Axioms of Incidence

Wojciech A. Trybulec ${ }^{1}$
Warsaw University

Summary. This article is based on "Foundations of Geometry" by Karol Borsuk and Wanda Szmielew ([1]). The fourth axiom of incidence is weakened. In [1] it has the form for any plane there exist three non-collinear points in the plane and in the article for any plane there exists one point in the plane. The original axiom is proved. The article includes: theorems concerning collinearity of points and coplanarity of points and lines, basic theorems concerning lines and planes, fundamental existence theorems, theorems concerning intersection of lines and planes.

The articles [3], [2], and [4] provide the terminology and notation for this paper. We consider structures IncStruct, which are systems

$$
\left\langle\left\langle\text { Points , Lines , Planes }, \operatorname{Inc}_{1}, \operatorname{Inc}_{2}, \operatorname{Inc}_{3}\right\rangle\right\rangle
$$

where Points, Lines, Planes have the type DOMAIN, Inc $_{1}$ has the type Relation of the Points, the Lines, Inc_{2} has the type Relation of the Points, the Planes, and Inc ${ }_{3}$ has the type Relation of the Lines, the Planes. We now define three new modes. Let S have the type IncStruct.

POINT of S	stands for	Element of the Points of S.
LINE of S	stands for	Element of the Lines of S.
PLANE of S	stands for	Element of the Planes of S.

In the sequel S will have the type IncStruct; A will have the type Element of the Points of $S ; L$ will have the type Element of the Lines of $S ; P$ will have the type Element of the Planes of S. The following propositions are true:
A is POINT of S,
L is LINE of S,

[^0]
P is PLANE of S.

For simplicity we adopt the following convention: A, B, C, D will denote objects of the type POINT of $S ; L$ will denote an object of the type LINE of $S ; P$ will denote an object of the type PLANE of $S ; F, G$ will denote objects of the type Subset of the Points of S. The arguments of the notions defined below are the following: S which is an object of the type reserved above; A which is an object of the type POINT of S; L which is an object of the type LINE of S. The predicate

$$
A \text { on } L \quad \text { is defined by } \quad\langle A, L\rangle \in \text { the } \operatorname{Inc}_{1} \text { of } S .
$$

The arguments of the notions defined below are the following: S which is an object of the type reserved above; A which is an object of the type POINT of $S ; P$ which is an object of the type PLANE of S. The predicate

$$
A \text { on } P \quad \text { is defined by } \quad\langle A, P\rangle \in \text { the } \operatorname{Inc}_{2} \text { of } S .
$$

The arguments of the notions defined below are the following: S which is an object of the type reserved above; L which is an object of the type LINE of $S ; P$ which is an object of the type PLANE of S. The predicate

$$
L \text { on } P \quad \text { is defined by } \quad\langle L, P\rangle \in \text { the } \operatorname{Inc}_{3} \text { of } S .
$$

The arguments of the notions defined below are the following: S which is an object of the type reserved above; F which is an object of the type set of POINT of $S ; L$ which is an object of the type LINE of S. The predicate
F on $L \quad$ is defined by \quad for A being POINT of S st $A \in F$ holds A on L.

The arguments of the notions defined below are the following: S which is an object of the type reserved above; F which is an object of the type set of POINT of $S ; P$ which is an object of the type PLANE of S. The predicate

$$
F \text { on } P \quad \text { is defined by } \quad \text { for } A \text { st } A \in F \text { holds } A \text { on } P .
$$

The arguments of the notions defined below are the following: S which is an object of the type reserved above; F which is an object of the type set of POINT of S. The predicate

$$
F \text { is_linear } \quad \text { is defined by } \quad \text { ex } L \text { st } F \text { on } L .
$$

The arguments of the notions defined below are the following: S which is an object of the type reserved above; F which is an object of the type set of POINT of S. The predicate

$$
F \text { is_planar } \quad \text { is defined by } \quad \text { ex } P \text { st } F \text { on } P .
$$

Next we state a number of propositions:

$$
\begin{equation*}
A \text { on } L \operatorname{iff}\langle A, L\rangle \in \operatorname{the} \operatorname{Inc}_{1} \text { of } S, \tag{4}
\end{equation*}
$$

