Axioms of Incidence

Wojciech A. Trybulec¹ Warsaw University

Summary. This article is based on *"Foundations of Geometry"* by Karol Borsuk and Wanda Szmielew ([1]). The fourth axiom of incidence is weakened. In [1] it has the form for any plane there exist three non-collinear points in the plane and in the article for any plane there exists one point in the plane. The original axiom is proved. The article includes: theorems concerning collinearity of points and coplanarity of points and lines, basic theorems concerning lines and planes, fundamental existence theorems, theorems concerning intersection of lines and planes.

The articles [3], [2], and [4] provide the terminology and notation for this paper. We consider structures IncStruct, which are systems

 $\langle\!\langle \operatorname{Points}, \operatorname{Lines}, \operatorname{Planes}, \operatorname{Inc}_1, \operatorname{Inc}_2, \operatorname{Inc}_3 \rangle\!\rangle$

where Points, Lines, Planes have the type DOMAIN, Inc_1 has the type Relation of the Points, the Lines, Inc_2 has the type Relation of the Points, the Planes, and Inc_3 has the type Relation of the Lines, the Planes. We now define three new modes. Let S have the type IncStruct.

POINT of S stands for Element of the Points of S.

LINE of S stands for Element of the Lines of S.

PLANE of S stands for Element of the Planes of S.

In the sequel S will have the type IncStruct; A will have the type Element of the Points of S; L will have the type Element of the Lines of S; P will have the type Element of the Planes of S. The following propositions are true:

(1) $A ext{ is POINT of } S,$

(2)

L is LINE of S,

¹Supported by RPBP.III-24.C1.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

```
(3) 		 P 	imes PLANE 	of S.
```

For simplicity we adopt the following convention: A, B, C, D will denote objects of the type POINT of S; L will denote an object of the type LINE of S; P will denote an object of the type PLANE of S; F, G will denote objects of the type Subset of the Points of S. The arguments of the notions defined below are the following: S which is an object of the type reserved above; A which is an object of the type POINT of S; L which is an object of the type LINE of S. The predicate

A on L is defined by $\langle A, L \rangle \in \mathbf{the} \operatorname{Inc}_1 \mathbf{of} S.$

The arguments of the notions defined below are the following: S which is an object of the type reserved above; A which is an object of the type POINT of S; P which is an object of the type PLANE of S. The predicate

A on P is defined by $\langle A, P \rangle \in \mathbf{the} \operatorname{Inc}_2 \mathbf{of} S.$

The arguments of the notions defined below are the following: S which is an object of the type reserved above; L which is an object of the type LINE of S; P which is an object of the type PLANE of S. The predicate

L on P is defined by $\langle L, P \rangle \in \mathbf{the} \operatorname{Inc}_3 \mathbf{of} S$.

The arguments of the notions defined below are the following: S which is an object of the type reserved above; F which is an object of the type set of POINT of S; L which is an object of the type LINE of S. The predicate

F on L is defined by for A being POINT of S st $A \in F$ holds A on L.

The arguments of the notions defined below are the following: S which is an object of the type reserved above; F which is an object of the type set of POINT of S; P which is an object of the type PLANE of S. The predicate

F on P is defined by for A st $A \in F$ holds A on P.

The arguments of the notions defined below are the following: S which is an object of the type reserved above; F which is an object of the type **set of** POINT **of** S. The predicate

F is linear is defined by ex L st F on L.

The arguments of the notions defined below are the following: S which is an object of the type reserved above; F which is an object of the type **set of** POINT **of** S. The predicate

F is_planar is defined by ex P st F on P.

