

In the sequel L will denote an object of the type Boolean_Lattice; a, b will denote objects of the type Element of the carrier of L. We now state several propositions:

(47)
$$a^{c} \sqcap a = \bot L \& a \sqcap a^{c} = \bot L,$$

(48)
$$a^{c} \sqcup a = \top L \& a \sqcup a^{c} = \top L,$$

$$(50) (a \sqcap b)^{c} = a^{c} \sqcup b^{c},$$

$$(51) (a \sqcup b)^{c} = a^{c} \sqcap b^{c},$$

$$(52) b \sqcap a = \bot L \text{ iff } b \sqsubseteq a^{c},$$

(53) $a \sqsubseteq b$ implies $b^{c} \sqsubseteq a^{c}$.

In the sequel L will have the type Bound_Lattice; a, b will have the type Element of the carrier of L. We now state three propositions:

(54) L is Lower_Bound_Lattice & L is Upper_Bound_Lattice,

Stanisław Żukowski

- (55) $a \text{ is_a_complement_of } b \text{ iff } a \sqcup b = \top L \& a \sqcap b = \bot L,$
- (56) (for $b \in a$ as a is a complement of b) implies L is Lattice with Complement.

In the sequel L has the type Lattice_with_Complement. One can prove the following proposition

(57) L is Distributive_Lattice implies L is Boolean_Lattice.

In the sequel $\,L$ has the type Boolean_Lattice. The following two propositions are true:

(58) L is Lattice_with_Complement,

(59) L is Distributive_Lattice.

References

- [1] Czesław Byliński. Binary operations. Formalized Mathematics, 1, 1990.
- [2] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1, 1990.

Received April 14, 1989