A on $P \operatorname{iff}\langle A, P\rangle \in \operatorname{the} \operatorname{Inc}_{2}$ of S,
L on P iff $\langle L, P\rangle \in$ the Inc_{3} of S,
F on L iff for A st $A \in F$ holds A on L,
F on P iff for A st $A \in F$ holds A on P,
F is_linear iff ex L st F on L, F is_planar iff ex P st F on P, $\{A, B\}$ on L iff A on $L \& B$ on L, $\{A, B, C\}$ on L iff A on $L \& B$ on $L \& C$ on L, $\{A, B\}$ on P iff A on $P \& B$ on P, $\{A, B, C\}$ on P iff A on $P \& B$ on $P \& C$ on P, $\{A, B, C, D\}$ on P iff A on $P \& B$ on $P \& C$ on $P \& D$ on P, $G \subseteq F \& F$ on L implies G on L, $G \subseteq F \& F$ on P implies G on P, F on $L \& A$ on L iff $F \cup\{A\}$ on L, F on $P \& A$ on P iff $F \cup\{A\}$ on P, $F \cup G$ on L iff F on $L \& G$ on L, $F \cup G$ on P iff F on $P \& G$ on P, $G \subseteq F \& F$ is_linear implies G is_linear , $G \subseteq F \& F$ is_planar implies G is_planar .

The mode
IncSpace,
which widens to the type IncStruct, is defined by
(for L being LINE of it ex A, B being POINT of it st $A \neq B \&\{A, B\}$ on L) \& (for A, B being POINT of it ex L being LINE of it st $\{A, B\}$ on L) \&
(for A, B being POINT of it, K, L being LINE of it
st $A \neq B \&\{A, B\}$ on $K \&\{A, B\}$ on L holds $K=L$)
\& (for P being PLANE of it ex A being POINT of it st A on P) \&
(for A, B, C being POINT of it ex P being PLANE of it st $\{A, B, C\}$ on P) \& (for A, B, C being POINT of it, P, Q being PLANE of it st not $\{A, B, C\}$ is_linear $\&\{A, B, C\}$ on $P \&\{A, B, C\}$ on Q holds $P=Q$) \&
(for L being LINE of it, P being PLANE of it
st ex A, B being POINT of it st $A \neq B \&\{A, B\}$ on $L \&\{A, B\}$ on P holds L on P)
\&
(for A being POINT of it, P, Q being PLANE of it
st A on $P \& A$ on Q ex B being POINT of it st $A \neq B \& B$ on $P \& B$ on $Q)$
$\&($ ex A, B, C, D being POINT of it st not $\{A, B, C, D\}$ is_planar) \& for A being POINT of it, L being LINE of it, P being PLANE of it st A on $L \& L$ on P holds A on P.

The following proposition is true
(24) (for L being LINE of S ex A, B being POINT of S st $A \neq B \&\{A, B\}$ on L)
\& (for A, B being POINT of S ex L being LINE of S st $\{A, B\}$ on L) \&
(for A, B being POINT of S, K, L being LINE of S
st $A \neq B \&\{A, B\}$ on $K \&\{A, B\}$ on L holds $K=L$)
\& (for P being PLANE of S ex A being POINT of S st A on P) \& (for A, B, C being POINT of S ex P being PLANE of S st $\{A, B, C\}$ on P)
\&
(for A, B, C being POINT of S, P, Q being PLANE of S
st not $\{A, B, C\}$ is_linear $\&\{A, B, C\}$ on $P \&\{A, B, C\}$ on Q holds $P=Q$)
\&
(for L being LINE of S, P being PLANE of S st ex A, B being POINT of S st $A \neq B \&\{A, B\}$ on $L \&\{A, B\}$ on P
holds L on P)
\&
(for A being POINT of S, P, Q being PLANE of S
st A on $P \& A$ on Q ex B being POINT of S st $A \neq B \& B$ on $P \& B$ on $Q)$
$\&(\operatorname{ex} A, B, C, D$ being POINT of S st not $\{A, B, C, D\}$ is_planar) $\&($
for A being POINT of S, L being LINE of S, P being PLANE of S
st A on $L \& L$ on P holds A on P)
implies S is IncSpace.

For simplicity we adopt the following convention: S will denote an object of the type IncSpace; A, B, C, D will denote objects of the type POINT of $S ; K, L, L 1, L 2$ will denote objects of the type LINE of $S ; P, Q$ will denote objects of the type PLANE of $S ; F$ will denote an object of the type Subset of the Points of S. The following propositions are true:

$$
\begin{equation*}
\text { ex } A, B \text { st } A \neq B \&\{A, B\} \text { on } L \tag{25}
\end{equation*}
$$