Next we state a number of propositions:

(4) $A \text{ on } L \text{ iff } \langle A, L \rangle \in \text{the } \text{Inc}_1 \text{ of } S,$

206

(5)	$A \text{ on } P \text{ iff } \langle A, P \rangle \in \mathbf{the} \operatorname{Inc}_2 \mathbf{of} S,$
(6)	$L \text{ on } P \text{ iff } \langle L, P \rangle \in \mathbf{the} \operatorname{Inc}_3 \mathbf{of} S,$
(7)	F on L iff for A st $A \in F$ holds A on L ,
(8)	$F ext{ on } P ext{ iff for } A ext{ st } A \in F ext{ holds } A ext{ on } P,$
(9)	F is_linear iff ex L st F on L ,
(10)	F is_planar iff ex P st F on P ,
(11)	$\{A, B\}$ on L iff A on L & B on L ,
(12)	$\{A, B, C\}$ on L iff A on L & B on L & C on L ,
(13)	$\{A, B\}$ on P iff A on P & B on P ,
(14)	$\{A, B, C\}$ on P iff A on P & B on P & C on P ,
(15)	$\{A, B, C, D\}$ on P iff A on P & B on P & C on P & D on P ,
(16)	$G \subseteq F \& F $ on L implies G on L ,
(17)	$G \subseteq F \& F $ on P implies G on P ,
(18)	F on $L \& A$ on L iff $F \cup \{A\}$ on L ,
(19)	$F \text{ on } P \& A \text{ on } P \text{ iff } F \cup \{A\} \text{ on } P,$
(20)	$F \cup G$ on L iff F on L & G on L ,
(21)	$F \cup G$ on P iff F on P & G on P ,
(22)	$G \subseteq F \& F$ is linear implies G is linear,
(23)	$G \subseteq F \& F$ is_planar implies G is_planar.
The mod	e

IncSpace,

which widens to the type IncStruct, is defined by

(for *L* being LINE of it ex *A*,*B* being POINT of it st $A \neq B \& \{A, B\}$ on *L*) & (for *A*,*B* being POINT of it ex *L* being LINE of it st $\{A, B\}$ on *L*) & (for *A*,*B* being POINT of it, *K*,*L* being LINE of it st $A \neq B \& \{A, B\}$ on $K \& \{A, B\}$ on *L* holds K = L) & (for *P* being PLANE of it ex *A* being POINT of it st *A* on *P*) & WOJCIECH A. TRYBULEC

(for A, B, C being POINT of it ex P being PLANE of it st $\{A, B, C\}$ on P) & (for A, B, C being POINT of it, P, Q being PLANE of it st not $\{A, B, C\}$ is_linear & $\{A, B, C\}$ on P & $\{A, B, C\}$ on Q holds P = Q) & (for L being LINE of it, P being PLANE of it st ex A, B being POINT of it st $A \neq B$ & $\{A, B\}$ on L & $\{A, B\}$ on P holds L on P) & (for A being POINT of it, P, Q being PLANE of it st A on P & A on Q ex B being POINT of it st $A \neq B$ & B on P & B on Q) & (ex A, B, C, D being POINT of it st not $\{A, B, C, D\}$ is_planar) & for A being POINT of it, L being LINE of it, P being PLANE of it st A on L & L on P holds A on P. The following proposition is true

(24) (for *L* being LINE of *S* ex *A*,*B* being POINT of *S* st $A \neq B \& \{A, B\}$ on *L*) & (for *A*,*B* being POINT of *S* ex *L* being LINE of *S* st $\{A, B\}$ on *L*) & (for *A*,*B* being POINT of *S*, *K*,*L* being LINE of *S* st $A \neq B \& \{A, B\}$ on $K \& \{A, B\}$ on *L* holds K = L) & (for *P* being PLANE of *S* ex *A* being POINT of *S* st *A* on *P*) & (for *A*,*B*,*C* being POINT of *S* ex *P* being PLANE of *S* st $\{A, B, C\}$ on *P*) & (for *A*,*B*,*C* being POINT of *S*, *P*,*Q* being PLANE of *S* st not $\{A, B, C\}$ is linear $\& \{A, B, C\}$ on *P* $\& \{A, B, C\}$ on *Q* holds P = Q)

&

(for L being LINE of S, P being PLANE of S st

ex A, B being POINT of S st $A \neq B \& \{A, B\}$ on $L \& \{A, B\}$ on P

holds L on P)

&

(for A being POINT of S, P,Q being PLANE of Sst A on P & A on Q ex B being POINT of S st $A \neq B$ & B on P & B on Q) & (ex A,B,C,D being POINT of S st not {A, B, C, D} is_planar) & (for A being POINT of S, L being LINE of S, P being PLANE of S st A on L & L on P holds A on P) implies S is IncSpace.