ex L st $\{A, B\}$ on L,
$A \neq B \&\{A, B\}$ on $K \&\{A, B\}$ on L implies $K=L$,
ex A st A on P,
ex P st $\{A, B, C\}$ on P,
(30) $\operatorname{not}\{A, B, C\}$ is_linear $\&\{A, B, C\}$ on $P \&\{A, B, C\}$ on Q implies $P=Q$,
$A \neq B \&\{A, B\}$ on $L \& \operatorname{not} C$ on L implies not $\{A, B, C\}$ is_linear,
$\operatorname{not}\{A, B, C\}$ is_linear $\&\{A, B, C\}$ on $P \& \operatorname{not} D$ on P
implies not $\{A, B, C, D\}$ is_planar ,
$\operatorname{not}(\operatorname{ex} P$ st K on $P \& L$ on $P)$ implies $K \neq L$,
$\operatorname{not}(\operatorname{ex} P$ st L on $P \& L 1$ on $P \& L 2$ on $P)$
$\&(\operatorname{ex} A$ st A on $L \& A$ on $L 1 \& A$ on $L 2)$
implies $L \neq L 1$,
(43)

$$
\begin{equation*}
(\text { ex } A, B \text { st } A \neq B \&\{A, B\} \text { on } L \&\{A, B\} \text { on } P) \text { implies } L \text { on } P, \tag{31}
\end{equation*}
$$

A on $P \& A$ on Q implies ex B st $A \neq B \& B$ on $P \& B$ on Q,
ex A, B, C, D st not $\{A, B, C, D\}$ is_planar,
A on $L \& L$ on P implies A on P, F on $L \& L$ on P implies F on P,
$\{A, A, B\}$ is_linear,
$\{A, A, B, C\}$ is_planar,

$$
\begin{equation*}
\{A, B, C\} \text { is_linear implies }\{A, B, C, D\} \text { is_planar, } \tag{37}
\end{equation*}
$$

$$
A \neq B \&\{A, B\} \text { on } L \& \operatorname{not} C \text { on } L \text { implies not }\{A, B, C\} \text { is_linear },
$$

implies not ex Q st L on $Q \& L 1$ on $Q \& L 2$ on Q, ex P st A on $P \& L$ on P, (ex A st A on $K \& A$ on L) implies ex P st K on $P \& L$ on P,

$$
\begin{equation*}
A \neq B \text { implies ex } L \text { st for } K \text { holds }\{A, B\} \text { on } K \text { iff } K=L, \tag{45}
\end{equation*}
$$

$\operatorname{not}\{A, B, C\}$ is_linear
implies ex P st for Q holds $\{A, B, C\}$ on Q iff $P=Q$, $\operatorname{not} A$ on L implies ex P st for Q holds A on $Q \& L$ on Q iff $P=Q$, $K \neq L \&($ ex A st A on $K \& A$ on $L)$
implies ex P st for Q holds K on $Q \& L$ on Q iff $P=Q$.
Let us consider S, A, B. Assume that the following holds

$$
A \neq B
$$

The functor

$$
\text { Line }(A, B)
$$

with values of the type LINE of S, is defined by

$$
\{A, B\} \text { on it. }
$$

Let us consider S, A, B, C. Assume that the following holds

$$
\text { not }\{A, B, C\} \text { is_linear. }
$$

The functor

$$
\text { Plane }(A, B, C)
$$

yields the type PLANE of S and is defined by

$$
\{A, B, C\} \text { on it. }
$$

Let us consider S, A, L. Assume that the following holds

$$
\operatorname{not} A \text { on } L \text {. }
$$

The functor

$$
\text { Plane }(A, L),
$$

with values of the type PLANE of S, is defined by

$$
A \text { on it } \& L \text { on it. }
$$

Let us consider S, K, L. Assume that the following holds

$$
K \neq L
$$

Moreover we assume that

$$
\text { ex } A \text { st } A \text { on } K \& A \text { on } L
$$

The functor

$$
\text { Plane }(K, L),
$$

with values of the type PLANE of S, is defined by K on it \& L on it.

Next we state a number of propositions:

$$
\begin{equation*}
A \neq B \text { implies }\{A, B\} \text { on Line }(A, B), \tag{50}
\end{equation*}
$$

$$
\begin{gather*}
A \neq B \&\{A, B\} \text { on } K \text { implies } K=\operatorname{Line}(A, B), \tag{60}\\
\text { not }\{A, B, C\} \text { is_linear implies }\{A, B, C\} \text { on Plane }(A, B, C), \tag{51}\\
\text { not }\{A, B, C\} \text { is_linear } \&\{A, B, C\} \text { on } Q \text { implies } Q=\operatorname{Plane}(A, B, C), \tag{52}\\
\text { not } A \text { on } L \text { implies } A \text { on Plane }(A, L) \& L \text { on Plane }(A, L), \tag{53}\\
\text { not } A \text { on } L \& A \text { on } Q \& L \text { on } Q \text { implies } Q=\operatorname{Plane}(A, L), \tag{54}\\
K \neq L \&(\text { ex } A \text { st } A \text { on } K \& A \text { on } L) \tag{55}\\
\text { implies } K \text { on Plane }(K, L) \& L \text { on Plane }(K, L), \tag{56}\\
A \neq B \text { implies Line }(A, B)=\operatorname{Line}(B, A), \\
\text { not }\{A, B, C\} \text { is_linear implies Plane }(A, B, C)=\operatorname{Plane}(A, C, B), \tag{57}\\
\text { not }\{A, B, C\} \text { is_linear implies Plane }(A, B, C)=\operatorname{Plane}(B, A, C), \tag{58}\\
\text { not }\{A, B, C\} \text { is_linear implies Plane }(A, B, C)=\operatorname{Plane}(B, C, A), \tag{59}\\
\text { not }\{A, B, C\} \text { is_linear implies Plane }(A, B, C)=\operatorname{Plane}(C, A, B), \tag{61}\\
\text { not }\{A, B, C\} \text { is_linear implies Plane }(A, B, C)=\operatorname{Plane}(C, B, A), \tag{62}\\
K \neq L \&(\text { ex } A \text { st } A \text { on } K \& A \text { on } L) \& K \text { on } Q \& L \text { on } Q \tag{63}\\
\text { implies } Q=\operatorname{Plane}(K, L),
\end{gather*}
$$

(64) $K \neq L \&($ ex A st A on $K \& A$ on $L)$ implies Plane $(K, L)=\operatorname{Plane}(L, K)$,

$$
\begin{equation*}
A \neq B \& C \text { on Line }(A, B) \text { implies }\{A, B, C\} \text { is_linear, } \tag{65}
\end{equation*}
$$

(66) $\quad A \neq B \& A \neq C \&\{A, B, C\}$ is_linear implies Line $(A, B)=\operatorname{Line}(A, C)$,
(67) $\operatorname{not}\{A, B, C\}$ is_linear implies Plane $(A, B, C)=$ Plane $(C$, Line $(A, B))$,
not $\{A, B, C\}$ is_linear $\& D$ on Plane (A, B, C)
implies $\{A, B, C, D\}$ is_planar,
(69) $\operatorname{not} C$ on $L \&\{A, B\}$ on $L \& A \neq B$ implies Plane $(C, L)=\operatorname{Plane}(A, B, C)$,
$\operatorname{not}\{A, B, C\}$ is_linear
implies Plane $(A, B, C)=\operatorname{Plane}(\operatorname{Line}(A, B)$, Line $(A, C))$,
ex A, B, C st $\{A, B, C\}$ on $P \& \operatorname{not}\{A, B, C\}$ is_linear,
ex A, B, C, D st A on $P \& \operatorname{not}\{A, B, C, D\}$ is_planar, ex B st $A \neq B \& B$ on L,
$A \neq B$ implies ex C st C on $P \& \operatorname{not}\{A, B, C\}$ is_linear, $\operatorname{not}\{A, B, C\}$ is_linear implies ex D st not $\{A, B, C, D\}$ is_planar,
ex B, C st $\{B, C\}$ on $P \& \operatorname{not}\{A, B, C\}$ is_linear, $A \neq B$ implies ex C, D st not $\{A, B, C, D\}$ is_planar, ex B, C, D st not $\{A, B, C, D\}$ is_planar, ex L st $\operatorname{not} A$ on $L \& L$ on P, A on P implies ex $L, L 1, L 2$ st $L 1 \neq L 2$ \& $L 1$ on $P \& L 2$ on $P \& \operatorname{not} L$ on $P \& A$ on $L \& A$ on $L 1 \& A$ on $L 2$, ex $L, L 1, L 2$
st A on $L \& A$ on $L 1 \& A$ on $L 2 \&$ notex P st L on $P \& L 1$ on $P \& L 2$ on P,
ex P, Q st $P \neq Q \& L$ on $P \& L$ on Q,
$K \neq L \&\{A, B\}$ on $K \&\{A, B\}$ on L implies $A=B$,
ex P st A on $P \& \operatorname{not} L$ on P, ex A st A on $P \& \operatorname{not} A$ on L, ex K st notex P st L on $P \& K$ on P, not L on $P \&\{A, B\}$ on $L \&\{A, B\}$ on P implies $A=B$, $P \neq Q \operatorname{implies} \operatorname{not}($ ex A st A on $P \& A$ on $Q)$ or ex L st for B holds B on $P \& B$ on Q iff B on L.

References

[1] Karol Borsuk and Wanda Szmielew. Foundations of Geometry. North Holland, 1960.
[2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1, 1990.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[4] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1, 1990.

Received April 14, 1989

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1.