208

For simplicity we adopt the following convention: S will denote an object of the type IncSpace; A, B, C, D will denote objects of the type POINT of S; K, L, L1, L2 will denote objects of the type LINE of S; P, Q will denote objects of the type PLANE of S; F will denote an object of the type Subset of the Points of S. The following propositions are true:

(25)
$$\mathbf{ex} A, B \mathbf{st} A \neq B \& \{A, B\} \text{ on } L,$$

(26)
$$\mathbf{ex} \, L \, \mathbf{st} \, \{A, B\} \, \mathrm{on} \, L,$$

(27)
$$A \neq B \& \{A, B\} \text{ on } K \& \{A, B\} \text{ on } L \text{ implies } K = L,$$

(28)
$$\operatorname{ex} A \operatorname{st} A \operatorname{on} P,$$

(29)
$$\mathbf{ex} P \mathbf{st} \{A, B, C\} \text{ on } P,$$

(30) not
$$\{A, B, C\}$$
 is linear & $\{A, B, C\}$ on P & $\{A, B, C\}$ on Q implies $P = Q$,

(31)
$$(\mathbf{ex} A, B \mathbf{st} A \neq B \& \{A, B\} \text{ on } L \& \{A, B\} \text{ on } P) \mathbf{implies} L \text{ on } P,$$

(32)
$$A \text{ on } P \& A \text{ on } Q \text{ implies ex } B \text{ st } A \neq B \& B \text{ on } P \& B \text{ on } Q,$$

(33)
$$\mathbf{ex} A, B, C, D \mathbf{st} \mathbf{not} \{A, B, C, D\}$$
 is_planar,

$$(35) F ext{ on } L \& L ext{ on } P ext{ implies } F ext{ on } P,$$

(36)
$$\{A, A, B\}$$
 is linear,

(37)
$$\{A, A, B, C\}$$
 is_planar,

(38)
$$\{A, B, C\}$$
 is linear implies $\{A, B, C, D\}$ is planar,

(39)
$$A \neq B \& \{A, B\}$$
 on $L \& \operatorname{not} C$ on L implies $\operatorname{not} \{A, B, C\}$ is linear,

(40)
$$\operatorname{\mathbf{not}} \{A, B, C\}$$
 is_linear & $\{A, B, C\}$ on P & $\operatorname{\mathbf{not}} D$ on P
implies $\operatorname{\mathbf{not}} \{A, B, C, D\}$ is_planar,

(41)
$$\operatorname{\mathbf{not}}(\operatorname{\mathbf{ex}} P \operatorname{\mathbf{st}} K \operatorname{on} P \& L \operatorname{on} P) \operatorname{\mathbf{implies}} K \neq L,$$

(42)
$$\operatorname{not} (\operatorname{ex} P \operatorname{st} L \operatorname{on} P \& L1 \operatorname{on} P \& L2 \operatorname{on} P)$$
$$\& (\operatorname{ex} A \operatorname{st} A \operatorname{on} L \& A \operatorname{on} L1 \& A \operatorname{on} L2)$$
$$\operatorname{implies} L \neq L1,$$

(43)
$$L1 \text{ on } P \& L2 \text{ on } P \& \text{ not } L \text{ on } P \& L1 \neq L2$$

implies not ex Q st L on Q & L1 on Q & L2 on Q,

(44)
$$\mathbf{ex} P \mathbf{st} A \text{ on } P \& L \text{ on } P,$$

(45) $(\mathbf{ex} A \mathbf{st} A \mathrm{on} K \& A \mathrm{on} L)$ implies $\mathbf{ex} P \mathbf{st} K \mathrm{on} P \& L \mathrm{on} P$,

(46)
$$A \neq B$$
 implies ex L st for K holds $\{A, B\}$ on K iff $K = L$,

(47)
$$\operatorname{\mathbf{not}} \{A, B, C\}$$
 is_linear

implies ex P st for Q holds
$$\{A, B, C\}$$
 on Q iff $P = Q$

(48) **not** A on L **implies ex** P **st for** Q **holds** A on Q & L on Q **iff**
$$P = Q$$
,

(49)
$$K \neq L \& (\mathbf{ex} A \mathbf{st} A \text{ on } K \& A \text{ on } L)$$

implies
$$\operatorname{ex} P$$
 st for Q holds K on Q & L on Q iff $P = Q$.

Let us consider S, A, B. Assume that the following holds

 $A \neq B$.

The functor

Line (A, B),

with values of the type LINE of S, is defined by

 $\{A, B\}$ on **it**.

Let us consider S, A, B, C. Assume that the following holds

 $\mathbf{not} \{A, B, C\}$ is linear.

The functor

Plane (A, B, C),

yields the type PLANE of S and is defined by

 $\{A, B, C\}$ on **it**.

Let us consider S, A, L. Assume that the following holds

 $\operatorname{\mathbf{not}} A \text{ on } L.$

The functor

Plane (A, L),

with values of the type PLANE of S, is defined by

 $A \text{ on } \mathbf{it} \ \& \ L \text{ on } \mathbf{it}$.

Let us consider S, K, L. Assume that the following holds

 $K \neq L$.

Moreover we assume that

 $\mathbf{ex} A \mathbf{st} A$ on K & A on L.

The functor

Plane
$$(K, L)$$
,

with values of the type PLANE of S, is defined by

K on $\mathbf{it} \ \& \ L$ on \mathbf{it} .

Next we state a number of propositions:

(50)	$A \neq B$ implies $\{A, B\}$ on Line (A, B) ,
(51)	$A \neq B \& \{A, B\}$ on K implies $K = \text{Line}(A, B)$,
(52)	not $\{A, B, C\}$ is linear implies $\{A, B, C\}$ on Plane (A, B, C) ,
(53)	$\mathbf{not} \{A, B, C\} \text{ is_linear } \& \{A, B, C\} \text{ on } Q \text{ implies } Q = \operatorname{Plane}{(A, B, C)},$
(54)	not A on L implies A on Plane (A, L) & L on Plane (A, L) ,
(55)	not A on L & A on Q & L on Q implies $Q = \text{Plane}(A, L)$,
(56)	$K \neq L \& (\mathbf{ex} A \mathbf{st} A \text{ on } K \& A \text{ on } L)$
	implies K on Plane (K, L) & L on Plane (K, L) ,
(57)	$A \neq B$ implies Line (A, B) = Line (B, A) ,
(58)	not $\{A, B, C\}$ is linear implies Plane $(A, B, C) =$ Plane (A, C, B) ,
(59)	not $\{A, B, C\}$ is linear implies Plane $(A, B, C) =$ Plane (B, A, C) ,
(60)	$\mathbf{not} \{A, B, C\} \text{ is-linear implies } \operatorname{Plane} (A, B, C) = \operatorname{Plane} (B, C, A),$
(61)	not $\{A, B, C\}$ is linear implies Plane $(A, B, C) =$ Plane (C, A, B) ,
(62)	$\mathbf{not} \{A, B, C\} \text{ is-linear implies } \operatorname{Plane} (A, B, C) = \operatorname{Plane} (C, B, A),$
(63)	$K \neq L \& (\mathbf{ex} A \mathbf{st} A \text{ on } K \& A \text{ on } L) \& K \text{ on } Q \& L \text{ on } Q$
	implies $Q = \text{Plane}(K, L),$
(64)	$K \neq L \& (\mathbf{ex} A \mathbf{st} A \text{ on } K \& A \text{ on } L) \mathbf{implies} \operatorname{Plane}(K, L) = \operatorname{Plane}(L, K),$
(65)	$A \neq B \& C$ on Line (A, B) implies $\{A, B, C\}$ is_linear,

- (66) $A \neq B \& A \neq C \& \{A, B, C\}$ is linear **implies** Line (A, B) = Line (A, C),
- (67) **not** $\{A, B, C\}$ is linear **implies** Plane (A, B, C) =Plane (C, Line (A, B)),

2	WOJCIECH A. TRYBULEC
(68)	not $\{A, B, C\}$ is linear & D on Plane (A, B, C) implies $\{A, B, C, D\}$ is planar,
(69)	not C on L & $\{A, B\}$ on L & $A \neq B$ implies Plane (C, L) = Plane (A, B, C) ,
(70)	not $\{A, B, C\}$ is linear implies Plane (A, B, C) = Plane (Line (A, B) , Line (A, C)),
(71)	$\mathbf{ex} A, B, C \mathbf{st} \{A, B, C\}$ on $P \& \mathbf{not} \{A, B, C\}$ is linear,
(72)	$\mathbf{ex} A, B, C, D \mathbf{st} A $ on $P \& \mathbf{not} \{A, B, C, D\}$ is_planar,
(73)	$\mathbf{ex} B \mathbf{st} A \neq B \& B \text{ on } L,$
(74)	$A \neq B$ implies ex C st C on P & not $\{A, B, C\}$ is linear,
(75)	$\mathbf{not} \{A, B, C\} \text{ is_linear implies ex } D \mathbf{st not} \{A, B, C, D\} \text{ is_planar},$
(76)	$\mathbf{ex} B, C \mathbf{st} \{B, C\}$ on $P \& \mathbf{not} \{A, B, C\}$ is linear,
(77)	$A \neq B$ implies ex C, D st not $\{A, B, C, D\}$ is_planar,
(78)	$\mathbf{ex} B, C, D \mathbf{st} \mathbf{not} \{A, B, C, D\}$ is_planar,
(79)	$\mathbf{ex} L \mathbf{st} \mathbf{not} A \text{ on } L \& L \text{ on } P,$
(80)	$A \text{ on } P \text{ implies ex } L, L1, L2 \text{ st } L1 \neq L2$ & L1 on P & L2 on P & not L on P & A on L & A on L1 & A on L2,
(81)	$\mathbf{ex} L, L1, L2$ st A on L & A on L1 & A on L2 & not $\mathbf{ex} P$ st L on P & L1 on P & L2 on P,
(82)	$\mathbf{ex} P \mathbf{st} A \text{ on } P \& \mathbf{not} L \text{ on } P,$
(83)	$\mathbf{ex} A \mathbf{st} A$ on $P \& \mathbf{not} A$ on L ,
(84)	$\mathbf{ex} K \mathbf{st} \mathbf{not} \mathbf{ex} P \mathbf{st} L $ on $P \& K $ on P ,
(85)	$\mathbf{ex} P, Q \mathbf{st} P \neq Q \& L \text{ on } P \& L \text{ on } Q,$
(86)	$K \neq L \& \{A, B\}$ on $K \& \{A, B\}$ on L implies $A = B$,
(87)	not L on P & $\{A, B\}$ on L & $\{A, B\}$ on P implies $A = B$,

- $P \neq Q$ implies not $(\mathbf{ex} A \mathbf{st} A \text{ on } P \& A \text{ on } Q)$
 - or $\mathbf{ex} L$ st for B holds B on P & B on Q iff B on L.

(88)

References

- [1] Karol Borsuk and Wanda Szmielew. Foundations of Geometry. North Holland, 1960.
- [2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1, 1990.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
- [4] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1, 1990.

Received April 14, 1989